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Real or Fictitious Continuous Collapse

Classicality emerges from Quantum via real or hypothetic, often time-
continuous measurement [detection, observation, monitoring, ...] of the
wavefunction ψ.

• Real: particle track detection, photon-counter detection of decaying
atom, homodyne detection of quantum-optical oscillator, ...

• Fictitious: theories of spontaneous [universal, intrinsic, primary, ...]
localization [collapse, reduction, ...].

To date, the mathematics is the same for both classes above! We know
almost everything about the mathematical and physical structures if
markovian approximation applies. We know much less beyond that ap-
proximation.

What Equation describes the wavefunction under time-continuous

collapse?
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The Markovian Stochastic Schrödinger Equation

dψ(t, z)

dt
= −iĤψ(t, z) hermitian hamiltonian

−iq̂zψ(t, z) non-hermitian noisy hamiltonian

−1
2γq̂

2ψ(t, z) non-hermitian dissipative hamiltonian

where z is complex Gaussian hermitian white-noise: M[z?(t)z(s)] =
γδ(t − s). The equation is not norm-preserving. We define the physi-
cal state by ψ/‖ψ‖ and its statistical weigth is multiplied by ‖ψ‖2:

ψ(t, z) −→
ψ(t, z)

‖ψ(t, z)‖
≡ |t, z〉

M[ . . . ] −→ M[ ‖ψ(t, z)‖2 . . . ] ≡ M̃t[ . . . ]

There exists a closed non-linear SSE for |t, z〉.

The markovian SSE describes perfectly the time-continuous collapse of
the wavefunction in the given observable(s) q̂. The state |t, z〉 is con-
ditioned on { z(s); s ≤ t } causally. The individual solutions |t, z〉 can,
in principle, be realized by time-continuous monitoring of q̂. Then z(t)
becomes the classical record explicitly related to the monitored value of
q̂.

Our key-problems will be: causality, realizability, and Lorentz-invariance.
So far, for markovian SSE: causality OK, realizability OK, Lorentz-
invariance NOK.

Why do we need non-markovian SSE?
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The non-Markovian Stochastic Schrödinger Equation

Driving noise is non-white-noise:

M[z?(t)z(s)] = α(t− s)

SSE contains memory-term:

dψ(t, z)

dt
= −iĤψ(t, z) − iq̂zψ(t, z) + iq̂

∫ t
0
α(t− s)

δψ(t, z)

δz(s)
ds

The equation is not norm-preserving. We define the state by ψ/‖ψ‖ and
its statistical weight is multiplied by ‖ψ‖2:

ψ(t, z) −→
ψ(t, z)

‖ψ(t, z)‖
≡ |t, z〉

M[ . . . ] −→ M[ ‖ψ(t, z)‖2 . . . ] ≡ M̃t[ . . . ]

There exists a closed non-linear non-markovian SSE for |t, z〉.

The non-markovian SSE describes the t e n d e n c y of time-continuous
collapse of the wavefunction in the given observable(s) q̂. The state
|t, z〉 is conditioned on { z(s); s ≤ t } causally. The individual solutions
|t, z〉 can n o t be realized by any known way of monitoring. The non-
markovian SSE corresponds mathematically to the influence of a real or
fictitious oscillatory reservoir whose Husimi-function is sampled stochas-
tically. Disappointedly, z(t) can n o t be interpreted as classical record,
it only corresponds to mathematical paths in the parameter-space of the
reservoir’s coherent states.

Status of key-problems for non-markovian SSE: causality OK, realizabil-
ity NOK, Lorentz-invariance NOK.

Can we enforce Lorentz-invariance?
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Case study: quantum-electrodynamics

x = (x0, ~x): 4-vector of space-time coordinates
Â(x): 4-vector of second-quantized electromagnetic potential
χ̂(x): Dirac-spinor of second-quantized electron-positron-field
Ĵ(x) = eχ̂(x)γχ̂(x): 4-vector of fermionic current
D(x) = i〈e.m.vac|Â(x)Â(0)|e.m.vac〉: electromagnetic correlation

Schrödinger equation in interaction picture:

dΨ(t)

dt
= −i

∫
x0=t
dx Ĵ(x)Â(x) Ψ(t)

Restrict for Ψ(−∞) = ψ(−∞)⊗|e.m.vac〉 and seek SSE for the electron-
positron wavefunction ψ(t) continuously localized by the electromagnetic
field.

Driving noise is the negative-frequency part A−(x) of the e.m. “vacuum-
field” A+ +A−, satisfying

M[A−(x)A+(y)] = 〈e.m.vac|Â(x)Â(0)|e.m.vac〉 = −iD(x− y)

SSE contains memory-term:

dψ(t, A−)

dt
= −i

∫
x0=t
dxĴ(x)A−(x)ψ(t, A−)−

∫
x0=t
dx

∫
y0<t
dyĴ(x)D(x−y)

δψ(t, A−)

δA−(y)

There exists a closed non-markovian SSE for the normalized state |t, A−〉
as well.

The solutions of this “relativistic” SSE, when averaged over A−, describe
the exact QED fermionic reduced state:

M[ψ(t, A−)ψ†(t, A+)] = tre.m.[Ψ(t)Ψ†(t)]

The “relativistic” SSE describes the t e n d e n c y of time-continuous
collapse of the fermionic wavefunction in the current Ĵ although the
collapse happens in (certain) Fourier-components rather than the local
values Ĵ(x). The wavefunction ψ(t, A−) is conditioned on the classical
field { A−(x);x0 ≤ t } causally. The individual solutions |t, A−〉 can n o
t be realized by any known way of monitoring. Therefore the classical
field A− can n o t be interpreted as classical record. It carries certain
information on the collapsing components of the current Ĵ but, first of
all, A− carries information on the quantized e.m. field Â(x).
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Lorentz invariance?

Solution of “relativistic” SSE emerging from the initial state ψ(−∞):

ψ(t, A−) = T exp

{
−i

∫
x0<t
dxĴ(x)A−(x) −

∫ ∫
y0<x0<t
dxdy Ĵ(x)D(x− y)Ĵ(y)

}
ψ(−∞)

Consider the expectation value of the local e.m. current at some t:

J(t, ~x,A−) =
ψ†(t, A+)Ĵ(t, ~x)ψ(t, A−)

ψ†(t, A+)ψ(t, A−)

Trouble: J(x,A−) may depend on A−(y) for y0〈x0 which is causality in
the given frame while it may violate causality in other Lorentz frames.
If J(x,A−) depends not only on A− inside but also outside the backward
light-cone of x then “relativistic” SSE is not Lorentz-invariant.

Status of key-problems for “relativistic” SSE: causality NOK, realizabil-
ity NOK, Lorentz-invariance NOK.
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Summary

“Classicality emerges from Quantum via real or hypothetic, often time-
continuous measurement [detection, observation, monitoring, ...] of the
wavefunction ψ.”

• Markovian models of continuous collapse turn out to be mathemati-
cally equivalent with standard (though sophisticated) quantum mea-
surements.

• Non-markov models are still equivalent with standard quantum reser-
voir dymamics, i.e., with its formal stochastic decomposition (unrav-
elling).

• Lorentz invariance of individual continuously localized quantum tra-
jectories is likely to remain a problem.

Can we construct more general models that are more likely to lib-

erate us from the mathematical structure of standard quantum the-

ory?

Replace, please, “Emergence of Classicality from Quantum” by “Coex-
istence of Classical and Quantum”.

• Classical fields C(x) and quantum fields Q̂(x)

• Causal and Lorentz invariant relationship


