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NON-MARKOVIAN CONTINUOUS QUANTUM MEASUREMENT
OF RETARDED OVSERVABLES
Lajos Diési, Budapest

Contrary to longstanding doubts, diffusive non-Markovian quantum tra-
jectories are single system trajectories and correspond to the true con-
tinuous measurement of a certain retarded potential.
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Continuous Quantum Measurement

Markovian continuous measurement of &;: stochastic Schrodinger equa-
tion (SSE) of the collapsing state vector depending on the history of the
read-outs:

(ed
where x = {x,; T € [0,1]}.

Formal extension for the non-Markovian (even relativistic) case (1990).
Only ¥ [z] and poo[x] were given. The concept of continuous read-out
was missing.

Smart non-Markovian quantum trajectories (1996) and their non-
Markovian SSE (1997).

Doubts: non-Markov quantum trajectory is mathematical fiction (2002).

The present work comes to the positive conclusion: the non-Markovian
trajectories are measurable single system trajectories. The equations
concerning the measurement of #; must be reparametrized in terms of
a given 2Z; which is a retarded function of ;. Then we are continuously
reading out 2Z; instead of ;.



Stochastic Unravelling

Suppose openness is caused by continuous measurement:
Pt = Mypo

where p; is density matrix, M; is completely positive map (superopera-
tor). Simplest non-Markovian:

1 t t
M, =T exp <—§/ dT/ doZ,ac(T — U):ﬁa,A>
0 0

where a (7 — o) is real positive kernel. Superoperator notation: dcT,AO =
[Z-, O] for any Oj; 7 is time-ordering for all Heisenberg (super)operators.

The decohered quantity is &; but the measured quantity may be different,
say Zi.

Meausured state: either ¢;[x], or, e.g.: 1;[z] where x or z are two differ-
ent read-outs of the detectors. They must equally unravel the ensemble
evolution:

pr = Muplz|y][z] = Mypy[z]p][z] .

It was hard to find a non-Markovian unravelling. Yet, in 1990 i got some
Y¢[z] and in 1996 Strunz got some ¢%[z], in 1997 we found a linear SSE
for the latter:

dW,[z t 0, [
t12] = 2% Wy[z] — 234 /a(t —T) d ]dT ,
dt 0 Zr
z; is a real random variable for 7 € [0,t]. True state is obtained via
normalization: [z] = \Ilt[z]/||\Ilt[z]|| . Probability distribution of z:

plz] = Gpglz] 1%[2]]1?

é[o,t] [z] is a Gaussian distribution defined through a(7 — o). We showed
(1997):

t
Mz, = 2/ a(t — o){&,)do ,
0
(Z5)¢ is &,’s quantum expectation value at time t in state [z].

The SSE “measures” the retarded “potential” of &; rather than &, itself.



Non-Markovian Measurement Device

Example: single vonN detector of initial density matrix Dg(x;x’):
Do(fl?; iB)ﬁo E— Do(-’L' - Z%T,L; T — 537-,R)/50 .

Superoperator notation: :%T,LO — #,0 and izT,RO = O:%T. After read-out
of the pointer x: total state goes into the system’s conditional state,
depending on the read-out:

. 1 . . .
p(r) = ——Do(x — &+ 1; © — &r,r)Po ,
p(x)

p(iB) = tI’Do($ - ','%T,L; T — i7',R)ﬁ0 .

Choose discrete time 7 = ne, n = 0,+1,+2,.... Install an infinite
sequence of vonN detectors, labelled by 7 = ne. Pointer coordinates of
the detectors: x,.

The detector of label T = ne measures the Heisenberg operator & of the
system via the above mechanism. We switch on the detectors for 7 > 0.

Assume initially correlated detectors, of intitial wave function:
o] = VN exp (—62 ZmTa(T — 0):13,,)
T,0

In continuous (or weak measurement) limit € — 0:

dolx] = VG[x] .

Introduce the characteristic function 6j4 of the period [0,t]. The total
density matrix reads:

pi[x; x] = TGz — Op g ] Mypo ,

Superoperator notation #.0 = i{z,0}. This form guarantees the un-
ravelling of the open system dynamics p; = Mp;.



Continuous Read-Out

It is crucial to realize that the true time-evolution of the system’s condi-
tional state depends on our chosen schedule to reading out the pointers
x,-. In fact, we can read out any x, at any time since all detectors are
alaways available. Of course, we better read out the value x. at a time
which is later than the label T of the detector because the detector will
only have coupled to the system at time 7. Hence, a natural schedule
is that we read out x, immediately, i.e., at time 7. As a result, until
any given time t > 0 we would read out all pointers x.. for the period
[0, t] and no others. To calculate the conditional post-measurement state
pt[x] of the system at time t, we trace (integrate) the total density matrix
plx; x| over all x, with T & [0, t]:

ple) = —— [ plwsa) [] de. .

pi[2] [0,

This post-measurement density matrix p.[x]| of the system depends on
the read-outs x, of 7 from [0, t] only:

1

k]
Go,[x] is the marginal distribution of G|z].

pilx] = TGyl — &) Mipo ,

Instead of reading out the coordinates {x,; T € [0,%]}, read out

Zr = 2/ a(r — o)z,do

—o0

the postmeasurement density matrix becomes:

pi[z] = T Goglz — 200 g Mupo 5

pi[z]

where é[g’t] [2] is the marginal distribution of G[z]. This is our ultimate

equation for the non-Markovian continuous measurement of the observ-
able

¢
Z = 2/ a(t — o)z,do ,
0

which is a sort of retarded potential generated by the Heisenberg variable
Tr.



Stochastic Schrodinger Equation

Let us find the postmeasurement conditional state

Té[o,t] [z — 200 4] M po

pe[z] = iz

in the form:

pilz] = é[O,t] [z]\IJt[z]\III (2] ,

pt[z]

where W,[z] is the unnormalized conditional state vector of the system.
Trace over both sides, norm condition yields:

pilz] = Gogl2] [12:[2]]%
just like for the SSE. Comparing our eqgs., they reduce to:

1

U, [2]W][2] = Gonldl

Té[O,t] [Z — 2a0[0,t]§zc]Mt¢0’¢g .
The r.h.s. factorizes and we can write equivalently:

' t '
W,[z] = T exp (/0 z: o dT — /OdT /Odaz?;Ta(T — 0):&0> Yo .

This W;[z] is the solution of the SSE.



Conclusion

We proved for the first time that both the formalism of non-Markovian
measurement theory (1990) and the non-Markovian SSE (1997) are
equivalent with using of correlated von Neumann detectors in the weak-
measurement continuous limit, i.e., with the continuous read-out of the
values of a given retarded potential of a Heisenberg variable on a singe
quantum system.

Hint of efficient simulation?

Immediate generalizations: complex a(rT — o), indirect measurement on
the reservoir.
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Appendix.— Assume a random time-dependent real variable x, defined
for all time 7 and consider the following Gaussian distribution functional
of {x ;7 € (—o0,00)}:

G[z] = N exp (—2 /_ET_/_Eaa;Ta(T — 0'):c0> . (1)

where a(T — o) is a real positive definite kernel. We define its inverse
through:

/00 al(t—s)a(s—o)ds =6(T —o0) . (2)

— 0o

We also introduce the normalized functional Fourier transform of G|x]:

Glz] = N exp (-% /_ ET /_ Eazfa—l(f _ U)za> . (3)

Both distributions are normalized: [ G[z]Il,dz, = | Glz]II.dz, = 1. In-
stead of their functional distributions G[z], G[z], the statistics of x, 2z,
can equivalently be characterized by their vanishing means Mx, =
Mz, = 0 and correlation functions, respectively:

Mz, z, = ta (T — o), Mz,z, = a(T — 0) . (4)

We need certain marginal distributions as well, e.g.:
G~![O,t][z] = /é[z] H dz. , (5)

and similarly for G 4[x]. These marginal distributions are still Gaussian,
e.g.:
_ _ 1 (e’9) [e’) .
Gro[z] = N exp —5/_ d’T/_ dozray (7,0)z0) (6)
where the new kernel is defined by:
t
/ a[?),lt](T, s)a(s —o)ds=6(r—o0), T,0€]0,t]. (7)
0
In most cases, a[?),lt] (7,0) is a hard nut to calculate explicitly.
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