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WAVEFUNCTION PROPAGATION
under CONTINUOUS COLLAPSE

CLASSICAL RECORD

WAVEFUNCTION

Real or Fictitious Continuous Collapse

Classicality emerges from Quantum via real or hypothetic, often time-
continuous measurement [detection, observation, monitoring, ...] of the
wavefunction ).

e Real: particle track detection, photon-counter detection of decaying
atom, homodyne detection of quantum-optical oscillator, ...

e Fictitious: theories of spontaneous [universal, intrinsic, primary, ...]
localization [collapse, reduction, ...].

To date, the mathematics is the same for both classes above! We know
almost everything about the mathematical and physical structures if
markovian approximation applies. We know much less beyond that ap-
proximation.

WHAT EQUATION DESCRIBES THE WAVEFUNCTION UNDER TIME-CONTINUOUS
COLLAPSE?



The Markovian Stochastic Schrodinger Equation

diy(t, z -
lb(dt’) = —iHY(t,z) hermitian hamiltonian
—1qz(t, z) non-hermitian noisy hamiltonian
— 273 (t, 2) non-hermitian dissipative hamiltonian

where z is complex Gaussian hermitian white-noise: M/[z*(t)z(s)] =
~6(t — s). The equation is not norm-preserving. We define the physi-
cal state by 1//|[1|| and its statistical weigth is multiplied by |||
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There exists a closed non-linear SSE for |¢, z).

The markovian SSE describes perfectly the time-continuous collapse of
the wavefunction in the given observable(s) g. The state |t,z) is con-
ditioned on { z(s);s < t } causally. The individual solutions |t, z) can,
in principle, be realized by time-continuous monitoring of q. Then z(t)
becomes the classical record explicitly related to the monitored value of

q.

Our key-problems will be: causality, realizability, and Lorentz-invariance.
So far, for markovian SSE: causality OK, realizability OK, Lorentz-
invariance NOK.

WHY DO WE NEED NON-MARKOVIAN SSE?



The non-Markovian Stochastic Schrodinger Equation

Driving noise is non-white-noise:
M[z*(t)z(s)] = a(t — s)
SSE contains memory-term:

dip(t, z)

= —iHY(,2) — ig=(t 2) + icj/ot a(t — S)(W(t,z)ds

0z(s)

The equation is not norm-preserving. We define the state by /|| || and
its statistical weight is multiplied by [|7||?:
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There exists a closed non-linear non-markovian SSE for |¢, z).

The non-markovian SSE describes the t e n d e n ¢ y of time-continuous
collapse of the wavefunction in the given observable(s) g. The state
|t, z) is conditioned on { z(s);s < t } causally. The individual solutions
|t,z) can n o t be realized by any known way of monitoring. The non-
markovian SSE corresponds mathematically to the influence of a real or
fictitious oscillatory reservoir whose Husimi-function is sampled stochas-
tically. Disappointedly, z(t) can n o t be interpreted as classical record,
it only corresponds to mathematical paths in the parameter-space of the
reservoir’s coherent states.

Status of key-problems for non-markovian SSE: causality OK, realizabil-
ity NOK, Lorentz-invariance NOK.

CAN WE ENFORCE LORENTZ-INVARIANCE?



Case study: quantum-electrodynamics

x = (xg, ¥): 4-vector of space-time coordinates

A(x): 4-vector of second-quantized electromagnetic potential
X(x): Dirac-spinor of second-quantized electron-positron-field
J(x) = ex(z)yx(x): 4-vector of fermionic current

D(z) = i(e.m.vac|A(xz)A(0)|e.m.vac): electromagnetic correlation

Schrodinger equation in interaction picture:
dW(t)
dt

— —q /wf)iﬁ% J(z)A(x) U(t)

Restrict for ¥ (—o0) = 9(—o00) ® |e.m.vac) and seek SSE for the electron-
positron wavefunction v(t) continuously localized by the electromagnetic
field.

Driving noise is the negative-frequency part A (x) of the e.m. “vacuum-
field” A" 4+ A-, satisfying

M[A (x)A*(y)] = (e.m.vac|ﬁ(zc)2(0)|e.m.vac) = —iD(x — y)

SSE contains memory-term:

dy(t, A”) otp(t, A7)

= —/d:cJ(a:)A (z)eh(t, A ) — / /d{yJ(w)D(m ) W
There exists a closed non-markovian SSE for the normalized state |t, A™)
as well.

The solutions of this “relativistic” SSE, when averaged over A, describe
the exact QED fermionic reduced state:

M{ep(t, A7) pT (8, AT)] = trem [P ()T (2)]

The “relativistic” SSE describes the t e n d e n ¢ y of time-continuous
collapse of the fermionic wavefunction in the current J although the
collapse happens in (certain) Fourier-components rather than the local
values J(z). The wavefunction 1/(t, A~) is conditioned on the classical
field { A (x);xo < t } causally. The individual solutions |t, A") can n o
t be realized by any known way of monitoring. Therefore the classical
field A~ can n o t be interpreted as classical record. It carries certain
information on the collapsing components of the current J but, first of
all, A~ carries information on the quantized e.m. field A(x).



Lorentz invariance?

Solution of “relativistic” SSE emerging from the initial state 1/(—o0):
b(t, A7) = Texp {—i[ deJ(2)A (2) - [[dady,](@)D(@ - y)] (y) | ¥(~ox)

Consider the expectation value of the local e.m. current at some ¢:

Pl(t, A*)J(t, &) (t, A)

Pi(t, AT)p(t, A-)
Trouble: J(x, A~) may depend on A (y) for yo(xe which is causality in
the given frame while it may violate causality in other Lorentz frames.

If J(x, A") depends not only on A~ inside but also outside the backward
light-cone of x then “relativistic” SSE is not Lorentz-invariant.

J(t, @A) =

Status of key-problems for “relativistic” SSE: causality NOK, realizabil-
ity NOK, Lorentz-invariance NOK.



Summary

“Classicality emerges from Quantum via real or hypothetic, often time-
continuous measurement [detection, observation, monitoring, ...| of the
wavefunction ).”

e Markovian models of continuous collapse turn out to be mathemati-
cally equivalent with standard (though sophisticated) quantum mea-
surements.

e Non-markov models are still equivalent with standard quantum reser-
voir dymamics, i.e., with its formal stochastic decomposition (unrav-
elling).

e Lorentz invariance of individual continuously localized quantum tra-

jectories is likely to remain a problem.

CAN WE CONSTRUCT MORE GENERAL MODELS THAT ARE MORE LIKELY TO LIB-
ERATE US FROM THE MATHEMATICAL STRUCTURE OF STANDARD QUANTUM THE-
ORY"?

Replace, please, “Emergence of Classicality from Quantum” by “Coex-
istence of Classical and Quantum”.

e Classical fields C(x) and quantum fields Q(x)

e Causal and Lorentz invariant relationship



