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NON-MARKOVIAN CONTINUOUS QUANTUM MEASUREMENT
OF RETARDED OVSERVABLES

Lajos Diósi, Budapest

Contrary to longstanding doubts, diffusive non-Markovian quantum tra-
jectories are single system trajectories and correspond to the true con-
tinuous measurement of a certain retarded potential.
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Continuous Quantum Measurement

Markovian continuous measurement of x̂t: stochastic Schrödinger equa-
tion (SSE) of the collapsing state vector depending on the history of the
read-outs:

ψt[x]

where x = {xτ ; τ ∈ [0, t]}.

Formal extension for the non-Markovian (even relativistic) case (1990).
Only ψ∞[x] and p∞[x] were given. The concept of continuous read-out
was missing.

Smart non-Markovian quantum trajectories (1996) and their non-
Markovian SSE (1997).

Doubts: non-Markov quantum trajectory is mathematical fiction (2002).

The present work comes to the positive conclusion: the non-Markovian
trajectories are measurable single system trajectories. The equations
concerning the measurement of x̂t must be reparametrized in terms of
a given ẑt which is a retarded function of x̂t. Then we are continuously
reading out ẑt instead of x̂t.
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Stochastic Unravelling

Suppose openness is caused by continuous measurement:

ρ̂t = Mtρ̂0

where ρ̂t is density matrix, Mt is completely positive map (superopera-
tor). Simplest non-Markovian:

Mt = T exp

(
−

1

2

∫ t

0
dτ

∫ t

0
dσx̂τ,∆α(τ − σ)x̂σ,∆

)
where α(τ −σ) is real positive kernel. Superoperator notation: x̂τ,∆Ô =
[x̂τ , Ô] for any Ô; T is time-ordering for all Heisenberg (super)operators.

The decohered quantity is x̂t but the measured quantity may be different,
say ẑt.

Meausured state: either ψt[x], or, e.g.: ψt[z] where x or z are two differ-
ent read-outs of the detectors. They must equally unravel the ensemble
evolution:

ρ̂t = Mψt[x]ψ†
t [x] = Mψt[z]ψ

†
t [z] .

It was hard to find a non-Markovian unravelling. Yet, in 1990 i got some
ψt[x] and in 1996 Strunz got some ψt[z], in 1997 we found a linear SSE
for the latter:

dΨt[z]

dt
= ztx̂tΨt[z] − 2x̂t

∫ t

0
α(t− τ )

δΨt[z]

δzτ
dτ ,

zτ is a real random variable for τ ∈ [0, t]. True state is obtained via
normalization: ψt[z] = Ψt[z]/‖Ψt[z]‖ . Probability distribution of z:

pt[z] = G̃[0,t][z] ‖Ψt[z]‖2 ,

G̃[0,t][z] is a Gaussian distribution defined through α(τ −σ). We showed
(1997):

Mzt = 2

∫ t

0
α(t− σ)〈x̂σ〉tdσ ,

〈x̂σ〉t is x̂σ’s quantum expectation value at time t in state ψt[z].

The SSE “measures” the retarded “potential” of x̂t rather than x̂t itself.
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Non-Markovian Measurement Device

Example: single vonN detector of initial density matrix D0(x;x′):

D0(x;x)ρ̂0 −→ D0(x− x̂τ,L;x− x̂τ,R)ρ̂0 .

Superoperator notation: x̂τ,LÔ = x̂τ Ô and x̂τ,RÔ = Ôx̂τ . After read-out
of the pointer x: total state goes into the system’s conditional state,
depending on the read-out:

ρ̂(x) =
1

p(x)
D0(x− x̂τ,L; x− x̂τ,R)ρ̂0 ,

p(x) = trD0(x− x̂τ,L; x− x̂τ,R)ρ̂0 .

Choose discrete time τ = nε, n = 0,±1,±2, . . . . Install an infinite
sequence of vonN detectors, labelled by τ = nε. Pointer coordinates of
the detectors: xτ .

The detector of label τ = nε measures the Heisenberg operator x̂τ of the
system via the above mechanism. We switch on the detectors for τ ≥ 0.

Assume initially correlated detectors, of intitial wave function:

φ0[x] =
√

N exp

(
−ε2

∑
τ,σ

xτα(τ − σ)xσ

)
.

In continuous (or weak measurement) limit ε → 0:

φ0[x] =
√
G[x] .

Introduce the characteristic function θ[0,t] of the period [0, t]. The total
density matrix reads:

ρ̂t[x;x] = T G[x− θ[0,t]x̂c]Mtρ̂0 ,

Superoperator notation x̂cÔ = 1
2
{x̂, Ô}. This form guarantees the un-

ravelling of the open system dynamics ρ̂t = Mtρ̂t.
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Continuous Read-Out

It is crucial to realize that the true time-evolution of the system’s condi-
tional state depends on our chosen schedule to reading out the pointers
xτ . In fact, we can read out any xτ at any time since all detectors are
alaways available. Of course, we better read out the value xτ at a time
which is later than the label τ of the detector because the detector will
only have coupled to the system at time τ . Hence, a natural schedule
is that we read out xτ immediately, i.e., at time τ . As a result, until
any given time t > 0 we would read out all pointers xτ for the period
[0, t] and no others. To calculate the conditional post-measurement state
ρ̂t[x] of the system at time t, we trace (integrate) the total density matrix
ρ̂[x;x] over all xτ with τ /∈ [0, t]:

ρ̂t[x] =
1

pt[x]

∫
ρ̂t[x;x]

∏
τ /∈[0,t]

dxτ .

This post-measurement density matrix ρ̂t[x] of the system depends on
the read-outs xτ of τ from [0, t] only:

ρ̂t[x] =
1

pt[x]
T G[0,t][x− x̂c]Mtρ̂0 ,

G[0,t][x] is the marginal distribution of G[x].

Instead of reading out the coordinates {xτ ; τ ∈ [0, t]}, read out

zτ = 2

∫ ∞

−∞
α(τ − σ)xσdσ ,

the postmeasurement density matrix becomes:

ρ̂t[z] =
1

pt[z]
T G̃[0,t][z − 2αθ[0,t]x̂c]Mtρ̂0 ,

where G̃[0,t][z] is the marginal distribution of G̃[z]. This is our ultimate
equation for the non-Markovian continuous measurement of the observ-
able

ẑt = 2

∫ t

0
α(t− σ)x̂σdσ ,

which is a sort of retarded potential generated by the Heisenberg variable
x̂τ .
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Stochastic Schrödinger Equation

Let us find the postmeasurement conditional state

ρ̂t[z] =
1

pt[z]
T G̃[0,t][z − 2αθ[0,t]x̂c]Mtρ̂0

in the form:

ρ̂t[z] =
1

pt[z]
G̃[0,t][z]Ψt[z]Ψ

†
t [z] ,

where Ψt[z] is the unnormalized conditional state vector of the system.
Trace over both sides, norm condition yields:

pt[z] = G̃[0,t][z] ‖Ψt[z]‖2 ,

just like for the SSE. Comparing our eqs., they reduce to:

Ψt[z]Ψ
†
t [z] =

1

G̃[0,t][z]
T G̃[0,t][z − 2αθ[0,t]x̂c]Mtψ0ψ

†
0 .

The r.h.s. factorizes and we can write equivalently:

Ψt[z] = T exp

(∫ t

0
zτ x̂τdτ −

∫ t

0
dτ

∫ t

0
dσx̂τα(τ − σ)x̂σ

)
ψ0 .

This Ψt[z] is the solution of the SSE.
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Conclusion

We proved for the first time that both the formalism of non-Markovian
measurement theory (1990) and the non-Markovian SSE (1997) are
equivalent with using of correlated von Neumann detectors in the weak-
measurement continuous limit, i.e., with the continuous read-out of the
values of a given retarded potential of a Heisenberg variable on a singe
quantum system.

Hint of efficient simulation?

Immediate generalizations: complex α(τ − σ), indirect measurement on
the reservoir.
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Appendix.– Assume a random time-dependent real variable xτ defined
for all time τ and consider the following Gaussian distribution functional
of {xτ ; τ ∈ (−∞,∞)}:

G[x] = N exp

(
−2

∫ ∞

−∞
dτ

∫ ∞

−∞
dσxτα(τ − σ)xσ

)
, (1)

where α(τ − σ) is a real positive definite kernel. We define its inverse
through: ∫ ∞

−∞
α−1(τ − s)α(s− σ)ds = δ(τ − σ) . (2)

We also introduce the normalized functional Fourier transform of G[x]:

G̃[z] = Ñ exp

(
−

1

2

∫ ∞

−∞
dτ

∫ ∞

−∞
dσzτα

−1(τ − σ)zσ

)
. (3)

Both distributions are normalized:
∫
G[x]Πτdxτ =

∫
G̃[z]Πτdzτ = 1. In-

stead of their functional distributions G[x], G̃[z], the statistics of xτ , zτ
can equivalently be characterized by their vanishing means Mxτ =
Mzτ = 0 and correlation functions, respectively:

Mxτxσ = 1
4
α−1(τ − σ) , Mzτzσ = α(τ − σ) . (4)

We need certain marginal distributions as well, e.g.:

G̃[0,t][z] =

∫
G̃[z]

∏
τ /∈[0,t]

dzτ , (5)

and similarly for G[0,t][x]. These marginal distributions are still Gaussian,
e.g.:

G̃[0,t][z] = Ñ[0,t] exp

(
−

1

2

∫ ∞

−∞
dτ

∫ ∞

−∞
dσzτα

−1
[0,t](τ, σ)zσ

)
, (6)

where the new kernel is defined by:∫ t

0
α−1

[0,t](τ, s)α(s− σ)ds = δ(τ − σ) , τ, σ ∈ [0, t] . (7)

In most cases, α−1
[0,t](τ, σ) is a hard nut to calculate explicitly.
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[2] L. Diósi, Phys. Lett. A 129, 419 (1988); 132, 233 (1988); V. P. Belavkin, in: Modelling and Control of

Systems, ed. A. Blaquière, Lecture Notes in Control and Information Sciences, 121 (Springer, Berlin,
1988); Phys. Lett. A 140, 355 (1989).
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[8] T. Yu, L. Diósi, N.Gisin, and W.T.Strunz, Phys. Rev. A 60, 91 (1999); Phys. Lett. A 265, (2000); P.Gaspard

and M. Nagaoka, J. Chem. Phys. 13, 5676 (1999); A.A. Budini, Phys. Rev. A 63, 012106 (2000); J.D.
Cresser, Las.Phys. 10, 337 (2000); I. de Vega, D. Alonso, P. Gaspard and W.T. Strunz, J. Chem. Phys.
122, 124106 (2005).

[9] J. Gambetta and H.M. Wiseman, Phys. Rev. A 66, 012108 (2002); 68, 062104 (2003).
[10] A. Bassi and G.C. Ghirardi, Phys. Rev. A 65, 042114 (2002).
[11] S. L. Adler and A. Bassi, LA E-print arXiv:0708.3624v1 [quant-ph].
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