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1 System+Bath→System+Memory+Detector

If the memory of B cannot be ignored for S, Markovian

tools don’t work. In such non-Markovian (NM) case, S is

coherently interacting with a finite part of B over a finite

time.

How can we divide the environment B into the mem-

ory M and detector D?

M is continuously entangled with S, while S+M should

be Markovian open system. D contains information on

S, can be continuously disentangled (monitored) without

changing the dynamics of S.

Answer: Markovian field representation [GarCol85] of B.

The local Markov field interacts with S in a finite range

(M). Information on S is carried away by the output field

(D). Markovian theory [GarCol85] of monitoring apply

invariably to the composite system S+M.
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2 Markovian bath, non-Markovian coupling

The composite S+B dynamics:

Ĥ = ĤS + ĤB + ĤSB

ĤB =

∫

ωb̂†ωb̂ωdω ĤSB = iŝ

∫

κωb̂
†
ωdω + h.c.

ŝ is a S-operator that couples to the B-modes.

[b̂ω, b̂
†
ω′] = δ(ω − ω′), b̂ω|0〉 = 0

B is Markovian (flat spectrum). Memory is encoded in

coupling κω. Markovian limit: κω = const.

Switch for abstract field representation!
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3 Markovian local field, non-local coupling

b̂(z) =
1√
2π

∫

b̂ωe
−iωzdω, z ∈ (−∞,∞)

[b̂(z), b̂†(z′)] = δ(z − z′)

The field can be measured independently at all locations.

Free Heisenberg field: b̂t(z) = b̂(z + t).

The composite S+B dynamics:

ĤB =
i

2

∫

b̂†(z)∂z b̂(z)dz + h.c.

ĤSB = iŝ

∫

b̂†(z)κ(z)dz + h.c.,

κ(z)=Fourier-tr. of κω. Markovian limit κ(z) ∝ δ(z).

Heisenberg field [GarCol85]:

b̂(z, t) = b̂(z + t) +

∫ t

0

ŝ(t− τ )κ(z + τ )dτ
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Input-output fields

κ (z)

D

T0

z

z<0

M

S

The bath field b̂(z, t), when free, is propagating from

right to left without dispersion at velocity 1. The unper-

turbed input field from range z ≥ T propagates through

the interaction range z ∈ [0, T ] of non-zero coupling κ(z),

gets modified by, and entangled with the system S, then

it leaves to freely propagate away to left infinity as the

output field. The interaction range makes the memory

M and the output range z ≤ 0 makes the detector D

which can continuously be read out (monitored).

5



Memory and Detector

M

S

D

If we form a memory subsystem M from the local field

oscillators of the interaction range then the system S and

the memory M constitutes a Markovian open system. It

is pumped by the standard Markovian quantum noise

(input field) and it creates the Markovian output field D

that can be monitored.
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System+Memory=MarkovianOpenSystem

M

S

bout(t) b(t+T)

The system-plus-memory is pumped by the standard (ex-

ternal) quantum white-noise b̂(t+T ) and monitored through

the modified quantum white-noise b̂out(t) just like Marko-

vian open quantum systems, apart form the delay T of

read-out w.r.t. pump.

Mathematical realizations:

I/O relationship [GarCol85] for the measured signal.

Lindblad Master Equation for S+M (formal).

Stoch. Sch-Ito Eq for the conditional state of S+M (?).

NM Stoch. Sch Eq for the conditional state of S.
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4 Monitoring

Measurement in coherent state overcomplete basis parametrized

by the complex field ξ(z). Bargman coherent states

|ξ〉 = exp

(
∫

ξ(z)b̂†(z)dz

)

|0〉

form an overcomplete basis: M|ξ〉〈ξ∗| = 1̂.

Mξ(z) = 0, Mξ(z)ξ(z′) = 0, Mξ(z)ξ∗(z′) = δ(z−z′).

If we perform the measurement, the state of B collapses

on |ξ〉 randomly, the complex field ξ(z) becomes the ran-

dom read-out. But its statistics depends on the pre-

measurement state. In the vacuum state |0〉, the read-

outs ξ(z) follow the M-statistics. It gets modified by the

B-S interaction: Mξ(z) becomes non-vanishing.
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5 Stochastic Schrödinger equation

S-statevector under monitoring, conditioned on signal ξ:

d|ΨS[ξ
∗; t]〉

dt
= ŝt

∫ T

0

dτκ(τ )ξ∗(t + τ )|ΨS[ξ
∗; t]〉

− ŝ
†
t

∫ T

0

dτκ∗(τ )
δ|ΨS[ξ

∗; t]〉
δξ∗(t + τ )

The r.h.s. would contain the measured signal ξ(t+ τ ) at

later times w.r.t. t, these data are not yet available at

time t.

Either we propagate conditional mixed state (compro-

mise i) or we propagate the retrodicted pure state (com-

promise ii).

This SSE is equivalent with the Strunz-Diosi SSE (1997).
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6 Structured bath→Markovian bath

Strunz-D SSE works in structured bath of spectral den-

sity αω ≥ 0 while coupling is 1. Its interpretation drew

debates. No pure state monitoring exists [GamWis03].

Mixed state monitoring is possible [JackCollWall99]. Pure

state retrodiction [Dio08]. Causality structure is involved.

Trick:

Structured B (αω ≥ 0, κω = 1) is equivalent with

Markovian B (αω = 1, κω 6= 1) if we solve [Cho24]

α(t) =

∫

κ(t + τ )κ∗(τ )dτ

Strunz-D SSE takes the ξ-driven earlier form of transpar-

ent causality structure.
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7 Summary

S+M becomes Markovian if you split B into M+D prop-

erly.

Markovian (even Ito) technologies must work.

Issue of monitorability is transparent: S+M is moni-

torable.

Key problem: how to represent (approximate) M.

Compromises: mixed state or retrodicted pure state tra-

jectories.

To MarVacHugBur: Is all S+M asymptotically Marko-

vian?

To MazManPiiSuoGar: Is information flow more trans-

parent in I/O?

11



References

[1] C.W. Gardiner and M.J. Collett, Phys.Rev. A 31, 3761
(1985).

[2] M.W.Jack, M.J. Collet and D.F.Walls, J.Opt. B: Quantum
Semiclass. Opt. 1, 452 (1999).

[3] J. Gambetta and H.M. Wiseman, Phys. Rev. A 68, 062104

(2003).
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[6] L. Diósi, Phys. Rev. Lett. 101, 149902(E) (2008).

[7] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and

B.M. Garraway, Phys. Rev. A 80, 012104 (2009).
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