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1 Introduction

The long time of ignorance after Zeh’s publications [1, 2] in 1970–71 on environmen-
tal decoherence got broken byWigner. He summarized his own revelation and Zeh’s
discovery [3] as follows: This writer’s earlier belief that the physical apparatus’ role
can always be described by quantum mechanics […] implied that the “collapse of the
wave function” takes place only when the observation is made by a living being—a
being clearly outside of the scope of our quantum mechanics. The arguments which
convinced me that quantum mechanics’ validity has narrower limitation, that it is
not applicable to the description of the detailed behavior of macroscopic bodies, is
due to D. Zeh. (1970) […]. The point is that a macroscopic body’s inner structure,
i.e. its wave function, is influenced by its environment in a rather shot time even if it
is in intergalactic space. Hence it cannot be an isolated system […]. Wigner raised
the question: Can an equation for the time-change of the state of the apparently
not-isolated system be proposed?

Nowadays, after decades, the answer is part of the theoryof openquantumsystems.
But in 1983, it was a novelty that Wigner showed a master equation for the massive
object’s density matrix, modeling the decoherence of its rotational motion:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] −

∑

�m

ε�

[
L̂�m, [L̂�m, ρ̂]

]
, (1)

where Ĥ is the Hamiltonian of the macroscopic object and L̂�m are the multipole
operators of its angular momentum; strengths of their decoherence are given by the
parameters ε�.

In 1985, Joos and Zeh (JZ) found [4] that decoherence of the center-of-mass
position x̂ would be more typical and, what is important, its derivation is simple.
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2 Equation of Positional Decoherence

Consider a macroscopic object, e.g. a dust particle, of mass M under the influence of
incoming plane waves of particles, e.g. molecules, of massm � M that are scattered
independently by the macroscopic object. JZ took the following unitary transition
per single collisions, valid if M → ∞:

|pi 〉 ⊗ |ki 〉 ⇒ |pi 〉 ⊗ |ki 〉 + i

2πki

∫
dk f f (k f ,ki )δ(k f − ki )

∣∣p f
〉 ⊗ ∣∣k f

〉
, (2)

pi/ f ,ki/ f are the initial/final momenta of the object and the particle, respectively,
where p f = pi + ki − k f ensures momentum conservation, and f is the standard
scattering amplitude. The authors pointed out that repeated scatterings of the incom-
ing particles contribute to gradual localization of the object, i.e., the off-diagonal
terms of the positional density matrix ρ(x′, x) become damped. If the distribution
ρE(ki ) of the incoming environmental particles is isotropic then the collisions con-
tribute to the following master equation:

dρ̂

dt
= − i

�
[Ĥ , ρ̂] − �[x̂, [x̂, ρ]]; (3)

valid if the coherent extension of the object’s position is much smaller than the
wavelength of the particles:

|x′ − x| � �/k. (4)

JZ determined the parameter � of localization rate:

� = 1

�2
× incoming flux of particles × k2σeff . (5)

They calculated the effective cross section σeff from the differential cross
section | f |2.
The JZ master equation (3) is paradigmatic in decoherence theory. It describes
the gradual damping of the off-diagonal elements of the positional density matrix
ρ(x′, x) which is called positional decoherence on one hand and yields localization
of the coherent extension of the object on the other. In 1990 Gallis and Fleming [5]
revisited the considerations of JZ and refined their derivation of positional decoher-
ence and its rate �. It is not clear when, lately, was the localization rate � related
to the classical diffusion coefficient for the first time. But the research moved to that
direction.
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3 Quantum Brownian Motion in a Gas

The JZ master equation (3) has an alternative interpretation, independent of and
older than the concept of decoherence. It corresponds to momentum diffusion of the
Brownian object, with the coefficient Dp of momentum diffusion:

� = Dp

�2
. (6)

As a beneficial consequence, to obtain and understand the dynamics of decoher-
ence, also to complete the JZ master equation (3) by a term of friction, we could
have used the standard quantum theory of Brownian motion in a gas. Just this stan-
dard theory did not exist at the time. And it has since remained problematic despite
efforts of a community of researchers including myself. We all were motivated by
our foundational interest in the quantum behavior of macroscopic objects under the
influence of their uncontrollable environments. The efforts [6–10] started in 1995 and
culminated in the Vacchini-Hornberger review [10]. These autors say ... the seminal
paper on decoherence by Joos and Zeh [...], seeking to explain the absence of quan-
tum delocalization in a dust particle by the scattering of photons and air molecules,
derived and studied what the authors called a Boltzmann-type master equation. Two
decades later, the long quest for the characterization of the phenomenon of colli-
sional decoherence has now reached a mature theoretical description, permitting its
quantitative experimental confirmation. Let me outline the story, in my—selective
and certainly subjective— interpretation.

In 1995 [6], without mentioning my foundational motivations, I asked the ques-
tion: what is the quantum Brownian dynamics of the dust in a dilute gas at thermal
equilibrum? First I solved the classical problem by the linear variant of the classical
Boltzmann-equation where the molecule-molecule collision term is just replaced by
the dust-molecule collision term.Unlike the classical case, the derivation of the quan-
tum linear Boltzmann equation (QLBE) was not straightforward. Quantum mechan-
ically, a single collision corresponds to the following unitary transition, generalizing
(2) for finite M :

|pi 〉 ⊗ |ki 〉 ⇒ |pi 〉 ⊗ |ki 〉 + i

2πk∗
i

∫
dk∗

f f (k∗
f ,k

∗
i )δ(k

∗
f − k∗

i )
∣∣p f

〉 ⊗ ∣∣k f
〉

, (7)

where k∗
i/ f are the initial/final momenta of the particle, respectively, in the center-of-

mass frame. As before, p f = pi + ki − k f ensures momentum conservation, total
energy conservation is ensured by the delta-function.When imposing the distribution
ρE(ki ) of the gas molecule momenta, I had to introduce a heuristic maneouvre of
square-root (MSqR); otherwise the correct mathematical structure [11, 12] of the
desired quantum master equation wouldn’t have been achieved. The MSqR was
equivalent to a deliberate adding off-diagonal elements to the standard diagonal
density matrix ρE(k,k′) ∝ ρE(k)δ(k − k′) of the ideal gas molecules. The choice
was
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ρE(k,k′) =
√

ρE(k)
√

ρE(k′) . (8)

This MSqR and some other simple assumptions led to the first QLBE of Brownian
motion in a gas. In the diffusion limit it yields the quantum Fokker-Planck equation
(QFPE):

dρ̂

dt
= − i

�
[Ĥ , ρ̂] − Dp

�2
[x̂, [x̂, ρ̂]] − i

η

2�
[x̂, {p̂, ρ̂}] − Dx

�2
[p̂, [p̂, ρ̂]] . (9)

The coefficients of momentum diffusion Dp = ηMkBT and friction η correspond to
those in the classical Fokker-Planck equation:

dρ

dt
= {H, ρ}Poisson + Dp

(
∂

∂p

)2

ρ + η
∂

∂p
pρ . (10)

However, the quantum version (9) contains a strange term of position diffusion
which would be nonsense classically. Position diffusion of the Brownian object is a
pure quantum effect, the celebrated GKLS theorem [11, 12] puts the following lower
bound on the coefficient of position diffusion:

Dx

�2
≥ η2

4Dp
= η

4MkBT
, (11)

whichwas satisfied in [6] by construction. Hornberger [8], applying theMSqR, found
an ambiguity—nicely elucidated later in [10]—and derived an alternative QLBE.
His was more natural than mine, in particular because his QLBE had the minimum
possible value of Dx [cf. (11)], i.e., theminimum rate of the strange position diffusion.

The context of quantum Brownian motion theory and the related results —
achieved by physicists mostly working on quantum foundations otherwise—were
summarized in 2009 [10] by Vacchini and Hornberger. The QLBE of Hornberger
[8] seemed to be the true and ultimate quantum version of the classical linear Boltz-
mann equation. But soon, an elementary argument of decoherence popped up and
questioned it together with all previous versions, including mine.

4 Complete Momentum Decoherence (CMD)

To understand the overlooked dramatic phenomenon indicated by the title above,
we only need the momentum and energy conservation of collision in one dimension
first:

pi + ki = p f + k f , (12)

p2
i

2M
+ k2

i

2m
= p2

f

2M
+ k2

f

2m
. (13)
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We express the final momentum of the mass M in the following form:

p f = μ+ki + μ−k f , (14)

where μ± = (M/m ± 1)/2. Observe that the initial momentum pi of the mass M
canceled! Its final momentum depends on the initial ki and final k f of the scattered
mass m! This fact yields a crisis quantum mechanically. Observe that the reduced
post-collision state of the mass M remains the same if we measure the post-collision
momentum k f of the other mass. Assume we do so and measure k f . Then the above
expression of p f means that we measure the final momentum p f of the mass M
as well and, as a consequence, momentum superpositions for the mass M can exist
no more after a single collision! Any single collision causes complete momentum
decoherence of the mass M .

This trivial fact of CMD surfaced in 2009 [13] and in 2010 [14] in the general
case of the three-dimensional collision (7) where the expression (14) survives for the
components of p f ,ki ,k f parallel to the momentum transfer k f − ki only:

p‖
f = μ+k‖

i + μ−k‖
f . (15)

CMD in all three components of p f requests just three collisions in a row. CMD is
obviously unphysical. It would, in particular, suggest a divergent coefficient Dx = ∞
of position diffusion in the QFPE (9).

The obligate question follows: how did the derivations of QLBEs from 1995 over
fifteen years got finite Dx against the trivial CMD which imposes Dx = ∞. How
did they regularize the divergent position diffusion?

5 Collision and Methods Revisited

We go back to the type of elementary considerations of JZ, this time taking the exact
collision kinematics like (7) into the account, instead of the approximate (2). To
detect CMD and the role of the MSqR in its regularization, it is sufficient to simplify
the derivations from three to one dimension. First, let us find the counterpart of (7)
in one dimension. Assume, again for simplicity, the repulsive hard-wall potential
between the dust and a molecule so that we can ignore that they tunnel through each
other. Then the unitary transition (7) in a collision reduces to:

|p〉 ⊗ |k〉 ⇒ ∣∣p + 2k∗〉 ⊗ ∣∣k − 2k∗〉 . (16)

[For brevity, we stop indicating that all momenta are the initial ones.] Remember the
center-of-mass initial momentum k∗ = (Mk − mp)/(M + m). If the initial state of
the dust is a superposition of momentum eigenstates, the transition of an off-diagonal
element of the density matrix reads:
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|p〉 〈
p′∣∣ ⊗ |k〉 〈k| ⇒ ∣∣p + 2k∗〉 〈p′ + 2k∗∣∣ ⊗ ∣∣k − 2k∗〉 〈k − 2k∗′∣∣ , (17)

where k∗′ = (Mk − mp′)(M + m). Take the partial trace of both sides, yielding

|p〉 〈
p′∣∣ ⇒ 0 , (18)

because the two post-collision states of the molecule, scattered on |p〉 and
∣∣p′〉,

respectively, became orthogonal:

〈ki − 2k∗′ ∣∣k − 2k∗
i

〉 = 0 . (19)

This proves CMD analytically and confirms the previous measurement theoretical
argument: Any single collision causes CMD of the dust. This cannot happen in the
reality since it would completely delocalize the wave function. It is now obvious that
the mentioned two post-collision states of the molecule should overlap!

Our derivations [6, 8–10] of QLBE’s created this overlap formally via the MSqR
(8), without any awareness or reference to the above physical background. We
assumed an environmental ideal gas, i.e., a mixture of plane waves of thermal dis-
tribution ρE(k) ∝ exp(−k2/mkBT ) of temperature T . But at a certain later stage
towards the QLBE, we took the MSqR (8) and postulated the following density
matrix:

ρE(k, k ′) =
√

ρE(k)
√

ρE(k ′) , (20)

which represents a single normalized central real Gaussian wave function ψE
k ∝

exp(−k2/2mkBT ), i.e., a central real Gaussian wave packet standing at the origin:

ψE(x) ∝ exp

(
−mkBT x2

2�2

)
. (21)

This single pure state served as an effective substitute of the singlemoleculemixed
state in the ideal gas. The translation invariance was lost obviously. Nonetheless it
became restored since all plane wave components |k〉 were assumed to collide with
the dust: ∫

dkψE
k |p〉 ⊗ |k〉 ⇒

∫
dkψE

k

∣∣p + 2k∗〉 ⊗ ∣∣k − 2k∗〉 . (22)

It is of course hard to interpret this assumption but it was implicit in all derivations
and, most importantly, restored the translation invariance of the resulting QLBE.

Due to the MSqR (20) the two post-collision states of the molecule are, unlike in
(19), no more orthogonal; they overlap, and the effect of CMD disappears, gives its
role to finite momentum decoherence . Detailed calculations, omitted here, yield the
QFPE (9) with the standard momentum diffusion Dp = ηMkBT and the finite coef-
ficient of position diffusion (momentum decoherence) Dx saturating the constraint
(11). In all historic QLBEs [6, 8–10] it is the MSqR that removes the divergence
of Dx .
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Are these Dx ’s physical? In view of the meaning of the MSqR that a standing
wave packet substitutes the ideal gas single-molecule density matrix, a finite Dx may
well be an artifact of the MSqR, as suggested by [13, 14].

6 Farwell MSqR

What other, more physical mechanism could explain the finite physical momentum
decoherence (position diffusion) if it is tractable at all via the independent colli-
sions. Should one improve on the single molecule density matrix of the ideal gas by
taking molecule-molecule interactions into account? Unfortunately, one should not.
The diagonal form ρ(p,p′) ∝ δ(p − p′) remains because the due translation invari-
ance of the gas equilibrium state. To mitigate CMD, playing with the quantum state
ρE(k,k′) ∝ ρE(k)δ(k − k′) of the particles is useless. We play with the collision.

When MSqR turned out to be a kind of unphysical elimination of CMD, the
following consideration arose. CMD assumes idealized quantum scatterings that
means, e.g., infinite intercollision time τ = ∞. If one takes the finite τ valid even
in dilute gas then energy conservation (13) in single collision becomes unsharp and
CMD becomes relaxed. This was certainly a more justified mechanism to mitigate
CMD than the MSqR had been, I thought in [13], and got a finite coefficient Dx of
momentum decoherence (position diffusion):

Dx = 1

3

(
τ 2

M

)
Dp. (23)

Hornberger andVacchini [15] claimed that theCMD issuewas nonexistent in their
QLBE [8–10] which contains the ultimate physics of quantum Brownian motion—I
disagreed [16]—as long as binary independent collisions are considered between the
dust and the molecules. Also Kamleitner and Cresser [14] blamed the idealization of
the scattering process for CMD and introduced a nonzero collision (interaction) time
instead of the idealized zero. Apparently, no consensus has since been reached as to
the value of Dx neither to the very existence of momentum decoherence (position
diffusion).

This issue is not yet too burning since the effect is not testable currently. The
experimental significance of a non-zero Dx was anticipated long time ago [17], a
possible test was mentioned tangentially [18], a fundamental experiment [19] used
and confirmed the QLBE prediction for momentum diffusion only.

7 Epilogue

Many times, questioning the conservative and confirmedwisdom respecting quantum
mechanics turns out to be unproductive. Zeh’s criticism was different and changed
our abstraction and practice about coherence in quantum theory. I only wished to
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illustrate howZeh’swork, apart from its impact on foundations, opened the Pandora’s
box of a standard unsolved problem independent of foundations. What is our theory
of a quantumBrownian particle in a gas? Theory ran into a puzzle that—I’m afraid—
has remained unsolved so far.
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