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Spontaneous collapse models provide a possible, testable solution to the quantum measurement
problem. While experiments are providing increasingly stronger bounds on their parameters, a full-
fledged relativistic extension is still missing. Previous attempts have encoutered different obstacles,
such as violation of microcausality, infinite energy rate, and particle production from vacuum.
Here, we propose generalization of the collapse master equation that is characterized by a local field
collapse operator and a non-Markovian noise with a Lorentz invariant correlation. Our construction
is able to overcome previously encountered problems and has the desirable properties in the non
relativistic limit. A specific choice of the noise correlation function is also introduced and discussed.

Non-relativistic spontaneous wavefunction collapse (or
simply, collapse) models provide a possible coherent so-
lution to the well-known quantum measurement prob-
lem [1, 2]. They modify the standard, linear unitary
Schrödinger equation by adding non-linear and stochas-
tic terms, which impose the statevector localization (or
collapse) into one eigenstate of a suitable collapse oper-
ator. The outcome of a subsequent measurement would
provide the corresponding eigenvalue. Different realiza-
tions of the stochastic process impose different outcomes,
which are distributed according to the Born rule.

While some collapse models, such as the Continuous
Spontaneous Localization (CSL) [3, 4] and the Diosi-
Penrose (DP) [5] models, are subject to continuous ex-
perimental and theoretical investigation [6–17], there is
still an ongoing debate concerning their possible relativis-
tic generalization [18–28]. Previous attempts have re-
sulted in unwanted side effects [29, 30] such as violation
of microcausality [31], infinite rate of energy [32], par-
ticle production from the vacuum [27], and tachyon-like
dynamics [33]. In addition, a more general conceptual
issue surrounds the possible compatibility between the
wavefunction localization and relativity principles [1].

Here, we propose a mathematically consistent rela-
tivistic generalization of the collapse dynamics, which
is characterized by a local field collapse operator and a
non-Markovian stochastic noise with a Lorentz invariant
correlation. We show that locality saves microcausality,
while non-Markovianity and a normal ordering pre-
scription lead to a finite rate of energy, without having
particle production from the vacuum or a tachyonic
behavior.

Non-linear unraveling. – We construct of our model,
starting from the non-relativistic (NR), colored, non-
linear collapse equation for the statevector [34, 35]. To
second order in

√
γ, the equation takes a closed form in
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|ψ(t)⟩ and reads [34]

d

dt
|ψ(t)⟩ =

[
− i

ℏ
Ĥ ′ +

√
γ

N∑
i=1

(
Âi − ⟨Âi⟩t

)
ξi(t)

+ γ
(
Ô+(t)− ⟨Ô+(t)⟩

)]
|ψ(t)⟩ .

(1)

Here, Ĥ ′ = Ĥ0 + iℏγÔ−(t), with Ĥ0 being the stan-
dard quantum mechanical Hamiltonian, γ is the common
coupling with the N collapse noises ξi(t), which are real
Gaussian random processes having zero mean and corre-
lations

E [ξi(t)ξj(s)] = Dij(t, s). (2)

Here Dij(t, s) is the noise correlation whose explicit form
is to be determined, E denotes the average over different
realizations of the noises ξi(t). Further, Âi in Eq. (1) are
a set of commuting self-adjoint operators that describe
how the collapse occurs, and are known as collapse op-
erators. The operators Ô− and Ô+ are, respectively, the

anti-self-adjoint and self-adjoint parts of Ô. They read

Ô±(t) = −
N∑

i,j=1

ˆ t

0

dsDij(t, s)
[
Âi, Âj(s− t)

]
±
, (3)

where [ · , · ]− = [ · , · ] and [ · , · ]+ = { · , · } denote re-
spectively the commutator and anticommutator, while

Âj(s− t) = Û†
0 (s− t)ÂjÛ0(s− t) is evolved with respect

to the free Hamiltonian Ĥ0, i.e. Û0(t) = exp(−iĤ0t/ℏ).
Notice that Eq. (1) is only valid up to second order in√
γ. The prescription to obtain the equation for higher

orders can be found in [34].

We aim at generalizing Eq. (1) to the relativistic regime
so that the corresponding master equation is relativisti-
cally covariant. The master equation can be equivalently
obtained from the linear unraveling of Eq. (1) for the
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non-normalized vector |ϕ(t)⟩. It reads [34]

d

dt
|ϕ(t)⟩ = − i

ℏ
Ĥ0 |ϕ(t)⟩+

[
√
γ

N∑
i=1

Âiξi(t)

−γ
N∑

i,j=1

ˆ t

0

dsDij(t, s)ÂiÂj(s− t)

 |ϕ0(t)⟩ ,

(4)
where, to second order in

√
γ, we have |ϕ(t)⟩ = |ϕ(0)(t)⟩+

√
γ |ϕ(1)(t)⟩ + γ |ϕ(2)(t)⟩ + O(γ3/2). The standard pre-

scription gives the corresponding master equation in

the Schrödinger picture dρ̂(2)(t)/dt = − i
ℏ

[
Ĥ0, ρ̂

(2)(t)
]
+

D[ρ̂(0)(t)], where

D[ρ̂(0)(t)]=−γ
N∑

i,j=1

ˆ t

0

dsDij(t, s)
[
Âi,

[
Âj(s− t), ρ̂(0)(t)

]]
,

(5)
and ρ̂(α)(t) := E[|ϕ(α)(t)⟩ ⟨ϕ(α)(t)|] with α = 0, 1, 2. We
move to the interaction picture by using the standard

relation ˙̂ρ
(2)
I (t) = Û0(t)

(
i
ℏ

[
Ĥ0, ρ̂

(2)(t)
]
+ ˙̂ρ(2)(t)

)
Û†
0 (t),

such that

d

dt
ρ̂
(2)
I (t)=−γ

N∑
i,j=1

ˆ t

0

dsDij(t, s)
[
Âi(t),

[
Âj(s), ρ̂

(0)
I (t)

]]
,

(6)
whose solution reads

ρ̂
(2)
I (t) = ρ̂

(0)
I (t)

− γ

N∑
i,j=1

ˆ t

0

ds

ˆ s

0

ds′Dij(s, s
′)
[
Âi(s),

[
Âj(s

′), ρ̂
(0)
I (t)

]]
.

(7)
Further, we move from the discrete label i to its contin-
uous version x. In doing so, we identify Âi(t) ↔ Q̂(x, t)

and
∑N

i,j=1Dij(t, s) ↔
˜

dx2dx1 E[ξ(t,x2)ξ(s,x1)] =˜
dx2dx1G(x2, x1), where x2 = (t,x2) and x1 = (s,x1).

Then, the expectation value of any generic operator Ô, to

the second order in
√
γ, can be expressed as ⟨Ô(z)⟩

(2)
=

Tr
[
ÔI(z)ρ̂

(2)
I (z)

]
. Its time derivative reads

d

dz0
⟨Ô(z)⟩

(2)
=

d

dz0
Tr

[
ÔI(z)ρ̂(0)

]
− γ

¨
x0
2≤x0

1=z0

d4x2 d
3x1G(x2, x1) Tr

[[
Q̂(x2),

[
Q̂(x1), ÔI(z)

]]
ρ̂(0)

]
− γ

 
G(x2, x1) Tr

[[
Q̂(x2),

[
Q̂(x1),

d

dz0
ÔI(z)

]]
ρ̂(0)

]
,

(8)

where
ffl

:=
˜

x0
2≤x0

1≤z0d
4x2 d

4x1. Eq. (8) can also be

obtained by deriving

Ô(2)(z)=Ô(0)(z)−γ
 
G(x2, x1)

[
Q̂(x2),

[
Q̂(x1), Ô

(0)(z)
]]
,

(9)
in the Heisenberg picture with respect to z0, and tak-
ing the expectation value with respect to the initial
state. Here, we have used ÔI(z) = Ô(0)(z). From a
mathematical standpoint, the time evolved second or-
der expression for Ô(2)(z) in Eq. (9) can be also be ob-
tained within the Heisenberg picture of a linear and uni-
tary unraveling, as shown in Appendix A. In the uni-
tary unraveling, all statistical effects of the collapse dy-
namics can be captured by adding a stochastic term
Ĥst(t) = ℏ√γ

´
dz Q̂(z)ξ(t, z) to the standard quantum

mechanical evolution, i.e. Ĥ = Ĥ0 + Ĥst(t).

Conceptually, however, such an unraveling is in stark
contrast with the non-linear and non-unitary unraveling
of collapse models. For instance, if one insists that an
observed outcome in an experiment is explained objec-
tively only by the localization of the wavefunction around
a specific eigenvector, the unitary unraveling would fail
to provide such an explanation. One might argue instead
that even though the unitary unraveling does not lead to

the collapse, it still inevitably turns a pure state into a
mixed one for a macroscopic system, consistently with
the Born rule. The distiction between the two unrav-
elings is certainly important from theoretical considera-
tions. However, since experimentally one only has access
to the density matrix [36, 37], here we take a more prag-
matic approach and focus only on the latter dynamics.

We emphasize again that just like their discrete
counterpart, Q̂(x) appearing in Eq. (9) is the freely
evolved operator in the Heisenberg picture and G(x, y)
some generic function of x and y. Next we study the
requirements on Q̂(x) and G(x, y) to have that Eq. (9)
relativistically consistent.

Lorentz covariance.–The Lorentz covariance of Eq. (9)
follows from standard quantum field theory (QFT). For

the operator Ô(z) to evolve covariantly, it is sufficient to
show that the collapse noise does not introduce any ad-
ditional transformation for Ô in going from one reference
frame to another, and that Ô transforms in the same
manner as Ô(0). The first term on the RHS of Eq. (9)
trivially satisfies this requirement. Further, assuming
that Q̂(x) is a Lorentz scalar, and the correlation G(x, y)
to be Lorentz invariant G(x, y) = G ((x− y)µ(x− y)µ),
we see that the second term of Eq. (9), which is the
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contribution from the external collapse noise, also
transforms covariantly. This holds to all orders in γ.
Thus, Lorentz covariance is guaranteed as long as the
collapse operator Q̂(x) is a Lorentz scalar and G(x − y)
a Lorentz invariant function.

The microcausality condition (MCC). – The MCC
states that[

Ô(z2), Ô(z1)
]
= 0, for |z2 − z1| < 0, (10)

where we are working within the (+,−,−,−) conven-
tion. MCC implies that the measurement of one ob-
servable cannot influence the time evolution of any other
observable outside of the lightcone corresponding to the
measurement event. This request is met within stan-
dard QFT for typical interactions [38, 39]. We now study
MCC for operators evolving according to a unitary un-
raveling of Eq. (9), where the evolution of the opera-

tors is governed by the Hamiltonian Ĥ(t) = Ĥ0 + Ĥst(t).
Namely

Ût;t0 = T
{
exp

(
− i

ℏ

ˆ t

t0

dt′ Ĥ(t′)

)}
. (11)

Such a unitary operator satisfies Ût2;t1Ût1;t0 = Ût2;t0 for

any Hermitian operator Ĥ(t). In the Heisenberg picture

where Ô(t, z) = Û†
t;t0Ô(t0, z)Ût;t0 , the MCC condition,

for |z2 − z1| < 0, requires

Û†
t1;t0

[
Û†
t2;t1Ô(t0, z2)Ût2;t1 , Ô(t0, z1)

]
Ût1;t0 = 0. (12)

In general, Ût2;t1 does not satisfy the time-translation

property — Ût2;t1 = Û∆t+t0;t0 , where ∆t = t2 −
t1, if the Hamiltonian Ĥ(t) is time-dependent. How-

ever, since the time dependence appears in Ĥst(t) =

ℏ√γ
´
dz Q̂(z)ξ(t, z) only through the noise, we can

rewrite the time integral in Eq. (11) as

Q̂(z)

ˆ t2

t1

dt′ ξ(t′, z) = Q̂(z)

ˆ ∆t+t0

t0

ds ξ̃(s, z). (13)

Therefore, Û
(ξ)
t2;t1 encoding the stochastic dynamics in our

analysis can be written as Û
(ξ)
t2;t1 = Û

(ξ̃)
∆t+t0;t0

. We point

out that ξ̃(t, z) = ξ(t+ t1 − t0, z) has the same correla-
tion function, due to the invariance of G under spacetime
translations. Therefore, at the level of the master equa-
tion, the distinction between ξ and ξ̃ is unimportant and
will not be retained in what follows.

In this context, since Ût2;t1 is equivalent to Û∆t+t0;t0 ,
MCC specified in Eq. (12) is equivalent to showing that

for |z2 − z1| < 0,
[
Ô(∆t+ t0, z2), Ô(t0, z1)

]
= 0. Note

that now only the first operator within the commutator
evolves according to the collapse dynamics. To second

FIG. 1. Leading order causal structure which demonstrates
why MCC is respected, cf. Eq. (14) and Eq. (15).

order in
√
γ, for a given realization of the noise, the latter

expression reads 
ξ(x2)ξ(x1)

[[
Q̂(x2),

[
Q̂(x1), Ô

(0)(z̃2)
]]
, Ô(0)(z̃1)

]
,

(14)
where z̃2 = (t0+∆t, z2) and z̃1 = (t0, z1). The integral

ffl
implies that x02 ≤ x01 and x

0
1 ≤ z̃02 , where z̃

0
1 sets the initial

time. For Eq. (14) to be non-zero, its innermost commu-

tator [Q̂(x1), Ô
(0)(z̃2)] must also be non-zero. Since both

the operators appearing in such a commutator are local
QFT operators evolving with respect to the standard free
Hamiltonian Ĥ0, x1 must be inside the past lightcone of
z̃2. Indeed, x1 is guaranteed not to be in the future of
z̃2 by the standard perturbative expansion. Similarly,
for the double commutator involving Q̂(x2), Q̂(x1) and

Ô(0)(z̃2) to be non-zero, x2 must belong to the past light-
cone of z̃2 or x1, which makes it necessary for x2 to also
belong to the past lightcone of z̃2 as shown in Fig. 1. Fi-
nally, by following the same logic, for the outermost com-
mutator involving Ô(0)(z̃1) to be non-zero, the necessary
condition is that z1 must belong to the past lightcone of
z̃2 or x1 or x2, which forces it inside the past lightcone of
z̃2. Thus, MCC in Eq. (10) is respected to second order

due to the locality of the operator Q̂(x) as in standard
QFT.
Following the same line of reasoning, it can further be

shown that MCC is respected to all orders in
√
γ. This

is because in the n-th order term 
ξ(xn)...ξ(x1)

[[
Q̂(xn), ...,

[
Q̂(x1), Ô

(0)(z̃2)
]]
, Ô(0)(z̃1)

]
,

(15)
z̃1 must lie inside the past lightcone of z̃2 or at least
one of the coordinates x1, x2, ..., xn of the collapse oper-
ators. Since x1, x2, ..., xn themselves must lie in the past
lightcone of z̃2, it becomes necessary for z̃1 to lie inside
the past lightcone of z̃2 for [Ô(z̃2), Ô(z̃1)] to be non-zero,
and therefore z1 to lie inside the past lightcone of z2 for
[Ô(z2), Ô(z1)] to be non-zero (having assumed t2 ≥ t1
without loss of generality). Therefore, the locality of Q̂
and the standard time-ordered evolution, which imposes
the past lightcone structure in Fig. 1, together ensure
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that MCC is respected for the relativistic stochastic dy-
namics as well. This proof shows that if Q̂ is a non-local
Lorentz scalar, or if the time ordering from the standard
quantum dynamics is removed, then MCC might be vio-
lated.

An example of the former is the non-local collapse op-
erator Q̂ ∝ φ̂+φ̂−, where φ̂+ and φ̂− are respectively
the positive and negative frequency parts of φ̂ [31]. In-
stead, an example of the latter is [33] where causality was
found to be violated due to the removal of time-ordering,
namely

ffl
→

˜
d4xd4y with x0, y0 ≤ z0, in order to re-

move divergences. Our analysis further shows that the
noise correlations do not need to be limited to an ultra-
local one, such asG(x, y) = δ4(x−y), to preserve MCC as
argued in [31]. Instead, MCC can be satisfied by taking
a local collapse operator and non-divergent correlations.

In our work, motivated by the non-relativistic CSL
model, we choose the collapse operator to be

Q̂(x) =
1

2
αφ̂2(x), (16)

where α is a suitable free parameter. Q̂(x) is local, and
it becomes proportional to the mass density operator
Q̂MD(x) in the NR limit.
Rate of increase of energy.–Now we show that a finite

rate of energy can be achieved as long as G(x, y) is well-
behaved and is not divergent. Setting ℏ = c = 1, we
compute the energy rate dE/dz0 with Eq. (8) by taking

Ô(z) = Ĥ(z), where

Ĥ(z) = 1
2 π̂

2(z) + 1
2 (∇φ̂(z))

2
+ 1

2m
2φ̂2(z), (17)

and then integrating over space, i.e. z. In doing so, the
first and the last terms on the RHS of Eq. (8) vanish, as
the freely evolved Hamiltonian is a conserved quantity
with d/dz0

´
dz Ĥ(0)(z) = 0. Therefore, we have

dE

dz0
= −γ

˚
x0≤y0=z0

d4xd3y d3zG(x, y)

×Tr
[[
Q̂(x),

[
Q̂(y), Ĥ(z)

]]
ρ̂(0)

]
.

(18)

Since y0 = z0, the inner commutator can be computed
in the standard way and gives[

Q̂(y), Ĥ(z)
]
=
iα

2
δ3(y − z) {φ̂(z), π̂(z)} . (19)

Then, Eq. (18) becomes

dE

dz0
= −γα2

¨
x0≤z0

d4x d3zG(x, z)

×∂z0 (N (x, z)D(x− z)) ,

(20)

where

N (x, z) :=
1

2
Tr [{φ̂(x), φ̂(z)} ρ̂(0)] ,

D(x− z) := i [φ̂(x), φ̂(z)] .
(21)

Here, we have used the fact that ∂φ̂(z)/∂z0 = π̂(z). The
expression for rate of increase of energy simplifies further,
if the initial state is such that the LHS of the first line
in Eq. (21) is a function of x− z (for instance when the
initial state is a thermal state). Since Lorentz covariance
implies G(x, z) = G(x − z), the expression for energy
increase would then only depend on the spatial and tem-
poral parts u = x− z and τ = x0 − z0 respectively, such
that

dE

dz0
= γα2V

ˆ
d3u

ˆ 0

−∞
dτ G(τ,u)∂τ (N (τ,u)D(τ,u)) ,

(22)
where V =

´
dv is the full volume, with v := (x+ z)/2.

The non-Markovian model. — To arrive at a com-
pact expression for the rate of energy for a general non-
Markovian noise, we assume that the initial state ρ̂(0)
has a definite particle number (like the thermal state).
Then, we have

Tr [ρ̂(0)âqâp] = Tr
[
ρ̂(0)â†qâ

†
p

]
= 0, (23)

where φ̂(x) := φ̂+(x) + φ̂−(x), with

φ̂+(x) :=

ˆ
d3p√

2ωp(2π)3
e−ip.xâp, p = (ωp,p).

(24)
Even though such an initial state is not Lorentz invariant,
it serves the purpose of demonstrating that a Lorentz
invariant non-Markovian noise is free of the problems of
its Markovian counterpart, which is well-known to have a
δ(0) divergence, independently of the choice of the initial
state (cf. Appendix B).
The application of Eq. (23) to Eq. (21) provides the

following simple expressions:

N (x) =

ˆ
d3q

(2π)3

(
nq +

1

2

)
cos(q.x)

ωq
,

D(x) =

ˆ
d3q

ωq(2π)3
sin(q.x),

(25)

where nq is the average occupancy of the mode q for

the initial state, such that
´
d3qnq → (2π)3/2

L3

∑
nq =

(2π)3/2N/V , N being the total number of particles. The
factor of 1/2 in the first expression captures the stan-
dard QFT vacuum divergence. This factor leads to a
divergent particle production rate from vacuum, which
was already found in Ref. [33]. There, the removal of
time-ordering was proposed to obtain a finite expression.
However, as argued before, this might violate causality,
which is also reflected in the tachyonic behavior reported
in Ref. [33]. Therefore, here, we propose to use a normal-
ordering prescription, where all the observables of inter-
est are normal-ordered at all times, i.e. Ô(z) →: Ô(z) :
and thus the 1/2 term is dropped. Note that this pre-
scription leaves the MCC analysis unchanged, as shown
in Appendix C.
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By combining Eqs. (25) and (22), and computing ex-
plicitly the z0 derivative, we can derive the following
normal-ordered (NO) expression

dE

dz0

∣∣∣∣
NO

=
γα2V

(2π)6

ˆ
d3x

ˆ 0

−∞
dτ G(τ,x)

¨
d3pd3qnq

×
[
cos(p.x) cos(q.x)

ωq
− sin(p.x) sin(q.x)

ωp

]
.

(26)
Since this integrand remains unchanged under reflection
x→ −x, Eq. (26) can be written more compactly as

dE

dz0

∣∣∣∣
NO

=
γα2V

2(2π)4

¨
d3p d3qnq

×ℜ
[
G(p+ q) + G(p− q)

2ωq
+

G(p+ q)− G(p− q)

2ωp

]
,

(27)
where G(p) is the four-dimensional Fourier transform of
the correlation G(x). Notably, the multiplicative δ(0)
divergence present the white noise expression does not
appear in the non white case. Further, as long as one
is only concerned with obtaining a finite rate of energy,
any choice of G(q) for which Eq. (27) is finite becomes
a viable relativistic non-Markovian collapse correlation
within the normal-ordering prescription.

Non-relativistic and relativistic limits. – We now dis-
cuss the non-relativistic limit to motivate specific choices
for G(q2). Such a limit can be understood as the one for
which nq = 0, for q2 ≳ m2. Namely, only particles whose
kinetic energy is well below the rest mass energy are re-
tained. This also implies ωq ≈ m. Notably, the p integral
in Eq. (27) still runs over all the R3 values. We divide
the p integral into the NR (|p|2 ≪ m2 and ωp ≈ m) and
the relativistic (|p|2 ≫ m2 and ωp ≈ |p|) regimes. Since
the noise correlation is Lorentz invariant, with the fol-
lowing structure G(p ± q) = G

[
(ωp ± ωq)

2 − (p± q)2
]
,

in the NR regime we have GNR(p+ q) ≈ G(4m2) and
GNR(p− q)/ωq−GNR(p− q)/ωp ≈ 0. On the other hand,
when p is in the relativistic regime, we have Grel(p±q) ≈
G(±2|p|m). Since G(q) is an even function — which fol-
lows from the requirement that G(x) must be real —
Grel(p + q) − Grel(p − q) ≈ 0, and the rate of increase of
energy becomes

dE

dz0

∣∣∣∣
NO

≈ γα2V

2(2π)4

ˆ m

0

dqnq

×
[ˆ m

0

dp
G(4m2)

m
+

ˆ ∞

m

dp
G(2|p|m)

m

]
,

(28)

where the first integral gives G(4m2)/m×4/3πm3. Thus,
in the NR limit, we find that the energy rate is propor-
tional to the total number of particles N , as the overall
factor of V in Eq. (28) cancels out due to the relation´
dqnq = (2π)3/2N/V . Such a feature is shared with the

NR collapse models that can be found in literature [13].
Further, the choice of G(q) is now only constrained by

the convergence of the second integral in Eq. (28), which
can be easily achieved by a suitable choice of G(q). Nev-
ertheless, for the relativistic white noise G(x) = δ4(x),
G(q) is a constant and we get that Eq. (28) diverges as
δ(0), as expected and also shown in Appendix B.
In the fully relativistic limit, for which the correspond-

ing distribution n(q) is non-zero only when |q| ≳ m,
we can find a finite expression for the energy rate. By
following a similar reasoning as before, Eq. (27) can be
approximated to

dE

dz0

∣∣∣∣
NO

≈ γα2V

2(2π)4

ˆ ∞

m

dq
nq
|q|

×
[ˆ m

0

dpG(2m|q|) +
ˆ ∞

m

dpG
(
4|p||q| sin2 θpq

)]
,

(29)
where θpq is the angle between the four-dimensional
vectors p and q, and we can substitute the first integral
with G(2m|q|) × 4/3πm3. The convergence of Eq. (29)
puts rather mild constraints on G(q) (and thus on G(x)).

Outlook.–The convergence of the energy rate in
Eq. (27) can be achieved, for instance, with the following
choice

G(q) = exp
(
−q4/β4

)
, (30)

where β is another free parameter of the model. The pro-
posed exponential form is motivated from its resemblance
to the Gaussian correlation of the CSL model. The quar-
tic dependence q4 is considered in place of a quadratic
dependence since q2 becomes negative for the spacelike
regions and thus exp(−q2) diverges. Conversely, G(q) in
Eq. (30) is finite in any point in the Fourier space. Fur-
ther, G(q) → 0 fast enough as q2 → ±∞ thereby guaran-
teeing the convergence of Eq. (27). Moreover, in (1 + 1)
dimension, one can also obtain an analytic expression for
the corresponding G(x), which is given in terms of the
Meijer G-function

G(x) =
β2

2
G2,0

0,3

(
1

256
β4(x2 − t2)2

∣∣∣∣ 0, 0, 12
)
. (31)

Such an expression features a peak at a characteristic
length scale x = t (with the speed of light c = 1) and
goes to zero for large spatial separations. While an ana-
lytic expression for G(x) in (1+ 3) dimensions is hard to
obtain, it is reasonable to assume that G(x) would still
have the desired properties as its (1 + 1) counterpart.
Along with the choice of the collapse operator, the

choice of G(x), such as that in Eq. (31), completely
fixes the relativistic stochastic dynamics up to the
free parameters α, β and γ. These parameters, like
in the CSL model, will be subject to experimental
investigation. We emphasize again that this G is just
one of the many possible choices that can be made. An
exploration of other possible noise correlations is outside
the scope of the present work but nevertheless is an
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interesting subject for future research.

Discussion.–We have shown that a consistent relativis-
tic stochastic dynamics can be constructed, which leads
to a finite rate of increase of energy and also respects the
microcausality condition. For a collapse operator that is
a quadratic local field operator, a collapse noise which
has a non-Markovian Lorentz invariant correlation, and
with an additional normal ordering prescription, such
a dynamics is free of the problems found in previous
works and has a desirable CSL like behavior in the non-
relativistic limit.

However, even after such technical difficulties have
been overcome, the question of whether such a dynamics
can be consistently interpreted as a relativistic collapse
model is still open. It has been shown in Sec. 14.2 of [1]
that even though a consistent relativistic stochastic dy-
namics might be constructed at the level of the density
matrix (obtained after averaging over different realiza-
tions of the collapse noise), for a single specific realiza-
tion of the collapse noise, the quantum expectation value
can in general be different when computed along differ-
ent hypersurfaces by observers moving relative to each
other. This poses a conceptual problem if one wishes
to assign an objective meaning to the statevector at all
times for each realization of the stochastic noise. One
might not find such a difficulty surprising, given that re-

lated conceptual issues concerning relativistic quantum
monitoring have also been pointed in [40–42].
Nevertheless, we emphasize that the dynamics pre-

sented here can still be viewed as a consistent relativistic
stochastic dynamics corresponding to the linear and
unitary unraveling of the wavefunction (cf. Sec. 14.2
of [1]), which predicts the suppression of macroscopic
superpositions due to the coupling of matter with
an underlying stochastic field (within the standard
decoherence formalism). However, to have a convincing
resolution of the measurement problem being consistent
with relativity, it remains to be seen if such conceptual
issues can be also overcome, or if they would turn out to
be fundamental and unavoidable.
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dz Q̂(z)ξ(t, z)
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perturbatively, as in standard quantum field theory (QFT). For that, as it is well-known, the full unitary operator
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where Ĥ I
st(t) = Û†

0 (t, t0)Ĥst(t)Û0(t, t0). In the Heisenberg picture, given Eq. (A2), a generic operator Ô(z) is given by

Ô(z, t) =

[
1̂ +

i

ℏ

ˆ t

t0

dt′Ĥ I

st(t
′)− 1

ℏ2

ˆ t

t0

dt′
ˆ t′

t0

dt′′Ĥ I

st(t
′′)Ĥ I

st(t
′) + higher order

]
× Ô0(z, t)×

×

[
1̂− i

ℏ

ˆ t

t0

dt′Ĥ I

st(t
′)− 1

ℏ2

ˆ t

t0

dt′
ˆ t′

t0

dt′′Ĥ I

st(t
′)Ĥ I

st(t
′′) + higher order

]
. (A3)

The time evolution of Ô can then be written in terms of the freely evolved (0th order) term Ô(0)(t) = Ô0(t) =

Û†
0 (t, t0)ÔÛ0(t, t0) as

Ô(z, t) = Ô(0)(z, t) +
i

ℏ

ˆ t

t0

dt′
[
Ĥ I

st(t
′), Ô(0)(z, t)

]
− 1

ℏ2

ˆ t

t0

dt′
ˆ t′

t0

dt′′
[
Ĥ I

st(t
′′),

[
Ĥ I

st(t
′), Ô(0)(z, t)

]]
+ higher order .

(A4)

Substituting the expression for Ĥst and averaging over the stochastic realizations of the noise ξ(x), we get

E[Ô(2)(z)] = Ô(0)(z)− γ

¨
x0≤y0≤z0

d4xd4y E[ξ(x)ξ(y)]
[
Q̂(x),

[
Q̂(y), Ô(0)(z)

]]
= Ô(0)(z)− γ

¨
x0≤y0≤z0

d4xd4y G(x− y)
[
Q̂(x),

[
Q̂(y), Ô(0)(z)

]]
, (A5)

whose derivative with respect to z0 gives Eq. (8) of the main text.

Appendix B: The white noise

The request of having a Lorentz invariant noise correlation together with the request of white noise, i.e.
E[ξ(x0,x)ξ(z0, z)] = δ(τ)f(u), τ = x0 − z0,u = x − z, fixes the noise correlation to G(τ,u) = δ(τ)δ(u). For
G(x) = δ4(x), the rate of increase in energy given by Eq. (22) becomes

dE

dz0
=
γα2V

2
(∂τN (τ, 0)D(0, 0) +N (0, 0)∂τD(τ, 0))

∣∣
τ=0

. (B1)

From the standard equal-time commutation relations of φ̂, which enter the definitions of N and D, we get D(0, 0) = 0
and ∂τ D(τ, 0)|τ=0 = −∂z0 D(x, z)|x=z = δ(0). One can also obtain this result directly from the expression of D(x)
in Eq. (25). This implies that the increase in energy diverges as

dE

dz0
= δ(0)

γα2V Tr
[
φ̂2(0)ρ̂(0)

]
2

. (B2)

Here we have used the relation N (0, 0) = Tr
[
φ̂2(0)ρ̂(0)

]
. Note that, in Eq. (B2), in addition to the standard QFT

divergence (of the type one might encounter in computing ⟨in| φ̂2 |in⟩), there is a multiplicative diverging factor δ(0).
Even if the standard QFT divergence is removed by standard procedures, for example by imposing a normal ordering
on the energy rate (: d/dz0

´
dz Ĥ(0)(z) = 0 :), Eq. (B2) still remains divergent due to the multiplicative factor δ(0).

This difficulty with relativistic Markovian models, which has already been pointed out in previous works [29–32],
serves as a motivation to work with a more generic, non-Markovian noise function.

Appendix C: MCC with normal ordering

In the main text MCC was shown to be satisfied to all orders in ξ, by showing that 
ξ(xn)...ξ(x1)

[[
Q̂(xn), ...,

[
Q̂(x1), Ô

(0)(z̃2)
]]
, Ô(0)(z̃1)

]
= 0, (C1)

whenever |z̃2 − z̃1| < 0, and hence |z2 − z1| < 0. Here we will show that this condition remains unchanged if the

time-evolved operator Ô(z) is normal ordered. That is 
ξ(xn)...ξ(x1)

[
:
[
Q̂(xn), ...,

[
Q̂(x1), Ô

(0)(z̃2)
]]

:, Ô(0)(z̃1)
]
= 0, for |z̃2 − z̃1| < 0. (C2)
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This is straightforward to see for operators Ô(0)(z̃2) that are linear or at most quadratic in creation and annihilation

operators, such as Ô(0) ∝ φ̂ or Ô(0) ∝ φ̂2, or the free Hamiltonian Ĥ0. This is because the collapse operator Q̂(x) =
1
2αφ̂

2(x) is quadratic, and therefore the commutator
[
Q̂(x1), Ô

(0)(z̃2)
]
would be of the same order in creation and

annihilation operators as Ô(0). Thus, the additional normal ordering can only add a constant, leaving the outermost
commutator with Ô(0)(z̃1) in Eq. (C2) unchanged, when Ô(0) is at most quadratic in creation and annihilation
operators.

For higher order operators Ô(0), such as Ô(0)(x) ∝ φ̂4(x), the value of the commutator would in general be different
with normal ordering when |z̃2−z̃1| ≥ 0. However, it can be seen with the help of Wick’s theorem that the commutator

would still be zero when |z2 − z1| < 0. To show this, we first point out that for
[
Q̂(xn), ...,

[
Q̂(x1), Ô

(0)(z̃2)
]]

to be

non-zero, xn, xn−1,..., x1 must all be in the past lightcone of z̃2, as argued in the main text. This does not change
with the normal ordering that we impose. We now look at one of the many terms, such as

 
ξ(xn)...ξ(x1)

[
: Q̂(xn)...Q̂(x1)Ô

(0)(z̃2) :, Ô
(0)(z̃1)

]
, (C3)

that contributes to the commutator in Eq. (C2). The product : Q̂(xn)...Q̂(x1)Ô
(0)(z̃2) : can be written using Wick’s

theorem as [43]

: Q̂(xn)...Q̂(x1)Ô
(0)(z̃2) := T {Q̂(xn)...Q̂(x1)Ô

(0)(z̃2)} − all posible contractions. (C4)

The time ordering would simply change the ordering of the operators as T {Q̂(xn)...Ô
(0)(z̃2)} → Ô(0)(z̃2)...Q̂(xn). It

does not change the statement that for Eq. (C3) to be non-zero, it is necessary for z̃1 to be inside the lightcone of at
least one of the spacetime points x1, x2, ..., xn, z̃2. Again, since xn, xn−1,..., x1 all lie inside the past lightcone of z̃2,
it implies that z̃1 must lie inside the past lightcone of z̃2, for Eq. (C3) to be non-zero. The same argument holds for
the terms involving the contractions in Eq. (C4). Thus, Eq. (C2), and hence MCC, is satisfied even in the presence
of the additional normal ordering that we impose to make the rate of increase of energy non-divergent.
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