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Thermodynamic and quantum entropy gain of
frame averaging
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Abstract. We are discussing a universal non-unitary map M subsequent to a generic unitary map U,
whose von Neumann entropy gain coincides with the calculated thermodynamic entropy production.
For many-body quantum reservoirs we prove that M can be the averaging over all translations of the
spatial frame. Assuming the coincidence of microscopic andmacroscopic entropy productions leads
to a novel equation between entropy gain of frame averaging and relative entropy. Our map M turns
out to coincide with the older one called twirl, used recently in the theory of quantum reference
frames. Related results to ours have been obtained and we discuss some of them briefly. Possible
relevance of frame averaging (twirling) for real world irreversibility is mentioned.
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In a sequence of works [1, 2, 3], we studied how we would generate microscopic
entropy in simple models where the amount of thermodynamic entropy production is
also calculable. By requiring the identity of both the microscopic and thermodynamic
entropy productions, we were led to the concept of ‘graceful’ irreversible map and to
a mathematical conjecture: the von Neumann entropy generated by the map is equal to
the relative von Neumann entropy of the state before and after the map. For a special
case, the conjecture was proven by Csiszár, Hiai and Petz, also it got an application to a
certain quantum channel capacity problem [4]. In the same years, and independently of
our research, several works on the notion and quality of reference frames appeared, cf.
e.g. [5] by Vaccaro et al., [6] by Gour et al. They defined the measure of frameness, i.e.:
of the goodness of a reference frame, as the entropy generated by ‘twirl’. This map was
used earlier by Bennett et al. [7], and our ‘graceful’ irreversible map happens to coincide
with it.

I am going to recapitulate the unpublished work [3] which generalizes [1] and [2]
for bulk quantized systems, I’ll furthermore include a quick reference to the mentioned
concept of frameness.

ENTROPIES: VON NEUMANN SVS THERMODYNAMIC Sth

Consider a certain homogeneous equilibrium reservoir at temperatureT = 1/β and
volumeV, with density matrix

ρβ =
1

Zβ
e−βH , (1)
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where H is the Hamiltonian. In the thermodynamic limit, the reservoir’s von Neu-
mann (microscopic) entropyS(ρβ ) =−tr(ρβ logρβ ) coincides with the thermodynamic
(macroscopic) entropyVs(β ):

lim
V→∞

S(ρβ )

V
= s(β ) . (2)

This relationship assures that the microscopic theory can recover the macroscopic ther-
modynamics for equilibrium states. For non-equilibrium states, however, the general
proof is missing. The present work enforces the coincidenceof von Neumann and ther-
modynamic entropy productions, respectively, by constructing a certain ‘graceful’ irre-
versible mapρ → M ρ which is mathematically simple, and may reflect some universal
features of the true mechanism of irreversibility.

SAND Sth IN NON-EQUILIBRIUM

Assume we switch on a certain external field to act during a limited period and in a
limited spatial region. When the field is switched off, the state of the reservoir becomes
the unitary transformρ ′

β =UρβU† of ρβ , preserving the entropy:

S(ρ ′
β ) = S(ρβ ) . (3)

The field performs a certain workW= tr(Hρ ′
β )− tr(Hρβ ) on the reservoir. In our model,

wesupposethat the entire workW becomes dissipated in the reservoir hence the thermo-
dynamic entropy production is just∆Sth = βW according to standard thermodynamics.
Let us invoke the definition of the von Neumann relative entropy of two density matrices:

S(σ |ρ) = tr[σ(logσ − logρ)]≥ 0 . (4)

It is a remarkable fact that the macroscopic entropy production ∆Sth = βW can be
expressed as the microscopic (von Neumann) relative entropy of the initial and final
quantum states:

∆Sth = S(ρ ′
β |ρβ ) . (5)

The derivation is elementary [2, 8]. We just readβH = logZβ + logρβ from eq. (1) and
substitute it into:

∆Sth = βW = tr[βH(ρ ′
β −ρβ )] , (6)

which, due to (3), yieldsS(ρ ′
β |ρβ ). One would expect that∆Sth coincides with the

increase of von Neumann entropy in the reservoir in the thermodynamic limit, but it
does not:

lim
V→∞

[

S(ρ ′
β )−S(ρβ )

]

6= lim
V→∞

∆Sth . (7)

The l.h.s. is always zero, cf. eq. (3), sinceρβ andρ ′
β are unitarily equivalent. On the

macroscopic end, however, weassumedthat the stateρ ′
β differs fromρβ irreversibly be-

cause of the dissipated work. This is just the 150-year-old conflict between microscopic



reversibility and macroscopic irreversibility. We do not intend to propose any ultimate
resolution of this conflict. We only propose a formal resolution which may not be the
real mechanism of irreversibility, yet it may have something to do with it. The novelty
of our approach is that, at very general model conditions, itincorporates the exact value
of macroscopic entropy production into the microscopic dynamics of the reservoir.

A GRACEFUL IRREVERZIBLE MAP M

We are searching for a formal irreversible (i.e.: non-unitary) mapM which has two
attractive features. First, it is graceful in the sense thatit conserves the free dynamics of
the reservoir, i.e.:

M [H,ρ ] = [H,M ρ ] (8)

for all ρ . Second, it makes the von Neumann entropy production equal to the thermody-
namic one∆Sth which the eq. (5) has re-expressed as the relative entropy:

lim
V→∞

[

S(M ρ ′
β )−S(ρβ )

]

= lim
V→∞

S(ρ ′
β |ρβ ) . (9)

Such irreversible map was first considered for the Maxwell-gas in the context of the
Boltzmann’s rather than the von Neumann’s entropy [1]. In ref. [2] we constructed
M for the case of a chain of non-interacting Pauli-spins, the rigorous proof of which
appeared in [4]. In the present work, we are going to suggestM for the realistic reservoir
like, e.g., a quantum gas or liquid of arbitrary strong self-interaction and of arbitrary
strong perturbationU .

Let H be a second quantized Hamiltonian of our reservoir confined in a rectangu-
lar box of volumeV with periodic boundary conditions. Introduce the unitary operator
U(x) of spatial translation1 by the vectorx. SinceU(x)HU(−x) = H for all x, also the
equilibrium state (1) will be translation invariant:U(x)ρβU(−x) = ρβ . The locally per-
turbed stateρ ′

β can not be translation invariant. For it, consider the following irreversible
(non-unitary) map:

M ρ ′
β =

1
V

∫

U(x)ρ ′
βU(−x)dx , (10)

where the integration extends for the volumeV of the box. This map satisfies the eq. (8)
of ‘gracefulness’. We conjecture that also the thermodynamic constraint (9) is satisfied.

Proof

To outline the proof, we generalize the rigorous method of ref. [4] heuristically.
Observe that on the l.h.s. of eq. (9) bothS(M ρ ′

β ) andS(ρ ′
β ) diverge forV → ∞, only

their difference will converge. Fortunately, one can use the following identity:

S(M ρ ′
β |ρβ ) =−S(M ρ ′

β )+S(ρ ′
β )+S(ρ ′

β |ρβ ) , (11)

1 Despite similar notations, don’t confuse translationsU(x) with the local perturbationU in ρ ′
β =UρβU†.



which is easy to inspect from eq. (10) and from the translation invariance ofρβ . Hence
eq. (9) is equivalent with

lim
V→∞

S(M ρ ′
β |ρβ ) = 0 . (12)

According to the Hiai-Petz lemma [9]:

S(σ |ρ)≤ SBS(σ |ρ) , (13)

whereSBS(σ |ρ) = tr[σ log(σ1/2ρ−1σ1/2)] is the Belavkin-Staszewski relative entropy
[10] which one re-writes in terms of the functionη(s) =−slogs:

SBS(σ |ρ) =−tr[ρη(ρ−1/2σρ−1/2)]≥ 0 . (14)

Let us chain the inequalities (4) and (13) forσ = M ρ ′
β andρ = ρβ :

0≤ S(M ρ ′
β |ρβ )≤ SBS(M ρ ′

β |ρβ ) =−tr[ρη(M Eβ )] , (15)

whereEβ = ρ−1/2
β ρ ′

β ρ−1/2
β and

M Eβ =
1
V

∫

U(x)EβU(−x)dx . (16)

Like in ref. [4], one must prove thatM Eβ = I which meansη(M Eβ ) = 0. Then the
inequalities (15) yieldS(M ρ ′

β |ρβ ) = 0 which completes the proof.
Rather than embarking on a lengthy rigorous derivation ofM Eβ = I, we use heuristic

arguments. We consider second quantized formalism where all quantized fields satisfy
A(x, t) = exp(itH )A(x)exp(−itH ). Assume, for concreteness, pair-potential that van-
ishes at distances much bigger thanℓ. It is plausible to assume that perturbations have a
maximum speed of propagation. Hence, at any given timet after the unitary perturbation
ρ ′

β =UρβU† e.g. around the origin, there exists a finite volume of radiusr such that

[U,A(x, t)] = 0 (17)

for all |x|> r and for all local quantum fields. We can writeEβ in the form

Eβ = exp(βH/2)exp(−βUHU†)exp(βH/2) . (18)

The Hamiltonian contributions of the fieldA(x) will be cancelled for all|x| ≫ ℓ. There-
fore [Eβ ,A(x)] = 0 for all |x| ≫ ℓ. Due to the finite speed of propagation, also the more
general relationship

[Eβ ,A(x, t)] = 0 (19)

holds at any given later timet provided|x| > r wherer is finite and grows witht at
the speed of propagation. Let us take the infinite volume limit V → ∞! Since the sub-
volume of radiusr, whereA(x, t) doesnot commute withEβ , is finite and sinceEβ is a
bounded operator, the averaged operatorM Eβ will commute with all fieldsA(x, t) for
all coordinatesx! HenceM Eβ = λ I and the identity tr(ρβ M Eβ ) = tr(ρβ Eβ ) = 1 yields
λ = 1.



REALISTIC VERSIONS OF M

One might wish to construct the ‘graceful’ irreversible mapM at less artificial condi-
tions of regularization than the finite volume and the periodic boundary (10). An equiv-
alent construction can be done on the Hilbert space of an infinite volume reservoir:

M ρ ′
β = lim

R→∞

1
8πR3

∫

e−|x|/RU(x)ρ ′
βU(−x)dx . (20)

The mapM makes the reservoirforget some information that amounts exactly to the
macroscopic entropy production. From the lesson of our previous works [1, 2] we
have guessed that the real quantum reservoir would gracefully forget the location of
perturbation. (It does not need to forget it immediately; itmay do it at any later time.)
Now, let us callR the scale of spatial frame coarse-graining. In concrete cases, the
information loss can be well saturated at some finite scaleR ≫ r. This feature can
become important if we generalize the single-shot concept of M for the time-continuous
generation of irreversibility.

There is a further alternative which we just mention. Instead of the spatial frame, the
temporal one can be made forgotten:

M ρ ′
β = lim

T→∞

1
T

∫ 0

−∞
et/TU(−t)ρ ′

βU(t)dt , (21)

whereU(t)= exp(−iHt ). This state is definitely different from the result of spatial aver-
aging (20). Nevertheless, we conjecture that forT,V → ∞ it gains the same entropy (9).
This has never been discussed, although the irreversible map (21) of local equilibrium
Gibbs-states has long been known in advanced statistical physics [11]. Note that uni-
versal coarse-graining of the temporal frame has appeared in a number of independent
models, see four of them in ref. [12].

FRAMENESS

Suppose we want to labeln nodes along a closed chain and we introducen Pauli spins
as a reference frame. If the spins are independent and identical, their composite state is

ρ = σ ⊗σ ⊗σ ⊗σ ⊗ . . .⊗σ . (22)

Such state is invariant if we shift the labels along the chain, hence this state is useless
for a reference frame. Now we alter just one of then spins:

ρ ′ = σ ⊗σ ′⊗σ ⊗σ ⊗ . . .⊗σ . (23)

This makes already a better reference frame, yet its usefulness depends on the ‘distance’
betweenσ ′ andσ . We need a certain measure of the frame’s usefulness, which we call
frameness. The frameness should be zero if the frame’s quantum state isinvariant for the
group of shifts, and the frameness should increase with the asymmetry of the quantum
state.



Instead of the above discrete frame, we can suppose a continuous one to label spatial
coordinates. Like before, we consider a many-body system with translation invariant
Hamiltonian and with periodic boundary conditions in a rectangular volumeV. The
Gibbs equilibrium stateρβ (1) is translation invariant, hence its frameness must be zero.
Its local perturbationρ ′

β = UρβU† is translation non-invariant, its frameness must be
positive.

Now we have to define framenessF(ρ) for an arbitrary stateρ . We can rely on
entropic quantities and we can choose a plausible definition.

TWIRL G

As we said,F(ρ) = 0 if and only if U(x)ρU(−x) ≡ ρ , i.e., whenρ is translation
invariant. If it is not, then we introduce the average ofρ over all translations:

G ρ =
1
V

∫

U(x)ρU(−x)dx . (24)

The mapG is called ‘twirl’ and it can be defined for locally compact groups. It fully
coincides with our ‘graceful’ irreversible map (10). The stateG ρ is translation invariant,
and it is a ‘closest’ translation invariant map ofρ . Of course,F(G ρ) is zero for allρ .
Now, what could be the framenessF(ρ) of a genericρ?

Following Vaccaro et al. [5], let the frameness ofρ be measured by the twirl’s (24)
gain of entropy:

F(ρ) = S(G ρ)−S(ρ) . (25)

Gour, Marvian and Spekkens [6] showed that the ’closest’ translation invariant state to
ρ is the twirled stateG ρ . Morerover, they were able to prove that the corresponding
shortest entropic distanceS(ρ |G ρ) is identical to the above defined frameness:

F(ρ) = S(ρ |G ρ) . (26)

So, the informatic measure of frameness is the relative entropy of the twirled state w.r.t.
the state itself.

CLOSING REMARKS

There is an obvious overlap between our results and those in [5, 6] although the initial
motivations are definitely different. We don’t go into the depth of comparison, rather
we compare the central mathematical results. By postulating a joint model of both
thermodynamic and von Neumann entropy gains, we came to the non-trivial conjecture:

lim
V→∞

[S(G ρ)−S(ρ)] = lim
V→∞

S(ρ |ρ0) , (27)

whereU(x)ρ0U(−x)≡ ρ0 andρ =Uρ0U† while

G ρ =
1
V

∫

U(x)ρU(−x)dx . (28)



To be correct, the conjecture was derived and the heuristic proof was done for the special
caseρ0 = ρβ . However, I guess the proof might be extended for translation invariant
statesρ0.

A similar non-trivial theorem was exactly proved by Gour et al. [6]. To get the
relationship (26), they proved for all groups and for all statesρ that the entropy gain
of twirling is identical with the relative entropy of the twirled state w.r.t. the state itself:

S(G ρ)−S(ρ) = S(ρ |G ρ) . (29)

Despite its similarity to our result (27), theirs is different. Apparently, our conjecture
and theorem is asymptotic, it needs the infinite volume limit. Further investigations
may perhaps show intrinsic relationships between (27) and (29) together with their
underlying physics.

While the merit of the theorem (27) is independent of the validity of our model
for real physics, our model and results shed more light on thephysical mechanism of
microscopic irreversibility, i.e., on Nature’s graceful way to forget microscopic data.
Nature would gracefully produce irreversibility just by twirling our reference frames (or,
equivalently, by twirling matter). Then Nature is producing the observed thermodynamic
irreversibility — at least in our calculable models. Whether this is the real and ultimate
way for Nature to ’forget’ microscopic data remains an open question.
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