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Homogeneous Newtonian gravitational acceleration g in inertial frame is equivalent with zero
gravity in free-falling g-accelerated frame. We present the corresponding canonical transformation
of the free particle dynamics both classical and quantum.

I. FREE PARTICLE

In inertial (IN) frame, with IN canonical variables
(Q,P ), the Hamiltonian of free motion in gravity g reads:

Hg =
P 2

2m
+mgQ . (1)

The solution of the canonical equations is

Ṗ = −mg , Q̇ =
P

m
, (2)

leading to the acceleration Q̈ = −g of the particle.
Let us look at the same motion from the free-falling

(FF) frame, in FF canonical variables (q, p). The Hamil-
tonian must be just

H0 =
p2

2m
. (3)

The solution of the canonical equations is

ṗ = 0 , q̇ =
p

m
, (4)

leading to q̈ = 0. The motion is completely forceless as
it should be due to the equivalence principle.

Suppose that the IN and FF frames coincide instan-
taneously at t = 0. Then the solutions (2,4) are related
by

Q = q − 1

2
gt2 , P = p−mgt , (5)

which is a canonical transformation since it preserves
the classical Poisson bracket (the quantum commutator)
of the canonical variables. The Hamiltonians (1,3) are
canonical transforms of each other but the naive expec-
tation HG(Q,P ) = H0(q, p) is false, the correct transfor-
mation is different.

Let us consider the canonical transformation, e.g., from
the FF to the IN frames:

q, p, H0 −→ Q, P, Hg . (6)

We construct it for the classical and for both the quantum
Heisenberg as well as Schrödinger dynamics.

II. CANONICAL TRANSFORMATION OF
CLASSICAL DYNAMICS

As to the general form, we invoke Landau-Lifschitz [1]:

p =
∂φ

∂q
, Q =

∂φ

∂P
, (7)

Hg = H0 +
∂φ

∂t
, (8)

where φ(q, P, t) is a suitably chosen generator function.
In our case, we have to choose

φ(q, P, t) = mgtq − 1

2
gt2P − 1

3
mg2t3 + qP , (9)

upto an irrelevant constant. This leads to the coordinate
and momentum transformations (5) and to the desired
transformation of the Hamiltonian:

Hg =
p2

2m
− gtP +mgq − 1

2
mg2t2 =

P 2

2m
+mgQ. (10)

Recall that q = Q and p = P at t = 0, the IN and FF
frames coincide instantaneously.

III. CANONICAL TRANSFORMATION OF
HEISENBERG DYNAMICS

Again, we construct the transformation of the canon-
ical operators and Hamiltonians from the FF to the IN
frames. The general form that preserves the structure of
Heisenberg dynamics reads

Q = UqU† , P = UpU† , (11)

Hg = UH0U
† − iU̇U† , (12)

where the unitary U generates the transformation (we set

~ = 1). The role of −iU̇U† is clear: the Heisenberg equa-

tion q̇ = i[H0, q] must be transformed into Q̇ = i[Hg, Q],
and similarly for the momenta.

We can choose U in function of q and p, we write it as
U = exp(iχ) where, as we see below, χ must be linear in q
and p. To get (12) in a form closer to the classical version

(8), we insert the identity U̇ = i[H0, U ] + (∂U/∂t), yield-
ing Hg = H0 − i(∂U/∂t)U†. Using the Baker-Haussdorf
identity for U = exp(iχ) we get the ultimate form

Hg = H0 +
∂χ

∂t
− i

2

[
∂χ

∂t
, χ

]
. (13)

As to χ, we have to choose

χ = mgtq − 1

2
gt2p− 1

12
mg2t3 , (14)



2

upto an irrelevant real constant. The Baker-Haussdorf
identity can factorize U = exp(iχ) into

U = exp
(
−igt2p/2

)
exp(imgtq) exp(img2t3/6) , (15)

useful to confirm that the unitary transform (11) of the
canonical variables leads to (5). As to the transformed
Hamiltonian (13), we insert H0 from (3) and χ from (14),
obtaining the desired result:

Hg =
p2

2m
+mgq − gtp =

P 2

2m
+mgQ . (16)

Observe that q = Q and p = P at t = 0, the IN and FF
frames coincide instantaneously. This also means that
the canonical transformation between the (Heisenberg)
states ρ0 and ρg is trivial:

ρg = ρ0 . (17)

IV. CANONICAL TRANSFORMATION OF
SCHRÖDINGER DYNAMICS

Since at time t the FF Heisenberg operators (q, p) coin-
cide with the IN Heisenberg operators (Q,P ), therefore
from now on we use notation q, p to denote the time-
independent canonical Schrödinger operators in both
frames. The dynamics in either frames is fully described
by the corresponding Hamiltonians:

Hg =
p2

2m
+mgq , H0 =

p2

2m
. (18)

The state vector |ψg〉 in the IN frame satisfies the

Schrödinger equation ˙|ψg〉 = −iHg|ψg〉 and similarly
does |ψ0〉 in the FF frame. Since |ψg〉 and |ψ0〉 coin-
cide at t = 0, it is easy to find their relationship at any
other time t:

|ψg〉 = e−iHgteiH0t|ψ0〉 ≡ U†|ψ0〉 , (19)

where we expect that U coincides with the unitary op-
erator of the canonical transformation of Heisenberg dy-
namics. We read out U from the equation above:

U = e−iH0teiHgt . (20)

This closed equation is the convenient one to get U ,
instead of the implicit method used previously in the
Heisenberg dynamics. The r.h.s. really coincides with
(15). An easy proof is if we write

U̇ = −ie−iH0t(H0 −Hg)eiHgt = i(mgq − gpt)U , (21)

and show the time-derivative of (15) coincides with it.
How do wave functions transform? The wave function

is the projection amplitude of the state vector on the
eigenstate |q〉 of the coordinate operator q. Remember,
q is time-independent and common for both frames in
question. Hence the IN wave function is ψg(q) = 〈q|ψg〉
and the FF wave function is ψ0(q) = 〈q|ψ0〉. Observe
that

〈q|ψg〉 = 〈q|U†|ψ0〉 . (22)

Using (15), we can write U |q〉 as

U |q〉 = exp(imgtq + img2t3/6)|q − gt2/2〉 . (23)

Insert this into (22) and recognize the wave functions on
both sides, yielding the relationship we have been looking
for:

ψ0(q − gt2/2) = exp(imgtq + img2t3/6)ψg(q) . (24)

We can verify this result directly from elementary consid-
erations. At time t, the FF frame is shifted by a distance
gt2/2 and moving at velocity gt with respect to the IN
frame, therefore the corresponding wave functions would
be related simply by ψg(q) = exp(−imgtq)ψ0(q− gt2/2).
The presence of the additional phase is not a surprize.
The acceleration g imposes an additional kinetic en-
ergy mg2t2/2 upon the IN wave function, and during
time t this accumulates an addional phase, leading to
ψg(q) = exp(−imgtq − img2t3/6)ψ0(q − gt2/2). For an
elementary derivation, see reference in [2].

V. LESSONS

Transformation between inertial (IN) and free-falling
(FF) canonical variables (5) is easy to write up—do it
for yourself—, they are what we expect naively. The
systematic canonical transformation, including that of
the Hamiltonian, is less trivial, it has been our main
goal. In classical dynamics, we just quoted the generating
function method from Landau-Lifshitz, without teaching
about the underlying math—you may learn it from there.
In quantum mechanics, the central object is the unitary
operator U of canonical transformation. In Heisenberg
dynamics, we showed an indirect construction of U— a
but involved but instructive. Schrödinger dynamics is
more convenient, the canonical transformation U can be
directly constructed (20)—like it! Finally, one can easily
relate the IN and FF wave functions, the strange relative
phase mg2t3/6 gets clear physical interpretation.
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