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1 INTRODUCTION

Standard quantum mean value:
(A); =1 (i|Alr)
interpreted statistically. No other forms had been

known to possess a statistical interpretation. But
the weak value:

(fAl7)

(fl%)

(Aharonov, Albert and Vaidman, 1988) has plau-
sible statistical interpretation! |:),|f) are prepared
initial and the postselected final states. Statisti-
cal interpretation relies upon weak measurements.
Paradoxical application: weak measurement yields
electron spin 100 instead of +£1/2. Common appli-
cation: time-continuous filtering/control, classical
and quantum.
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2 PRINCIPLE OF WEAK MEASUREMENT

State: 0,0
Measurable: A A
Theoretic mean: (A)p, (A)5

Measured value: a
Statistical error: o

Statistics: N

Averaged measurement value: a=(CYa)/N
Estimation of mean: (A),,(4); = a Eovid

The weak measurement limit:

ooN — oo N ::U—:const
N

In practice: ¢ must be greater than the whole range
(maxA—minA) [or (max eigenval A—min eigenvalA)]
while N must grow like ~ o2 then you achieve any
fine resolution A <« (maxA — minA).

Alternative to Ensemble Statistics: Single-System
Temporal Statistics. Then the N weak measure-
ments concern a single system repeatedly at fre-
quency v. The weak measurement limit for the
temporal statistics:
2 .02
o,V — OO g =.7=const

This is time-continuous filtering/measurement (in
classical theory) or time-continuous collapse/mea-
surement (in quantum theory). It leads to universal
state-evolution equations where 1/g becomes the
strength of time-continuous filtering/measurement/
/collapse.



3 TIME-CONTINUOUS MEASUREMENT

A single time-dependent state p; is undergoing an
infinite sequence of weak measurements of A em-
ployed at times t = dt,t = 20t,t = 30t,.... The
rate v =: 1/6t goes to infinity together with the
mean squared error o2. Their rate is kept con-
stant: ¢2 =: "—,/2 = const. Infinite many infitite
small Baysian updates! The resulting theory: time-

continuous measurement.

at — <A>pt+gwt

dpy _
i — g ! (A — (A)p) prwy
< wpws > = O(t —s), < wy >= 0.

Special case of the Kushner-Stratonovich (1968)
eq. for time-continuous Bayesian inference condi-
tioned on the continuous measurement of A yielding
the time-dependent outcome value a;.

The first eq. is plausible: measurement outcome
equals the theoretical mean plus white noise. Sec-
ond eq. is state evolution: gradual shrinkage of pt
so that (A),, tends to a random asymptotic value.



Sudden vs continuous collapse

Discrete binary distribution p:(1), p:(2), and measur-
able: A(1) =41, A(2) = —1. Alternatives: sudden
collapse or continous collapse.

Sudden (Bayesian) collapse: single ‘strong’ (even
ideal) measurement of A at, say, t = 0.

with prob. po(1) : a=+41, p4o(1)=1, p1o(2)=0
with prob. po(2): a= -1, p30(1) =0, p30(2)=1

Continuous collapse: many-many repeated very-very
weak measurements of A for ¢ > 0.

ag = (A)p; + guy

dpt _
E — g 1(A_<A>,0t)ptwt

Let g = p(1) — p(2), then:

ar = q¢+ gwy

dgt 1 2
B LT— 1 —
4 g (1 —qf)wy

For t — oo: two stationary states with g0 = *1
achieved with probabilities pg(1) and pg(2), respec-
tively. Time-continuous collapse = connatural time-
continuous resolution of the ‘sudden’ ideal measure-
ment.



4 TIME-CONTINUOUS Q-MEASUREMENT

A single time-dependent state p; is undergoing an
infinite sequence of weak measurements of A em-
ployed at times t = dt,t = 20t,t = 30t,.... The
rate v =: 1/6t goes to infinity together with the
mean squared error o2. Their rate is kept constant:
g? =: "72 = const. Infinite many infitite small col-
lapses! The resulting theory: time-continuous mea-

surement (Dio6si, Belavkin, 1988).

ag = (A);, + gwy

Aot _ —1(G i) A
ar 9 <A—<A>ﬁt> Ptwt
1 _orvia -

- 59 LA A A

This is quantum version of Kushner-Stratonovich
eq. of classical time-continuous Bayesian inference.
Single remarkable difference: the decoherence term
—[A, [A, p¢]]. It tends to diagonalize p; in the eigen-
basis of A.



Sudden vs continuous g-collapse

Qubit state p¢, and measurable: A = .. Alterna-
tives: sudden collapse or continous collapse.

Sudden (von Neumann-Liders) collapse: single ‘strong’
(even ideal) measurement of A at, say, ¢t = O.

with prob. po(1,1): a=+1, p40(1,1) =1,
with prob. pp(2,2) 1 a= -1, p40(2,2) =1,

Continuous collapse: many-many repeated very-very
weak measurements of A for ¢ > 0.

at = (0z); + gwt

dot 1/ ~ _

dar g (Uz—<ffz>ﬁt> PtWt
1 o

- ég 2[0-27 [O-Za pt]]

Let ¢ = tr(o:p), then:

ar = q+ gw;

dgt 1 2
i 1 _
di g ( o )wt

For t — oo: two stationary states with g = *£1
achieved with probabilities pg(1,1) and pg(2,2), re-
spectively. Time-continuous collapse = connatu-
ral time-continuous resolution of the ‘sudden’ ideal
measurement.



5 WEAK Q-MEASUREMENT, POSTSELECTION

For the preselected state p, we introduce postse-
lection via the real function II where 0 < II < 1.
Postselected mean value of A is defined:

(ITA)p

(I,

The (II), is the rate of postselection. Statisti-
cal interpretation: having obtained the outcome a
from measurement of A, we measure II, too, in
ideal measurement yielding random outcome =; with
probability = we include the current a into the statis-
tics and we discard it otherwise. Then, on a large
postselected statistics:

mA)p =

o
Ay =a "+=——="".
H< >P \/N
Effective postselected state exists: p; =: <g>p .
p

Quantum postselection is subtle! The quantum
counterpart of postselected mean, i.e.:

(ITA);

(IT)5
has no statistical interpretation unless the measure-
ment of A is weak measurement. Then it goes like
the classical one:

ﬁ<A\>//O\ =: Re

ﬁ<;‘>ﬁ =a '+
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The quantum weak value anomaly

Special case: both the state p = |7)(i| and the post-
selected operator II = |f)(f| are pure states. Then
(A}~ reduces to:

ANA
- flAl3
HA) = Re< | _’ )
(f1%)
The rate of postselection is |(f]i)|2. Choose:
, 1 [ et9/2
VAT
V2 e |
1 | 6—i¢/2 )
f) = —= ih/2
V2 e
Postselection rate: cos? ¢. Let us weakly measure:
~ |01
=19 o)
Its weak value:
~ 1
A);, = 1
f< >z oS b (1)

lies outside the range of the eigenvalues of A. The
anomaly can be arbitrary large if the rate c052¢ of
postselection decreases.

Striking consequences follow from this anomaly if
we turn to the statistical interpretation. For con-
creteness, suppose ¢ = 27 /3 so that f(zfl%; = 2. On
average, seventy-five percents of the statistics N
will be lost in postselection. The arithmetic mean a



of the postselected outcomes of independent weak
measurements converges stochastically to the weak
value upto the fluctuation A:

a=2 "tA”

Choose ¢ = 10 which is already well beyond the

scale of the eigenvalues +1 of the observable A.
Then:

A? = 2 /N(post) = 400/N

Accordingly, if N = 3600 independent qguantum mea-
surements of precision ¢ = 10 are performed regard-
iIng the observable A then the arithmetic mean @ of
the ~ 900 postselected outcomes a will be 2+0.33.
T his exceeds significantly the largest eigenvalue of
the measured observable A. Quantum postselection
appears to bias the otherwise unbiassed non-ideal
weak measurements.



SUMMARY AND RELATED CONTEXTS

I discussed two particular applications of weak mea-
surement: in postselection and in time-continuous
measurement, There are further real variants of the
weak measurement limit. Like the usual thermo-
dynamic limit in standard statistical physics. Then
weak measurements concern a certain additive mi-
croscopic observable (e.g.: the spin) of each con-
stituent and the weak value represents the corre-
sponding additive macroscopic parameter (e.g.: the
magnetization) in the infinite volume limit. This
example indicates that weak values have natural
interpretation despite the apparent artificial condi-
tions of their definition. It is important that the
weak value, with or without postselection, plays
the physical role similar to that of the common
mean (fl>ﬁ. If, between their pre- and postselec-
tion, the states p become weakly coupled with the
state of another quantum system via the observ-
able A their average influence will be as if A took
the weak value ﬁ@)ﬁ. Weak measurements also
open a specific loophole to circumvent quantum
limitations related to the irreversible disturbances
that quantum measurements cause to the measured
state. Non-commuting observables become simul-
taneously measurable in the weak limit: simultane-
ous weak values of non-commuting observables will

exist.



Literally, weak measurement had been coined in
1988 for quantum measurements with (pre- and)
postselection, and became the tool of a certain
time-symmetric statistical interpretation of quan-
tum states. Foundational applications target the
paradoxical problem of pre- and retrodiction in quan-
tum theory. In a broad sense, however, the very
principle of weak measurement encapsulates the trade
between asymptotically weak precision and asymp-
totically large statistics. Its relevance in different
fields has not yet been fully explored. Growing num-
ber of foundational, theoretical, and experimental
applications are being considered in the literature —
predominantly in the context of quantum physics.



