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Based on his RDM interpretation of the wavefunction, Gao has
constructed a simple discrete-time energy-conserving model of
spontaneous (i.e.: objective) wavefunction collapse. I recast,
equivalently, the stochastic equations of this model and I
discuss it in the context of alternative collapse models like,
e.g., Pearle’s gambler’s ruin process, previous energy-driven
collapse models and the gravity-related model of Penrose and
myself.
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Background concepts

What I read from Gao:
I Unitary evolution of Ψ and its Born’s probability densities

are underlied by ergodic random discontinuous motion
(RDM) of the particles.

I Also non-unitary collapse dynamics of Ψ is discontinuous.
I The chosen collapse model is discrete in time.

I take these for granted, as a possible alternative to other
spontaneous collapse theories.



Collapse as Gambler’s Ruin
Collapse + Born’s rule:

|Ψ〉 =
N∑

k=1
ck |k〉

|ck |2(final) = δkn, with probability |cn|2(initial).
Pearle’s hint of a stochastic model: N gamblers with initial
moneys p1 = |c1|2, p2 = |c2|2, etc . play a fair game which ends
when all gamblers go to ruin except for the winner who takes
everything.
A possible fair game (there are many more):

1. They put λp1, λp2, etc . into the bank (λ ≤ 1)
2. Bank money λ is given to player n with probability pn

pk → (1− λ)pk + δknλ

3. Go to 1. until one player wins everything.
Then pk(final) = δkn, with probability pn(initial).
That’s collapse + Born rule.



Gao’s Collapse Model

|Ψ(0)〉 =
N∑

k=1
ck(0)|Ek〉, %̂(0) = |Ψ(0)〉〈Ψ(0)|

%̂(t) =
∑

k
pk(t)|Ek〉〈Ek |+

∑
j 6=k

%jk(t)|Ej〉〈Ek |

Discrete stochastic dynamics %̂(t)→ %̂(t + tPl):

%̂(t + tPl) = (1− λ)%̂(t) + λ|En〉〈En|,

with probability pn(t) = 〈En|%̂(t)|En〉.
⇒
pk(t + tPl) = (1− λ)pk(t) + λδkn︸ ︷︷ ︸

like in gambler’s ruin
, %jk(t + tPl) = (1− λ)%jk(t)︸ ︷︷ ︸

damping (decoherence)∗

pk(∞) = δkn with probability pn(0)

%jk(∞) = 0 (j 6= k)



Diffusive Limit
During ∆t = tPl:
discrete change ∆pk ≡ ∆pk|n = −λ(pk − δkn) with prob. pn.
Let’s calculate 1st & 2nd moments of ∆pk|n:

E∆pk|n =
∑

n pn∆pk|n = 0
E∆pj|n∆pk|n =

∑
n pn∆pj|n∆pk|n = λ2(pjδjk − pjpk)

On scales t >> tPl:
inhomogeneous diffusion, with diff. matrix t−1

Pl λ
2(pjδjk − pjpk).

1. Ito formalism, with {ξk} white noises:
dpk = λ(pk

∑
n

dξn − dξk)

Edξk = 0, Edξjdξk = t−1
Pl pjδjkdt

2. Fokker-Planck formalism, for density %(p1, p2, . . . ; t) :
%(p1, p2, . . . ; 0) =

∏N
k=1 δ(pk − pk(0))

∂%

∂t =
λ2

tPl

∑
jk

∂2

∂pj∂pk
(pkδjk − pjpk)%



Two-State Example
Single variable q = p1 − p2, q ∈ [−1,+1]:

p1 = (1 + q)/2, p2 = (1− q)/2

Take initial density %(q, 0) = δ(q − p1(0) + p2(0)).
Fokker-Planck eq. reduces to

∂%(q, t)

∂t =
λ2

tPl

∂2

∂q2 (1− q2)%(q, t).

⇒
%(q,∞) = p1(0)δ(q − 1) + p2(0)δ(q + 1)

That’s collapse + Born rule.

Pearle-Gisin version:

∂%(q, t)

∂t =
λ2

2tPl

∂2

∂q2 (1− q2)2%(q, t)



Diffusive Limit for Full Density Matrix



Decoherence time, collapse time[
p1 %12
%21 p2

]
decoherence−−−−−−→

τD

[
p1 0
0 p2

]
collapse−−−−→

τC



[
1 0
0 0

]
[

0 0
0 1

]
Decoherence is mandatory for collapse.
Decoherence process is falsifiable, collapse process is not. (D)
in known spontaneous collapse theories

Decoherence can be much faster than collapse (τD � τC ):
if λ� 1 [

τD =
1
λ

tPl,
]

τC =
1
λ2 tPl (λ < 1).

With Gao’s choice λ = ∆E/EPl (valid for ∆E ≤ EPl):

τC =
~EPl

(∆E )2 , ∆E = energy spread.

Coincides with collapse time in old energy-driven models
(Percival, Hughston, Milburn).



Physics of Collapse
Relevance of

τC =
~EPl

(∆E )2

∆E = 1eV (atomic superposition) τC = 1013s (irrelevant)
∆E = 1GeV (high energy superposition) τC = 10−5s (irrelevant)
∆E = 1J (macroscopic superposition) τC = 10−25s (killing)

Gao: ∆E is not defined as the uncertainty of the total energy
of all sub-systems. [...] each sub-system has its own energy
uncertainty that drives its collapse
... provided system splits into non-interacting subsysems.
If they interact, collapse’s energy-conservation will be gone.
CSL and D-Penrose theories prescribe collapses to local mass
densities, hence they can not preserve energy.



Summary
I showed that Gao’s model:

I is a simple gambler’s ruin process
I has a diffusive limit, similar to (but different from) the

Pearle-Gisin collapse
I yields collapse time formally equal to old energy

driven/conserving models
I and improves them by the statement of subsystem-wise

collapses
In the future, it

I can be further discussed in the zoo of spontaneous
collapse theories

I might lead to similar kind of testable predictions
I will face similar difficulties
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