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1 INTRODUCTION

Standard quantum mean value:

〈Â〉i =: 〈i|Â|i〉

interpreted statistically. No other forms had been

known to possess a statistical interpretation. But

the weak value:

Aw =:
〈f |Â|i〉
〈f |i〉

(Aharonov, Albert and Vaidman, 1988) has plau-

sible statistical interpretation! |i〉, |f〉 are prepared

initial and the postselected final states. Statisti-

cal interpretation relies upon weak measurements.

Paradoxical application: weak measurement yields

electron spin 100 instead of ±1/2. Common appli-

cation: time-continuous filtering/control, classical

and quantum.



2 PRINCIPLE OF WEAK MEASUREMENT
State: ρ, ρ̂

Measurable: A, Â

Theoretic mean: 〈A〉ρ, 〈Â〉ρ̂
Measured value: a

Statistical error: σ

Statistics: N

Averaged measurement value: a = (
∑N

1 a.)/N

Estimation of mean: 〈A〉ρ, 〈Â〉ρ̂ = a “± σ√
N

”

The weak measurement limit:

σ, N → ∞ ∆2 =:
σ2

N
= const

In practice: σ must be greater than the whole range
(maxA−minA) [or (max eigenvalÂ−min eigenvalÂ)]
while N must grow like ∼ σ2 then you achieve any
fine resolution ∆� (maxA−minA).

Alternative to Ensemble Statistics: Single-System
Temporal Statistics. Then the N weak measure-
ments concern a single system repeatedly at fre-
quency ν. The weak measurement limit for the
temporal statistics:

σ, ν → ∞ g2 =:
σ2

ν
= const

This is time-continuous filtering/measurement (in
classical theory) or time-continuous collapse/mea-
surement (in quantum theory). It leads to universal
state-evolution equations where 1/g becomes the
strength of time-continuous filtering/measurement/
/collapse.



3 TIME-CONTINUOUS MEASUREMENT

A single time-dependent state ρt is undergoing an

infinite sequence of weak measurements of A em-

ployed at times t = δt, t = 2δt, t = 3δt, . . .. The

rate ν =: 1/δt goes to infinity together with the

mean squared error σ2. Their rate is kept con-

stant: g2 =: σ2

ν = const. Infinite many infitite

small Baysian updates! The resulting theory: time-

continuous measurement.

at = 〈A〉ρt + gwt

dρt

dt
= g−1 (A− 〈A〉ρt) ρtwt

< wtws > = δ(t− s), < wt >= 0.

Special case of the Kushner-Stratonovich (1968)

eq. for time-continuous Bayesian inference condi-

tioned on the continuous measurement of A yielding

the time-dependent outcome value at.

The first eq. is plausible: measurement outcome

equals the theoretical mean plus white noise. Sec-

ond eq. is state evolution: gradual shrinkage of ρt

so that 〈A〉ρt tends to a random asymptotic value.



Sudden vs continuous collapse

Discrete binary distribution ρt(1), ρt(2), and measur-

able: A(1) = +1, A(2) = −1. Alternatives: sudden

collapse or continous collapse.

Sudden (Bayesian) collapse: single ‘strong’ (even

ideal) measurement of A at, say, t = 0.

with prob. ρ0(1) : a = +1, ρ+0(1) = 1, ρ+0(2) = 0

with prob. ρ0(2) : a = −1, ρ+0(1) = 0, ρ+0(2) = 1

Continuous collapse: many-many repeated very-very

weak measurements of A for t ≥ 0.

at = 〈A〉ρt + gwt

dρt

dt
= g−1 (A− 〈A〉ρt) ρtwt

Let q = ρ(1)− ρ(2), then:

at = qt + gwt
dqt

dt
= g−1(1− q2t )wt

For t → ∞: two stationary states with q∞ = ±1

achieved with probabilities ρ0(1) and ρ0(2), respec-

tively. Time-continuous collapse = connatural time-

continuous resolution of the ‘sudden’ ideal measure-

ment.



4 TIME-CONTINUOUS Q-MEASUREMENT

A single time-dependent state ρ̂t is undergoing an

infinite sequence of weak measurements of Â em-

ployed at times t = δt, t = 2δt, t = 3δt, . . .. The

rate ν =: 1/δt goes to infinity together with the

mean squared error σ2. Their rate is kept constant:

g2 =: σ2

ν = const. Infinite many infitite small col-

lapses! The resulting theory: time-continuous mea-

surement (Diósi, Belavkin, 1988).

at = 〈Â〉ρ̂t
+ gwt

dρ̂t

dt
= g−1

(
Â− 〈Â〉ρ̂t

)
ρ̂twt

−
1

8
g−2[Â, [Â, ρ̂t]]

This is quantum version of Kushner-Stratonovich

eq. of classical time-continuous Bayesian inference.

Single remarkable difference: the decoherence term

−[Â, [Â, ρ̂t]]. It tends to diagonalize ρ̂t in the eigen-

basis of Â.



Sudden vs continuous q-collapse

Qubit state ρ̂t, and measurable: Â = σ̂z. Alterna-

tives: sudden collapse or continous collapse.

Sudden (von Neumann-Lüders) collapse: single ‘strong’

(even ideal) measurement of Â at, say, t = 0.

with prob. ρ̂0(1,1) : a = +1, ρ̂+0(1,1) = 1, . . .

with prob. ρ̂0(2,2) : a = −1, ρ̂+0(2,2) = 1, . . .

Continuous collapse: many-many repeated very-very

weak measurements of Â for t ≥ 0.

at = 〈σ̂z〉ρ̂t
+ gwt

dρ̂t

dt
= g−1

(
σ̂z − 〈σ̂z〉ρ̂t

)
ρ̂twt

−
1

8
g−2[σ̂z, [σ̂z, ρ̂t]]

Let q = tr(σ̂zρ̂), then:

at = qt + gwt
dqt

dt
= g−1(1− q2t )wt

For t → ∞: two stationary states with q∞ = ±1

achieved with probabilities ρ̂0(1,1) and ρ̂0(2,2), re-

spectively. Time-continuous collapse = connatu-

ral time-continuous resolution of the ‘sudden’ ideal

measurement.



5 WEAK Q-MEASUREMENT, POSTSELECTION

For the preselected state ρ, we introduce postse-

lection via the real function Π where 0 ≤ Π ≤ 1.

Postselected mean value of A is defined:

Π〈A〉ρ =:
〈ΠA〉ρ
〈Π〉ρ

The 〈Π〉ρ is the rate of postselection. Statisti-

cal interpretation: having obtained the outcome a

from measurement of A, we measure Π, too, in

ideal measurement yielding random outcome π; with

probability π we include the current a into the statis-

tics and we discard it otherwise. Then, on a large

postselected statistics:

Π〈A〉ρ = a “±
σ√
N

”.

Effective postselected state exists: ρΠ =: Πρ
〈Π〉ρ.

Quantum postselection is subtle! The quantum

counterpart of postselected mean, i.e.:

Π̂
〈Â〉ρ̂ =: Re

〈Π̂Â〉ρ̂
〈Π̂〉ρ̂

has no statistical interpretation unless the measure-

ment of Â is weak measurement. Then it goes like

the classical one:

Π̂
〈Â〉ρ̂ = a “±

σ√
N

”



The quantum weak value anomaly

Special case: both the state ρ̂ = |i〉〈i| and the post-

selected operator Π̂ = |f〉〈f | are pure states. Then

Π̂
〈Â〉ρ̂ reduces to:

f〈Â〉i =: Re
〈f |Â|i〉
〈f |i〉

The rate of postselection is |〈f |i〉|2. Choose:

|i〉 =
1√
2

[
eiφ/2

e−iφ/2

]

|f〉 =
1√
2

[
e−iφ/2

eiφ/2

]

Postselection rate: cos2 φ. Let us weakly measure:

Â =

[
0 1
1 0

]
Its weak value:

f〈Â〉i =
1

cosφ
(1)

lies outside the range of the eigenvalues of Â. The

anomaly can be arbitrary large if the rate cos2 φ of

postselection decreases.

Striking consequences follow from this anomaly if

we turn to the statistical interpretation. For con-

creteness, suppose φ = 2π/3 so that f〈Â〉i = 2. On

average, seventy-five percents of the statistics N

will be lost in postselection. The arithmetic mean a



of the postselected outcomes of independent weak

measurements converges stochastically to the weak

value upto the fluctuation ∆:

a = 2 “±∆”

Choose σ = 10 which is already well beyond the

scale of the eigenvalues ±1 of the observable Â.

Then:

∆2 = σ2/N(post) = 400/N

Accordingly, if N = 3600 independent quantum mea-

surements of precision σ = 10 are performed regard-

ing the observable Â then the arithmetic mean a of

the ∼ 900 postselected outcomes a will be 2±0.33.

This exceeds significantly the largest eigenvalue of

the measured observable Â. Quantum postselection

appears to bias the otherwise unbiassed non-ideal

weak measurements.



SUMMARY AND RELATED CONTEXTS

I discussed two particular applications of weak mea-

surement: in postselection and in time-continuous

measurement, There are further real variants of the

weak measurement limit. Like the usual thermo-

dynamic limit in standard statistical physics. Then

weak measurements concern a certain additive mi-

croscopic observable (e.g.: the spin) of each con-

stituent and the weak value represents the corre-

sponding additive macroscopic parameter (e.g.: the

magnetization) in the infinite volume limit. This

example indicates that weak values have natural

interpretation despite the apparent artificial condi-

tions of their definition. It is important that the

weak value, with or without postselection, plays

the physical role similar to that of the common

mean 〈Â〉ρ̂. If, between their pre- and postselec-

tion, the states ρ̂ become weakly coupled with the

state of another quantum system via the observ-

able Â their average influence will be as if Â took

the weak value
Π̂
〈Â〉ρ̂. Weak measurements also

open a specific loophole to circumvent quantum

limitations related to the irreversible disturbances

that quantum measurements cause to the measured

state. Non-commuting observables become simul-

taneously measurable in the weak limit: simultane-

ous weak values of non-commuting observables will

exist.



Literally, weak measurement had been coined in

1988 for quantum measurements with (pre- and)

postselection, and became the tool of a certain

time-symmetric statistical interpretation of quan-

tum states. Foundational applications target the

paradoxical problem of pre- and retrodiction in quan-

tum theory. In a broad sense, however, the very

principle of weak measurement encapsulates the trade

between asymptotically weak precision and asymp-

totically large statistics. Its relevance in different

fields has not yet been fully explored. Growing num-

ber of foundational, theoretical, and experimental

applications are being considered in the literature –

predominantly in the context of quantum physics.


