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We discuss the Hamiltonian hybrid coupling between a classical and a quantum subsystem. If
applicable to classical gravity coupled to quantized matter, this hybrid theory might realize a capti-
vating ‘postquantum’ alternative to full quantum-gravity. We summarize the nonrelativistic hybrid
dynamics in improved formalism adequate to Hamiltonian systems. The mandatory decoherence
and diffusion terms become divergent in special and general relativistic extensions. It is not yet
known if any renormalization method might reconcile Markovian decoherence and diffusion with
relativity. Postquantum gravity could previously only be realized in the Newtonian approximation.
We argue that pending problems of the recently proposed general relativistic postquantum theory
will not be solved if Markovian diffusion/decoherence are truly incompatible with relativity.

I. INTRODUCTION

The dynamical coupling between a classical and a
quantum subsystem is of multiple interests, e.g., in math-
ematical physics, in heuristic models, and particularly
in foundations. If gravity were fundamentally classi-
cal then its hybridized dynamics with quantized mat-
ter would replace the mean-field (semiclassical) approx-
imation [1, 2] and the famously inconclusive versions of
quantum-gravity. Such captivating idea has been kept
alive from an episodic suggestion [3, 4] —based on incor-
rect nonrelativistic (NR) hybrid dynamics [5]— through
works by the present author and by others [6–12] until
to culminate in postquantum gravity of Oppenheim and
co-workers [13–16].

Parallel to the fundamental concept, the underlying
mathematical tool has been researched persistently along
important milestones [8–10, 17–28]. The central techni-
cal issue that has been solved non-relativistically is the
following. Suppose the hybrid Hamiltonian containing
in turn the classical Hamilton function of the classical
subsystem, the Hamilton operator of the quantum sub-
system, and the coupling between them:

Ĥ(q, p) = HC(q, p) + ĤQ + ĤCQ(q, p). (1)

The evolution equation of the state-vector of the quan-
tum subsystem is the Schrödinger equation i~|Ψ〉/dt =
Ĥ(q, p)|Ψ〉. The backaction of the quantum subsystem
on the classical one is non-trivial. Towards the solution
of interest, we introduce the hybrid state, represented by
the hybrid density ρ̂(q, p) ≥ 0 which is combination of
the density operator ρ̂Q =

∫
ρ̂(q, p)dqdp of the quantum

subystem and the phase space density ρC(q, p) = trρ̂(q, p)
of the classical one. Assume the following combination
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of the classical and quantum dynamics [17]:

dρ̂(q, p)

dt
= − i

~
[Ĥ(q, p), ρ̂] +H{Ĥ(q, p), ρ̂(q, p)}

≡ {Ĥ(q, p), ρ̂(q, p)}A
(2)

where { , } stands for the Poisson bracket. The term

H{ĤCQ(q, p), ρ̂(q, p)} represents the backaction, the sym-
bol H means the Hermitian part. If it is zero, we get the
standard classical and quantum dynamics separately for
the two subsystems, as we should. But the seemingly
plausible dynamics (2) is not yet mathematically cor-
rect, it does not preserve the positivity of ρ̂(q, p). Addi-
tional decoherence and diffusion mechanisms are manda-
tory and they are subject of trade-off: stronger decoher-
ence allows for weaker diffusion and vice versa [8]. The
ultimate general form of hybrid NR dynamics appeared
in refs. [26–29].
Instead of a master equation for ρ̂(q, p), stochastic dif-

ferential equations for the pure quantum state P̂ and
the classical variables (q, p) offer an equivalent alterna-
tive. As an analogy, remember for example that the
classical Fokker–Planck equation is equivalent with the
Langevin stochastic differential equation. In the hybrid
case, the backaction is realized by time-continuous quan-
tum measurement —monitoring— of the quantum sub-
system and feedback of the measured signal into the clas-
sical subsystem. The importance of this formalism is
emphasized especially in refs. [28, 30]. Compared to the
master equation of hybrid canonical coupling, the mod-
ular monitoring-plus-feedback construction gives better
intuition as observed in ref. [30].
Our goal is threefold: a convenient introduction to the

mathematics of NR hybrid canonical dynamics, the as-
sessment of its application in postquantum gravity and
a discussion if it could have surpassed its old Newtonian
‘forerunner’.
Section II recapitulates state-of-the-art knowledge of

NR hybrid canonical dynamics. Section III explains the
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locality condition of relativistic invariance and the result-
ing divergences. Section IV tests the special relativistic
extension on the simplest example of hybrid coupling be-
tween a classical and a quantized scalar field. Section V
revisits the effort towards general relativistic postquan-
tum gravity, extending the NR hybrid dynamics for gen-
eral relativity. Section VI recapitulates the NR ‘forerun-
ner’ of postquantum general relativity. Final remarks
and our conclusion are given by sec. VII.

II. THE NONRELATIVISTIC CANONICAL
HYBRID DYNAMICS

Our hybrid system of interest consists of a NR classical
canonical subsystem and a NR quantized subsystem. To
model their coupled dynamics we start from the naive
combination (2). In addition to the Dirac and Poisson
brackets there are mandatory decoherence and diffusion
terms which will necessitate the postulation of a Rie-
mann metric on the phase space manifold (or on its sub-
manyfold). The resulting irreversible dynamics obtains
the form of the hybrid master equation (HME) which
is the combination of the classical Fokker–Planck and
the quantum Lindblad equations (sec. II A). This irre-
versible dynamics is equivalent with the coupled stochas-
tic processes in the classical phase space and the Hilbert
space, respectively, and represented by a couple of hybrid
stochastic differential equations (HSDEs) in sec. II B. In
physics, the special case is of interest, when the classi-
cal coordinates are coupled to the quantum subsystem
but the classical momenta aren’t (sec. II C). The mate-
rial presented here is based primarily on refs. [26–29],
and deduced basically from [28] (cf. Appendix A), im-
proved by the Riemann metric interpretation of the de-
coherence and diffusion kernels. It is important that we
treat the HME and HSDE formalisms as equivalent, both
have their own conceptual universality.

A. Hybrid master equation

Let Ĥ(x) ≡ Ĥ(q, p) be a our hybrid Hamiltonian where
the classical subsystem is canonical. The first N canoni-
cal variables {xn;n = 1, . . . , N} are the coordinates and
the second N ones {xn;n = N + 1, . . . , 2N} are the mo-
menta:

xn =

{
qn; n = 1, 2, . . .N
pn; n = N + 1, N + 2, . . . , 2N.

(3)

The HME of the hybrid density ρ̂(q, p) = ρ̂(x) takes this
form:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +H{Ĥ, ρ̂}+Dρ̂ ≡ {Ĥ, ρ̂}A +Dρ̂, (4)

where { , }A is the Aleksandrov hybrid bracket, D is the
superoperator of decoherence and diffusion (D&D). The

notation of x-dependences of Ĥ, ρ̂,D are spared. The
classical canonical Poisson bracket is defined by

{Â, B̂} = Â,nǫ
nmB̂,m = (ÂǫnmB̂,m),n = (Â,nǫ

nmB̂),m,
(5)

where ǫnm is the 2N × 2N symplectic matrix. We intro-
duced the shorthand notation for partial derivatives like
∂Â/∂xn = Â,n as well as Einstein convention for sum-
mation of repeated indices. If we define the canonical
velocity operators

v̂n = {xn, Ĥ} = −ǫnmĤ,m (6)

then the Poisson bracket will have the useful equivalent
expression:

H{Ĥ, ρ̂} = Hv̂nρ̂,n. (7)

To construct the canonical HME we impose a Riemann
metric structure in addition to the symplectic structure
of the phase space, via the arbitrary choice of the 2N×2N
covariant metric tensor γnm(x). The D&D terms are the
following:

Dρ̂ = −γnm
8

[v̂n, [v̂m, ρ̂]] + 1
2 (γ

nmρ̂),nm

≡ DQρ̂+DCρ̂, (8)

where we assume that the velocities v̂n(x) are linearly
independent operators, also independent from any c-
number functions. That is, we assume the equation

λn(x)v̂
n(x) = ϕ(x) (9)

is satisfied only for vanishing λn and ϕ.

B. Hybrid stochastic differential equations

The canonical HME (4) with D&D (8) is equivalent
with two coupled stochastic processes, one for the diffu-
sion of the pure state P̂t ≡ |Ψt〉〈Ψt| in the Hilbert space,
the other one for the diffusion of xt in the phase space,
meaning in fact the statistical interpretation of the HME.
Also called stochastic unraveling of the HME, the pro-
cesses are defined by the couple of HSDEs:

dP̂

dt
=− i

~
[Ĥ(x),P̂ ]+DQ(x)P̂+H(v̂n(x)−〈v̂n(x)〉)P̂ wn(x)

(10)

dxn

dt
= 〈v̂n(x)〉 + wn(x) (11)

where 〈v̂n(x)〉 = tr(v̂n(x)P̂ ). Both SDEs are driven by
the same white-noise wn = γnmwm whose correlations
are determined by the metric:

Mwn(x, t)wm(x, τ) = γnm(x)δ(t − τ)

Mwn(x, t)wm(x, τ) = γnm(x)δ(t − τ)

Mwn(x, t)wm(x, τ) = δnmδ(t− τ). (12)
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The symbol M stands for the stochastic mean.
In this formalism of the hybrid dynamics the backac-

tion follows from the monitoring-plus-feedback mecha-
nism. The eq. (10) coincides with the stochastic master
equation of time-continuous simultaneous quantum mea-
surements —monitoring— of the observables v̂n. The
measured signal 〈v̂n〉+wn will then control a feedback in
the equation of motion (11) of the classical phase space
variables xn. Note that this SDE can be written as

dxn

dt
= {xn, 〈Ĥ(x)〉} + wn, (13)

which is the mean-field (semiclassical) backaction plus
our mandatory white-noise. Observe that unlike white-
noises, the phase-space coordinates xn(t) are continuous
functions, containing the integrals of the white-noises
wn(t). The path in phase space is a (generalized) Wiener-
process.

C. Coordinate coupling

The D&D terms (8) correspond to the minimum noise
dynamics if the 2N velocities v̂n(x) are independent op-
erator fields on the phase space. However, they are not
so in many concrete hybrid systems. Suppose K is the
maximum number of independent constraints (9):

λa
n(x)v̂

n(x) = ϕa(x), (a = 1, 2, . . . ,K) (14)

with K linear independent vector fields λa
n 6= 0. Then we

can always find a coordinate transformation xn ⇒ fn(x)
such that the first 2N − K velocities v̂n become inde-
pendent operators and the rest of them are c-numbers:
v̂n = vnÎ for n〉2N −K. Then the minimum noise D&D
corresponds to the same structure (8) but the indices run
from 1 to 2N−K. The (2N−K)×(2N−K) metric ten-
sor γnm defines a Riemann structure on the first 2N −K
coordinates while it depends parametrically on the rest
of them.
An important special case is coordinate-coupling when

∂Ĥ/∂qn are independent operators but ∂Ĥ/∂pn are zeros
or c-number functions. We impose the Riemann metric
structure on the subspace of canonical coordinates only.
The N × N metric tensor γnm(q, p) will be the metric
for the coordinates q still it may parametrically depend
on the momenta p as well. With momentum velocity
operators

v̂n = − ∂Ĥ

∂qn
= −∂ĤCQ

∂qn
, (15)

the D&D terms take this form:

Dρ̂ = −γnm
8

[
∂ĤCQ

∂qn
,

[
∂ĤCQ

∂qm
, ρ̂

]]
+
1

2

∂2 (γnmρ̂)

∂pn∂pm
. (16)

As we see, momentum velocity operators v̂n are actors of
decoherence classical momenta pn are subjects of diffu-
sion.

The HSDEs (11,10) of the equivalent stochastic pro-
cesses become the following:

dP̂

dt
= − i

~
[Ĥ(q, p), P̂ ] +D(q, p)P̂ +

+H (v̂n(q, p)− 〈v̂n(q, p)〉) P̂wn(q, p) (17)

dqn
dt

=
∂〈Ĥ(q, p)〉

∂pn
(18)

dpn

dt
= −∂〈Ĥ(q, p)〉

∂qn
+ wn(q, p). (19)

Like in eq. (12), the noise wn = γnmwm satisfies

Mwn(q, p, t)wm(q, p, τ) = γnm(q, p)δ(t− τ)

Mwn(q, p, t)wm(q, p, τ) = γnm(q, p)δ(t− τ)

Mwn(q, p, t)wm(q, p, τ) = δnmδ(t− τ). (20)

This is the minimum-noise D&D term of general coor-
dinate coupling provided the derivatives ∂Ĥ/∂qn are N
independent operators.

III. LOCALITY CONDITION OF
RELATIVISTIC CONTINUUM DYNAMICS

Let us consider the Markovian dynamics dρ/dt = Lρ
where ρ is classical, quantum, or hybrid state and L is
the generator of time evolution respectively of Fokker–
Planck, Lindblad, or hybrid field dynamics. For rela-
tivistic invariance, L must be the zeroth component of a
four-vector. This condition on L is, however, not suffi-
cient [31]. It must be the spatial integral of the generator
density L(r):

L =

∫
L(r)dr (21)

and L(r) must satisfy the locality condition

[L(r),L(s)] = 0. (22)

Then, given the state on the hypersurface σ1, it maps to
another hypersurface as follows:

ρ(σ2) = exp

(∫

σ2≻(t,r)≻σ1

L(r)drdt
)
ρ(σ1). (23)

Without the locality condition this relationship does not
exist and we miss the map between states on two different
hipersurfaces. Of course the map between Lorentz frames
is also impossible.
In standard relativistic field theories, classical or quan-

tum, the generator field reads L = {H, } or L =

−(i/~)[Ĥ, ], respectively, and is local since the Hamil-

tonian densities H, Ĥ are local. Locality of the generator
L survives in effective field theories. If, however, the ef-
fective theory contains diffusion (or decoherence) then
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we face difficulties. To retain locality of the generator L
the diffusion (decoherence) kernel must be local, i.e., pro-
portional to δ(r− s) and then, unfortunately, the theory
yields infinities. Take, for instance, the Fokker–Planck
equation of a scalar field with the local diffusion kernel
γδ(r − s). It yields infinite rate kinetic energy produc-
tion at each point r. It is not known whether relativis-
tic Fokker–Planck field equations are renormalizable or
aren’t. The same concern applies to the Lindblad and
hybrid dynamics.

IV. ON SPECIAL RELATIVISTIC HYBRID
FIELD DYNAMICS

We test the NR hybrid classical-quantum theory (sec.
II) in coordinate coupling (sec. II C) of special relativis-
tic fields. The coordinates and momenta become func-
tions q(r), p(r), the discrete labels n,m become the con-
tinuous spatial vectors r, s, respectively. Sums over in-
dices become spatial integrals, Kronecker deltas become
Dirac deltas, derivations like e.g. ∂/∂qn become func-
tional derivations δ/δq(r).
Consider the coupling of the free classical scalar field

q(r) (with canonical momentum p(r)) to the free quan-

tized boson field φ̂(r) (with canonical momentum π̂(r)):

ĤCQ[q] = κ

∫
q(r)φ̂(r)dr. (24)

This coupling is independent of the classical canonical
momentum p(r) and we can apply the eq. (16) with

δĤCQ

δq(r)
= −κφ̂(r). (25)

The D&D terms depend on the metric which can in gen-
eral be a functional kernel γ[q,q′]. At the same time, we
should damp remote correlation in decoherence as well
as in diffusion. The metric must have a spatial damping
factor. In the simplest case, we choose a flat metric γrr′
without the functional dependences. The covariant and
contravariant kernels are inverses of each other:

∫
γrs′γ

s
′
sdr′ = δ(r− s). (26)

Then the D&D terms (16) take the following form:

Dρ̂ = − κ2

8

∫ ∫
γrs

[
φ̂(r),

[
φ̂(s), ρ̂

]]
drds

+
1

2

∫ ∫
γrs

δ2 (ρ̂)

δp(r)δp(s)
drds. (27)

Both D&D violate the special relativistic invariance
unless the kernel itself is invariant. It is easy to ensure
Galilean invariance if γrs is function of |r− s|. The only
kernels that ensure relativistic invariance are the singular
local ones:

γrs = γδ(r− s), γrs = γ−1δ(r− s). (28)

But they lead to untractable divergences of the kinetic
energy density K = 1

2 (π̂
2 + p2):

dK(r)

dt
=

1

2
D†

Qπ
2(r) +

1

2
D†

Cp
2(r) =

(
γ

4~2
+

1

γ

)
δ(0).

(29)
The D&D terms (27) yield infinite rate of heating at each
location in the quantized bosonic as well as in the clas-
sical scalar field subsystems. Allowing functional depen-
dence of the metric does not help since the relativistic
invariance of spatial damping requires the presence of
the spatial δ function singularity.
These divergences are different from the usual diver-

gences in relativistic field theory. Either we invent their
renormalization, if it is possible at all, or we are loosing
special relativistic invariance, and we are left with the
NR hybrid calculus.

V. ON HYBRID GENERAL RELATIVITY

Instead of full quantum-gravity, it were of great sim-
plification if we could keep the space-time classical. Ac-
cordingly, we take a chance to extend the NR hybrid
dynamics of Sec. II for coupling between classical canon-
ical form of general relativity and quantized relativistic
matter. In canonical form of Einstein’s general relativ-
ity, (3 + 1)-dimensional diffeomorphism invariance is en-
coded by the combination of 3-dimensional spatial diffeo-
morphism (sDM) invariance and time-reparametrization
(tRP) invariance. Following refs. [15, 16], we build up
the formal sDM and tRP invariant hybrid equations (sec.
VA). We are going to the wall to ensure both these ivari-
ances but that remains a problem ( VB).

A. Equivalent formalisms: HME and HSDE

The canonical coordinates are the configurations of the
3 × 3 metric tensor field gik(r), satisfying the canonical
commutation relationship with the canonical momenta
πik(r):

{gij(r), πkl(s)} = δklij δ(r, s), (30)

where δklij = 1
2 (δ

k
i δ

l
j+δliδ

k
j ) and we use the covariant delta

function

δ(r, s) =
1√
g(r)

δ(r− s) . (31)

where g = detdij . The covariant Poisson bracket is de-
fined by

{Â, B̂} =

∫ (
δÂ

δgij(r)

δB̂

δπij(r)
− δÂ

δπij(r)

δB̂

δgij(r)

)
dV,

(32)
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where dV = dVr =
√
g(r)dr. Through this section, the

functional derivatives are the covariant ones, i.e., 1/
√
g

times the common ones.
The hybrid Hamiltonian reads:

Ĥ [g, π;N, ~N ] = HG[g, π;N, ~N ] + ĤM[g;N ], (33)

whereHG[g, π;N, ~N ] is the classical Hamilton function of

gravity and ĤM[g;N ] is the Hamiltonian of the quantized
matter fields, coupled only to gik and not to πik. They
depend on the freely chosen lapse N and shift Ni:

HG[g, π;N, ~N ] =

∫ (
N(r)HG(r)+Ni(r)P i

G(r)
)
dV, (34)

ĤM[g;N ] =

∫ (
N(r)ĤM(r) +NiP i

M (r)
)
dV. (35)

HG(r) and ĤM(r) are the Hamiltonian densities of
gravity and matter, respectively, and P i

G is the momen-
tum density of gravity:

P i
G = −2∇iπ

ij(r), (36)

where ∇j denotes covariant derivation. The gravity’s
Hamiltonian density reads:

HG =
16πG

c2
1

g

(
πijπij − 1

2 (π
i
i)

2
)
− c4

16πG
R, (37)

with the scalar curvature R. The matter’s Hamiltonian
ĤM (r) and momentum density P i

M depend on the matter
fields. Remember that they should not depend on πik .
In the hybrid Hamiltonian (33), the lapse N multi-

plies the Hamiltonian constraint, the shift Ni multiplies
the diffeomorphism constraint which we impose on the
hybrid state:

(
HG(r) + ĤM(r)

)
ρ̂[g, π] = 0, (38)

(
P i
G(r) + P̂ i

M (r)
)
ρ̂[g, π] = 0. (39)

These might ensure tRP and sDM invariances respec-
tively. The conditional phrase is of reason. If both grav-
ity and matter were quantized (or classical), then the
above constraints would guarantee the said invariances
under pure classical canonical (or pure unitary) dynam-
ics. Their compatibility and applicability in hybrid dy-
namics are not yet clear. Moreover, hybrid dynamics
are not necessarily compatible with tRP and sDM in-
variances, as we see below.
To construct the hybrid coupling and the D&D terms,

we need the momentum velocity operators (15):

v̂ik(r) = − δĤM

δgik(r)
= −N(r)

(
∂ĤM (r)

∂gik(r)
+

1

2
gik(r)ĤM (r)

)
.

(40)
The HME (4) of the state ρ̂[g, π] takes this form:

dρ̂

dt
= − i

~
[ĤM , ρ̂]+{HG, ρ̂}−H

∫
v̂ik

δρ̂

δπik
dV +Dρ̂ (41)

While the hybrid Hamiltonian parts are unique, the D&D
term Dρ̂ is not, its consistent choice is nontrivial, see sec.
VB.
The HME (41) has its alternative stochastic represen-

tation in terms of SHDEs. We apply the eqs. (18-20):

dP̂

dt
= − i

~
[ĤM, P̂ ]+DQP̂+H

∫ (
v̂ij−〈v̂ij〉

)
P̂wijdV(42)

dgij
dt

=
δHG

δπij
(43)

dπij

dt
= −δHG

δgij
+ 〈v̂ij〉+ wij (44)

where the noises satisfy

Mwij(r, t)wkl(s, τ) = γij|kl(r|s)δ(t− τ)

Mwij(r, t)wkl(s, τ) = γij|kl(r|s)δ(t − τ)

Mwij(r, t)wkl(s, τ) = δijklδ(t− τ), (45)

and DQ will be discussed in sec. VB.
As we said in sec. II B, the eq. (42) corresponds to

the quantum monitoring of the velocity operators v̂ij =
−δĤM/δgij and the noisy measured signal 〈v̂ij〉+ wij is
fed back on the rhs of the eq. (44) of dπij/dt.

B. The decoherence-diffusion kernels

Recall that the hybrid dynamics (sec. II C) assumes
a certain metric on the space of canonical coordinates,
which is a functional metric on the function space of 3×3
metric tensor fields gij(r). We restrict ourselves for the
metrics

(dg)2 =

∫ ∫
γij|kl(r|s)dgij(r)dgkl(s)dVrdVs, (46)

where the functional metric tensor γ contains explicit
coordinate dependence on (r, s) to damp remote corre-
lations, also it may depend on gij(r) and gkl(s) (mean-
ing nonflat functional geometry). Accordingly, the D&D
terms take this form:

DQ=−1

8

∫∫
γ−1
ij|kl(r|s)

[
v̂ij(r), [v̂kl(s), ρ̂]

]
dVrdVs (47)

DC=
1

2

∫∫
δ2
(
γij|kl(r|s)ρ̂

)

δπij(r)δπkl(s)
dVrdVs, (48)

where the covariant and contravariant metrics satisfy the
functional relationship

∫ ∫
γij|k′l′(r|s′)γk′l′|kl(s′|s)dVs

′ = δklij δ(r, s) . (49)

It is instructive to consider the simple special case when
the kernels are local. Then their structure is perfectly
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determined by covariance:

γij|kl(r|s) =
γ(R)

N(r)
G

(α)
ij|kl(r)δ(r, s) (50)

G
(α)
ij|kl = 1

2gikgjl +
1
2gilgjk + αgijgkl

γij|kl(r|s) =
N(r)

γ(R)
G

ij|kl
(β) (r)δ(r, s) (51)

G
ij|kl
(β) = 1

2g
ikgjl + 1

2g
ilgjk + βgijgkl.

These kernels are positive if α, β〉−1/3. If 3αβ+α+β = 0
then the kernels are each other’s inverses as they should,
according to eq. (49).
With the above kernels, unfortunately, both the D&D

terms in eqs. (47) and (48), resp., become divergent be-
cause of the δ-functions, just like in sec. IV. However, a
rescue procedure seems to be on offer.
We could try the sDM invariant regularization. For

instance, we replace the δ(r, s) in the decoherence kernel
(50) by

Nǫ(r, s) exp

(
− ℓ2(r, s)

2ǫ

)
(52)

where Nǫ(r, s) is for normalization, ℓ(r, s) is the geodesic
distance between r and s, and ǫ is the small parameter
to go to +0. To keep covariance, the index factor, too,
should go nonlocal:

G
(α)
ij|kl(r|s) = 1

2P
j′

j P̄ k′

k gik′(r)gj′l(s)+
1
2P

j′

j P̄ l′

l gil′(r)gkj′ (s)

+αgij(r)gkl(s). (53)

Here P i
j is geodesic parallel transport of covariant vectors

from s to r and P̄ i
j is the same from r to s.

So far so good. The problem is the factor 1/N(r) which
ensures the tRP invariance. We should keep it but we
cannot. It can not be split for the two locations r and
s. The same problem would come along with the factor
N(r) if we regularized the decoherence kernel (51) first.
The lesson goes beyond the example. Any nonlocal

generalization of the kernels will necessarily violate the
tRP invariance. Local kernels, on the other hand, gener-
ate divergences whose removal may or may not be pos-
sible. Hence, for the time being, a compromise seems
inevitable. We give up tRP invariance and retain sDM
invariance that allows regular nonlocal kernels. Just loos-
ing tRP invariance means loosing relativistic invariance.
We are left with NR slow motions in a distinguished
frame: sDM is pointless. Also the space-time must be
nearly flat. That’s the Newtonian limit.

VI. NEWTONIAN HYBRID
CLASSICAL-QUANTUM GRAVITY

When recapitulating the results of refs. [11, 12], we use
a particular approach. These works used the NR HSDE
representation of hybrid dynamics. Not for deduction but

for comparison, we guide our derivation by the HSDEs
(42-44) that promised general relativistic postquantum
gravity in sec. V. We present the HSDEs of Newtonian
hybrid theory first.
What is the closest NR dynamics to the HSDEs (42-

45)? The matter Hamiltonian with the hybrid coupling
reads

ĤM[Φ] = Ĥ0 +

∫
µ̂ΦdV (54)

where Φ is the Newton potential and µ̂ is the NR quan-
tum field of mass density. The quantum monitoring of
v̂ij corresponds to the quantum monitoring of µ̂(r) since
the nonrelativistic limit of v̂ij is ∝ µ̂. Hence the NR
counterpart of the SDE (42)

dP̂

dt
=− i

~
[ĤM[Φ], P̂ ]+DQP̂+

1

~
H

∫
(µ̂−〈µ̂〉)P̂wdV, (55)

with

DQP̂ = − 1

8~2

∫ ∫
γrs

[
µ̂(r), [µ̂(s), P̂ ]

]
drds. (56)

The mesurement signal is of the standard form

〈µ̂〉+ w̃, (57)

where w̃(r, t) =
∫
γrsw(s, t)ds. The covariant and con-

travariant components (w, w̃) of the same noise satisfy

Mw(r, t)w(s, τ) = γrsδ(t− τ)

Mw̃(r, t)w̃(s, τ ] = ~
2γrsδ(t− τ)

Mw(r, t)w̃(s, τ ] = ~δ(r− s)δ(t− τ). (58)

Since gravity has no self-dynamics, HG = 0, the backac-
tion (43,44) reduces to the Poisson equation sourced by
the signal (57) and we can solve it:

Φ(r, t) =
4πG

∇2
(〈µ̂(r)〉t + w̃(r, t))

≡ Φmf(r, t) + δΦ(r, t). (59)

The deterministic term Φmf is the mean-field (semiclas-
sical) part, the stochastic term is a white-noise of corre-
lation

MδΦ(r, t)δΦ(s, τ) =
4πG

∇2
r

4πG

∇2
s

~
2γrsδ(t− τ). (60)

When Φ is fed back in eq. (55), the Hamiltonian ĤM[Φ]
generates the Newtonian pair potential

V̂G = −G

2

∫ ∫
µ̂(r)µ̂(s)

|r− s| drds. (61)

Unlike the general relativistic ĤM[g], where g is a Wiener
process, Φ is not, it is the time-derivative of a Wiener
process. The feedback of the white-noise term in ĤM[Φ],
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proportional to δΦ, will contribute to a new decoherence
term:

Dfb
Q P̂ = − 1

2~2

∫∫ (
4πG

∇2
r

4πG

∇2
s

γrs

)[
µ̂(r), [µ̂(s), P̂ ]

]
drds.

(62)
This backaction makes a remarkable difference compared
to the general relativistic case in sec. VB. The ambigu-
ity of the D&D kernels can be removed by the principle
of least decoherence. Since γrs = γ−1

rs
, the total decoher-

ence DQ +Dfb
Q possesses a minimum when

γrs =
2~G

|r− s| ,

γrs = − 1

8π~G
∇2δ(r− s). (63)

Accordingly, the least decoherence reads

DDP
Q = − G

2~

∫ ∫
[
µ̂(r), [µ̂(s), P̂ ]

]
drds

|r− s| (64)

and the correlation of the gravitational fluctuations be-
come

MδΦ(r, t)δΦ(s, τ) =
~G/2

|r− s|δ(t− τ). (65)

We obtain the HSDEs of the Newtonian NR postquan-
tum gravity:

dP̂

dt
= − i

~
[Ĥ0+V̂G,P̂ ]+DDP

Q P̂+H
1+i

~

∫
(̂µ−〈µ̂〉)P̂wdV(66)

Φ =
4πG

∇2
〈µ̂〉 − 1

2
w = Φmf −

1

2
w, (67)

where Φmf is the mean-field (semiclassical) Newton po-
tential, and

Mw(r, t)w(s, τ) =
2~G

|r− s|δ(t− τ). (68)

For point-like particles the theory is divergent, predicts
kinetic energy increase at infinite rate. Therefore µ̂(r)
must be smoothened by a short length cutoff parameter,
the only free parameter of the theory (see [32] for its
experimental limit).
Observe that due to the simple structure of the New-

tonian postquantum dynamics the reduced dynamics of
the quantized matter is autonomous. Take the stochastic
mean of both sides of eq. (66) then the following Lind-

blad master equation is obtained for ρ̂Q = MP̂ :

dρ̂Q
dt

= − i

~
[Ĥ0+ V̂G, ρ̂Q]−

G

2~

∫∫
[µ̂(r), [µ̂(s), ρ̂Q]]

drds

|r− s| .
(69)

The full HME, equivalent to the HSDE formalism (66-
68), is derived in Appendix B.

VII. REMARKS, CONCLUSIONS

The issues of hybrid dynamics relativistic extensions
that secs. IV and V claim are unsolved, were carefully
discussed by the authors of refs. [15, 16], highlighting
some perspectives towards solutions. These are assessed
with certain reservation in ref. [30]. We add that the
literature offers no support for hybrid constraints, little
or no support for renormalizability of relativistic effective
field theories let them be classical, quantum, or hybrid.
Towards fixing infinities predicted by relativistic Lind-
blad and Fokker–Planck equations, conclusive research is
missing even for the the simple special relativistic D&D
in sec. IV.
Some additional details about the nonrelativistic

‘postquantum’ theory (sec. VI) are to be recalled. It
all started in foundations (reviewed in [33, 34]), with
a gravity-related nonrelativistic model of the quantum-
classical transition [6] and a naiv formalism of relativistic
monitoring-plus-feedback [7]. Recognizing the difficul-
ties of relativistic monitoring, only the Newtonian limit
of monitoring-plus-feedback was briefly presented. Much
later, the concept of postquantum gravity, called a ‘con-
ceptually healthier semiclassical theory’, was stated liter-
ally in [11]: monitoring the quantized energy-momentum

tensor T̂ab and its measured value fed back into the Ein-
stein equation of classical general relativity. After two
and a half decades, this work and its followup [12] must
still have adhered to the Newtonian limit. The reason has
remained the same: missing theory of relativistic mon-
itoring. The concrete technical obstacles are the D&D
kernels that must be time-local for Markovianity. If the
suitably covariant kernels exist at all, they generate di-
vergences whose treatment is unknown. Without these
difficulties, the monitoring-plus-feedback form (equiva-
lent to the hybrid master equation form) of postquan-
tum general relativity would have been a straightforward
step. Vice versa, if the hybrid master equation form of
postquantum gravity got rid of its difficulties with the
D&D kernels, it would contain a modul of relativistic
quantum monitoring. This matches with the assessment
in ref. [30].
The pending issues of the recent proposal [15, 16] of

postquantum gravity are the old difficulties that know-
ingly hindered the relativistic extension of the Newtonian
‘forerunner’ [7, 11, 12]. The difficulties are rooted in diffi-
culties of Lindblad as well as of Fokker–Planck dynamics
of relativistic fields, which are due parts of postquantum
gravity. Although these issues might become fixed later,
the contrary is equally likely: relativity and Markovian-
ity of decoherence (or diffusion) may turn out to be just
inconsistent [31]. The present author expects that the
hybrid of classical gravity and quantized matter is hid-
ing more secrets already in the Newtonian limit. We
should continue to reveal them in the simple nonrela-
tivistic realm (available to laboratory tests, cf., e.g., ref.
[35]) before we would cross the bridge towards a certain
postquantum general relativity.
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Appendix A: Deduction of HME (4)

We show that our canonical HME (4) with the D&D
term (8) is the special case of the general diffusive HME
[26–29]:

dρ̂

dt
= −i[Ĥ, ρ̂] + 2H([GCQ]

n
αL̂

αρ̂),n +Dρ̂ (A1)

D = DQ
βα

(
L̂αρ̂L̂β −HL̂βL̂αρ̂

)
+ 1

2 (D
nm
C ρ̂)nm(A2)

where, compared to eq. (36) in [28], we assumed Her-

mitian Lindblad generators L̂α and changed the up-
per/lower greek indices for the lower/upper ones. This
HME is valid for any classical subsystem, the classi-
cal coordinates x are not necessarily canonical. When
the Lindblad generators L̂α(x) are independent opera-
tors then minimum noise is achieved if the positive D&D
matrices DQ, DC, resp., are constrained by the matrix of
backaction GCQ:

GCQ
1

DQ
G†

CQ = DC. (A3)

Let us first identify the classical variables xn by our
canonical ones. Second, identify the Lindblad generators
L̂α by our velocity operators v̂n, the greek indices will
become the latin ones accordingly. Let us equate the
backaction terms in (4) and (A1):

H(v̂nρ̂),n = −2H([GCQ]
n
mv̂nρ̂),n. (A4)

They coincide if [GCQ]
n
m = − 1

2δ
n
m. The D&D terms (8)

and (A2) coincide if DQ
nm = 1

4γnm and Dnm
C = γnm.

The said choices DC, D
Q and GCQ satisfy the general

condition (A3) of minimum noise.

Appendix B: Derivation of HME from HSDEs
(66-68)

It is incorrect to take the form ρ̂[Φ] for the hybrid state
since Φ is a white noise. The correct form is ρ̂t[χ], i.e.,
the configuration of classical gravity is represented by the
Wiener process χ defined by Φ = dχ/dt. We define the
hybrid density as follows:

ρ̂t[χ] = MP̂tδ[χ− χt] (B1)
The differentials of both sides read

dρ̂t[χ] = M

(
dP̂tδ[χ− χt] + P̂tdδ[χ− χt] + dP̂tdδ[χ− χt]

)

(B2)
where the last term on the r.h.s. is the Ito correction to
the Leibnitz rule. According to Ito calculus, using the
HSDEs (66,67) and the white-noise correlation (68) yield

dP̂ = − i

~
[Ĥ0 + V̂G, P̂ ]dt+DDP

Q P̂ dt

+H
1+i

~

∫
(µ̂(r)−〈µ̂(r)〉)P̂w(r, t)drdt(B3)

dδ[χ−χt] = −
∫ (

Φmf(r)− 1
2w(r, t)

) δ

δχ(r)
δ[χ−χt]drdt

+
1

4

∫∫
~G

|r−s|
δ2

δχ(r)δχ(s)
δ[χ−χt]drdsdt(B4)

dP̂dδ[χ−χt] = H(1+i)

∫∫
G

|r−s|(µ̂(s)−〈µ̂(s)〉) P̂ ×

× δ

δχ(r)
δ[χ−χt]drdsdt. (B5)

Now we insert these three expressions into eq. (B2), set
w = 0 since Mw = 0, and use the definition (B1) of ρ̂[χ],
yielding, after dividing both sides by dt:

dρ̂[χ]

dt
= − i

~
[Ĥ0 + V̂G, ρ̂[χ]] +DDP

Q ρ̂[χ]

−
∫
Φmf(r)

δρ̂[χ]

δχ(r)
dr+

1

4

∫∫
~G

|r−s|
δ2ρ̂[χ]

δχ(r)δχ(s)
drds

+H(1+i)

∫∫
G

|r−s|(µ̂(s)−〈µ̂(s)〉) δρ̂[χ]

δχ(r)
drds.(B6)

The nonlinear terms on the r.h.s. cancel as they should
and we write the HME in the following form:

dρ̂

dt
= − i

~
[Ĥ0 + V̂G, ρ̂] +G

∫∫ (
− 1

2~
[µ̂(r), [µ̂(s), ρ̂]] +H(1−i)µ̂(r)

δρ̂

δχ(s)
+

~

4

δ2ρ̂

δχ(r)δχ(s)

)
drds

|r− s| . (B7)

The HME yields ‘space-time’ diffusion (65) with δΦ=dχ/dt−Φmf and the mean-field (semiclassical) gravity:

MΦ(r) = tr

∫
dχ(r)

dt
ρ̂[χ]d[χ] = −G

∫ 〈µ̂(s)〉
|r− s|ds = Φmf(r). (B8)
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