NON-MARKOVIAN CONTINUOUS QUANTUM MEASUREMENT OF RETARDED OVSERVABLES Lajos Diósi, Budapest

Contrary to longstanding doubts, diffusive non-Markovian quantum trajectories are single system trajectories and correspond to the true continuous measurement of a certain retarded potential.

CONTENTS:

- Continuous Quantum Measurement
- Stochastic Unravelling
- Non-Markovian Measurement Device
- Continuous Read-Out
- Stochastic Schrödinger Eq.
- Conclusions

PEOPLE:

- Gisin 1984, Belavkin, D. (1988)
- Strunz 1996
- Gambetta+Wiseman (2002-3)
- Chou+Su+Hao+Yu (1985)

Continuous Quantum Measurement

Markovian continuous measurement of \hat{x}_t : stochastic Schrödinger equation (SSE) of the collapsing state vector depending on the history of the read-outs:

$$\psi_t[x]$$

where $x = \{x_{\tau}; \tau \in [0, t]\}.$

Formal extension for the non-Markovian (even relativistic) case (1990). Only $\psi_{\infty}[x]$ and $p_{\infty}[x]$ were given. The concept of continuous read-out was missing.

Smart non-Markovian quantum trajectories (1996) and their non-Markovian SSE (1997).

Doubts: non-Markov quantum trajectory is mathematical fiction (2002).

The present work comes to the positive conclusion: the non-Markovian trajectories are measurable single system trajectories. The equations concerning the measurement of \hat{x}_t must be reparametrized in terms of a given \hat{z}_t which is a retarded function of \hat{x}_t . Then we are continuously reading out \hat{z}_t instead of \hat{x}_t .

Suppose openness is caused by continuous measurement:

$$\hat{
ho}_t = \mathcal{M}_t \hat{
ho}_0$$

where $\hat{\rho}_t$ is density matrix, \mathcal{M}_t is completely positive map (superoperator). Simplest non-Markovian:

$$\mathcal{M}_t = \mathcal{T} \exp\left(-rac{1}{2}\int_0^t \mathrm{d} au \int_0^t \mathrm{d}\sigma \hat{x}_{ au,\Delta} lpha(au-\sigma) \hat{x}_{\sigma,\Delta}
ight)$$

where $\alpha(\tau - \sigma)$ is real positive kernel. Superoperator notation: $\hat{x}_{\tau,\Delta}\hat{O} = [\hat{x}_{\tau}, \hat{O}]$ for any \hat{O} ; \mathcal{T} is time-ordering for all *Heisenberg (super)operators*.

The decohered quantity is \hat{x}_t but the measured quantity may be different, say \hat{z}_t .

Meausured state: either $\psi_t[x]$, or, e.g.: $\psi_t[z]$ where x or z are two different read-outs of the detectors. They must equally unravel the ensemble evolution:

$$\hat{
ho}_t \;=\; \, \mathrm{M} \psi_t[x] \psi_t^\dagger[x] \;=\; \, \mathrm{M} \psi_t[z] \psi_t^\dagger[z] \;.$$

It was hard to find a non-Markovian unravelling. Yet, in 1990 i got some $\psi_t[x]$ and in 1996 Strunz got some $\psi_t[z]$, in 1997 we found a linear SSE for the latter:

 z_{τ} is a real random variable for $\tau \in [0, t]$. True state is obtained via normalization: $\psi_t[z] = \Psi_t[z]/||\Psi_t[z]||$. Probability distribution of z:

$$p_t[z] = ilde{G}_{[0,t]}[z] \; \| \Psi_t[z] \|^2 \; ,$$

 $\tilde{G}_{[0,t]}[z]$ is a Gaussian distribution defined through $\alpha(\tau - \sigma)$. We showed (1997):

$$\mathrm{M} z_t = 2 \int_0^t lpha(t-\sigma) \langle \hat{x}_\sigma
angle_t \mathrm{d} \sigma \; ,$$

 $\langle \hat{x}_{\sigma} \rangle_t$ is \hat{x}_{σ} 's quantum expectation value at time t in state $\psi_t[z]$.

The SSE "measures" the retarded "potential" of \hat{x}_t rather than \hat{x}_t itself.

Non-Markovian Measurement Device

Example: single vonN detector of initial density matrix $D_0(x;x')$:

 $D_0(x;x)\hat
ho_0 \longrightarrow D_0(x-\hat x_{ au,L};x-\hat x_{ au,R})\hat
ho_0\;.$

Superoperator notation: $\hat{x}_{\tau,L}\hat{O} = \hat{x}_{\tau}\hat{O}$ and $\hat{x}_{\tau,R}\hat{O} = \hat{O}\hat{x}_{\tau}$. After *read-out* of the pointer x: total state goes into the system's conditional state, depending on the read-out:

$$egin{aligned} \hat{
ho}(x) &= rac{1}{p(x)} D_0(x - \hat{x}_{ au,L}; \; x - \hat{x}_{ au,R}) \hat{
ho}_0 \; , \ p(x) &= \mathrm{tr} D_0(x - \hat{x}_{ au,L}; \; x - \hat{x}_{ au,R}) \hat{
ho}_0 \; . \end{aligned}$$

Choose discrete time $\tau = n\epsilon$, $n = 0, \pm 1, \pm 2, \ldots$ Install an infinite sequence of vonN detectors, labelled by $\tau = n\epsilon$. Pointer coordinates of the detectors: x_{τ} .

The detector of label $\tau = n\epsilon$ measures the Heisenberg operator \hat{x}_{τ} of the system via the above mechanism. We switch on the detectors for $\tau \geq 0$.

Assume *initially correlated detectors*, of initial wave function:

$$\phi_0[x] = \sqrt{\mathcal{N}} \exp\left(-\epsilon^2\sum_{ au,\sigma} x_ au lpha(au-\sigma) x_\sigma
ight) \; .$$

In continuous (or weak measurement) limit $\epsilon \to 0$:

$$\phi_0[x]=\sqrt{G[x]}$$
 .

Introduce the characteristic function $\theta_{[0,t]}$ of the period [0,t]. The total density matrix reads:

$$\hat{
ho}_t[x;x] = \mathcal{T}G[x- heta_{[0,t]}\hat{x}_c]\mathcal{M}_t\hat{
ho}_0\;,$$

Superoperator notation $\hat{x}_c \hat{O} = \frac{1}{2} \{ \hat{x}, \hat{O} \}$. This form guarantees the unravelling of the open system dynamics $\hat{\rho}_t = \mathcal{M}_t \hat{\rho}_t$.

Continuous Read-Out

It is crucial to realize that the true time-evolution of the system's conditional state depends on our chosen schedule to reading out the pointers x_{τ} . In fact, we can read out any x_{τ} at any time since all detectors are alaways available. Of course, we better read out the value x_{τ} at a time which is later than the label τ of the detector because the detector will only have coupled to the system at time τ . Hence, a natural schedule is that we read out x_{τ} immediately, i.e., at time τ . As a result, until any given time t > 0 we would read out all pointers x_{τ} for the period [0, t] and no others. To calculate the conditional post-measurement state $\hat{\rho}_t[x]$ of the system at time t, we trace (integrate) the total density matrix $\hat{\rho}[x; x]$ over all x_{τ} with $\tau \notin [0, t]$:

$$\hat{
ho}_t[x] = rac{1}{p_t[x]}\int \hat{
ho}_t[x;x] \prod_{ au
otin[0,t]} \mathrm{d} x_ au \; .$$

This post-measurement density matrix $\hat{\rho}_t[x]$ of the system depends on the read-outs x_{τ} of τ from [0, t] only:

$$\hat{
ho}_t[x] = rac{1}{p_t[x]} \mathcal{T} G_{[0,t]}[x - \hat{x}_c] \mathcal{M}_t \hat{
ho}_0 \;,$$

 $G_{[0,t]}[x]$ is the marginal distribution of G[x].

Instead of reading out the coordinates $\{x_{\tau}; \tau \in [0, t]\}$, read out

$$z_ au = 2 \int_{-\infty}^\infty lpha (au - \sigma) x_\sigma \mathrm{d} \sigma \; ,$$

the postmeasurement density matrix becomes:

$$\hat{
ho}_t[z] = rac{1}{p_t[z]} \mathcal{T} ilde{G}_{[0,t]}[z - 2lpha heta_{[0,t]} \hat{x}_c] \mathcal{M}_t \hat{
ho}_0 \;,$$

where $\tilde{G}_{[0,t]}[z]$ is the marginal distribution of $\tilde{G}[z]$. This is our ultimate equation for the non-Markovian continuous measurement of the observable

$$\hat{z}_t = 2 \int_0^t lpha (t-\sigma) \hat{x}_\sigma \mathrm{d}\sigma \; ,$$

which is a sort of *retarded potential* generated by the Heisenberg variable \hat{x}_{τ} .

Stochastic Schrödinger Equation

Let us find the postmeasurement conditional state

$$\hat{
ho}_t[z] = rac{1}{p_t[z]} \mathcal{T} ilde{G}_{[0,t]}[z-2lpha heta_{[0,t]}\hat{x}_c]\mathcal{M}_t\hat{
ho}_0$$

in the form:

$$\hat{
ho}_t[z] = rac{1}{p_t[z]} ilde{G}_{[0,t]}[z] \Psi_t[z] \Psi_t^\dagger[z] \; ,$$

where $\Psi_t[z]$ is the unnormalized conditional state vector of the system. Trace over both sides, norm condition yields:

$$p_t[z] = ilde{G}_{[0,t]}[z] \; \| \Psi_t[z] \|^2 \; ,$$

just like for the SSE. Comparing our eqs., they reduce to:

$$\Psi_t[z] \Psi_t^\dagger[z] = rac{1}{ ilde{G}_{[0,t]}[z]} \mathcal{T} ilde{G}_{[0,t]}[z-2lpha heta_{[0,t]} \hat{x}_c] \mathcal{M}_t \psi_0 \psi_0^\dagger \; .$$

The r.h.s. factorizes and we can write equivalently:

This $\Psi_t[z]$ is the solution of the SSE.

Conclusion

We proved for the first time that both the formalism of non-Markovian measurement theory (1990) and the non-Markovian SSE (1997) are equivalent with using of correlated von Neumann detectors in the weak-measurement continuous limit, i.e., with the continuous read-out of the values of a given retarded potential of a Heisenberg variable on a singe quantum system.

Hint of efficient simulation?

Immediate generalizations: complex $\alpha(\tau - \sigma)$, indirect measurement on the reservoir.

Appendix.- Assume a random time-dependent real variable x_{τ} defined for all time τ and consider the following Gaussian distribution functional of $\{x_{\tau}; \tau \in (-\infty, \infty)\}$:

$$G[x] = \mathcal{N} \exp\left(-2 \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\sigma x_{\tau} \alpha(\tau - \sigma) x_{\sigma}\right) , \qquad (1)$$

where $\alpha(\tau - \sigma)$ is a real positive definite kernel. We define its inverse through:

$$\int_{-\infty}^{\infty} \alpha^{-1}(\tau - s)\alpha(s - \sigma) ds = \delta(\tau - \sigma) .$$
 (2)

We also introduce the normalized functional Fourier transform of G[x]:

$$\tilde{G}[z] = \tilde{\mathcal{N}} \exp\left(-\frac{1}{2} \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\sigma z_{\tau} \alpha^{-1} (\tau - \sigma) z_{\sigma}\right) .$$
(3)

Both distributions are normalized: $\int G[x]\Pi_{\tau} dx_{\tau} = \int \tilde{G}[z]\Pi_{\tau} dz_{\tau} = 1$. Instead of their functional distributions $G[x], \tilde{G}[z]$, the statistics of x_{τ}, z_{τ} can equivalently be characterized by their vanishing means $Mx_{\tau} = Mz_{\tau} = 0$ and correlation functions, respectively:

$$Mx_{\tau}x_{\sigma} = \frac{1}{4}\alpha^{-1}(\tau - \sigma) , \qquad Mz_{\tau}z_{\sigma} = \alpha(\tau - \sigma) .$$
(4)

We need certain marginal distributions as well, e.g.:

$$\tilde{G}_{[0,t]}[z] = \int \tilde{G}[z] \prod_{\tau \notin [0,t]} \mathrm{d}z_{\tau} , \qquad (5)$$

and similarly for $G_{[0,t]}[x]$. These marginal distributions are still Gaussian, e.g.:

$$\tilde{G}_{[0,t]}[z] = \tilde{\mathcal{N}}_{[0,t]} \exp\left(-\frac{1}{2} \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\sigma z_{\tau} \alpha_{[0,t]}^{-1}(\tau,\sigma) z_{\sigma}\right) , \qquad (6)$$

where the new kernel is defined by:

$$\int_0^t \alpha_{[0,t]}^{-1}(\tau,s)\alpha(s-\sigma) ds = \delta(\tau-\sigma) , \quad \tau,\sigma \in [0,t] .$$
 (7)

In most cases, $\alpha_{[0,t]}^{-1}(\tau,\sigma)$ is a hard nut to calculate explicitly.

This work was supported by the Hungarian Scientific Research Fund under Grant No 49384.

- [1] N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
- [2] L. Diósi, Phys. Lett. A 129, 419 (1988); 132, 233 (1988); V. P. Belavkin, in: Modelling and Control of Systems, ed. A. Blaquière, Lecture Notes in Control and Information Sciences, 121 (Springer, Berlin, 1988); Phys. Lett. A 140, 355 (1989).
- [3] L. Diósi, Phys.Rev. A 42, 5086 (1990).
- [4] P. Pearle, in: Open Systems and Measurement in Relativistic Quantum Theory, eds.: F. Petruccione and H.P. Breuer (Springer, Berlin, 1999).
- [5] W.T. Strunz, Phys. Lett. A 224, 25 (1996).
- [6] L. Diósi and W.T. Strunz, Phys. Lett. A 235, 569 (1997).
- [7] L. Diósi, N. Gisin, and W.T. Strunz, Phys. Rev. A 58, 1699 (1998); W.T. Strunz, L. Diósi and N. Gisin, Phys. Rev. Lett. 82, 1801 (1999).
- [8] T. Yu, L. Diósi, N.Gisin, and W.T.Strunz, Phys. Rev. A 60, 91 (1999); Phys. Lett. A 265, (2000); P.Gaspard and M. Nagaoka, J. Chem. Phys. 13, 5676 (1999); A.A. Budini, Phys. Rev. A 63, 012106 (2000); J.D. Cresser, Las.Phys. 10, 337 (2000); I. de Vega, D. Alonso, P. Gaspard and W.T. Strunz, J. Chem. Phys. 122, 124106 (2005).
- [9] J. Gambetta and H.M. Wiseman, Phys. Rev. A 66, 012108 (2002); 68, 062104 (2003).
- [10] A. Bassi and G.C. Ghirardi, Phys. Rev. A 65, 042114 (2002).
- [11] S. L. Adler and A. Bassi, LA E-print arXiv:0708.3624v1 [quant-ph].
- [12] H. M. Wiseman and L. Diósi, Chem. Phys. 268, 91 (2001).
- [13] L. Diósi, p133 in: Are there Quantum Jumps? and On the Present Status of Quantum Mechanics eds.: A.Bassi, D.Dürr, T.Weber, and N.Zanghi (AIP Conference Proceedings 844, 2006); LA E-print quantph/0603164.
- [14] L. Diósi, Physica A 199, 517 (1993).
- [15] K. Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).
- [16] L. Diósi: v4, p276 in: Encyclopedia of Mathematical Physics eds.: J.-P. Franoise, G.L. Naber, and S.T. Tsou (Elsevier, Oxford, 2006)