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For those who know nothing about the Ito differential calculus (i.e., Langevin’s approach extended
for space-dependent diffusion/drift coefficients), a quick guide is offered from classical bases even
until a Schrödinger-Ito equation.

I. WIENER STOCHASTIC PROCESSES

We call xt a stochastic process if x is a function of time
t and for each t the value xt is a stochastic (i.e. random)
variable. The process xt is Markovian if the probability
distribution of xt+∆t for all positive ∆t depends on the
current value xt and does not depend on the previous
values xs; s < t. All the Ito stuff is about the non-linear
Wiener (diffusion) processes which form an important
sub-class of Markovian processes.

Consider ∆xt = xt+∆t−xt (recall ∆t > 0) and suppose
that

lim
∆t→+0

M[∆xt/∆t] = Vt(xt) ,

lim
∆t→+0

M[(∆xt)2/∆t] = 2Dt(xt) ,

lim
∆t→+0

M[(∆xt)n/∆t] = 0, n > 2 .

where M stands for stochastic mean. Then xt is a gener-
alized Wiener (or diffusion) process which is determined
by two functions: Vt is the drift and Dt is the diffusion.

The standard Wiener process Wt is a stationary
stochastic process of zero drift and ‘unit’ diffusion: Vt = 0
and Dt = 1/2. Its formal time-derivative is the standard
white-noise wt:

dWt/dt = wt, M[wt] = 0, M[wtws] = δ(t− s) .

Technically, there are many equivalent tools to treat
Wiener processes. Our choice may depend on the de-
tails of the task. The traditional tool is Fokker-Planck
partial differential equations, its perfect alternative is Ito
stochastic differential equations. These tools are time-
local. We dont learn about but mention the integral
methods that are based on functional probability dis-
tributions, also called path integrals in physics, whose
perfect equivalent is Ito stochastic integral calculus.

II. CLASSICAL FOKKER-PLANCK VS
ITO-LANGEVIN

Given a stochastic process xt, we introduce the nor-
malized probability density ρt(x) of xt at a given time
t:

ρt(x) = M[δ(x− xt)] .

For its time-derivative, using Taylor expansion and the
definitive eqs. of our Wiener process, we obtain the
Fokker-Planck eq. (FPE):

dρ

dt
= (Dρ)′′ − (V ρ)′ .

If, the other way around, we start from this FPE, we
arrive at the less familiar notion of the Ito stochastic
eqs. through the widely known Langevin eqs. There is a
further pedagogical hint for those of Monte Carlo (MC)
numeric experience: they know that the solutions of the
FPE can be MC-simulated via the random trajectories
xt. If D and V are independent of x, the trajectories are
governed by the linear Langevin eq.

dx

dt
= V +

√
2Dw .

In the general case, the above naive Langevin eq. does
not work (some MC experts and some theoreticians are
aware of it). One must learn the Ito-Langevin eq. which
uses the notion of the Ito differential dx. This latter is
defined as the r.h.s.-differential of the process x, i.e.:

dxt = lim
∆t→infinitesimal

(xt+∆t − xt), ∆t > 0 ,

to the contrary of the Stratonowitch differential which
is the symmetric differential (i.e.: limes of xt+∆t/2 −
xt−∆t/2) or to the common differential which assumes
xt is smooth — that’s not true for Wiener xt. From now
on, all differentials denote Ito differentials. The standard
Wiener process satisfies the rules:

M[dW ] = 0, (dW )2 = dt, (dW )n = 0 for n > 2 .

Observe(!!!): the first identity is valid in mean, all the
others are valid without the mean, i.e., in a stronger
sense. Don’t ask why, just do it! There are favorable
properties like

M[WdW ] = 0 .

The reason of this identity is that the r.h.s.-differential
dWt is independent of Wt.

Each generalized Wiener process satisfies the Ito-
Langevin eq.:

dx = V dt+
√

2DdW .
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This eq. is equivalent with the FPE and can be directly
used for MC-generating the trajectories x: you generate
the random process W while the Ito differentials dW, dx
are approximated by the numeric increments between the
present and the next time-step. Ito favors numerics!

While all generalized Wiener processes are of the above
standard ‘W -driven’ form, it is crucial to know that we
can eliminate the auxiliary noise W from the Ito eq. if
we just write:

M[dx] = V dt, (dx)2 = 2Ddt ,

while higher powers of dx are always zero. Any given
Wiener process x is fully characterized by the above two
Ito eqs. which are equivalent with the previous single
W -driven eq. as well as with the FPE.

Notes and Exercises

Vector valued Wiener process.— If x is a vector then
D becomes nonnegative matrix and V becomes vector.
The process is defined by the Ito eqs.:

M[dxn] = Vndt, dxndxm = 2Dnmdt ,

or, equivalently, through the W -driven eqs.:

dxn = Vndt+
√

2(D1/2)nmdWm ,

where the Einstein convention of index-summation is un-
derstood and Wn are independent standard Wiener pro-
cesses satisfying M[dWn] = 0, dWndWm = δnmdt. Of
course, the FPE is also valid and can be used alterna-
tively to the Ito eqs.:

dρ

dt
= ∂n∂m(Dnmρ) − ∂n(Vnρ) .

Later you must get accostumed to the abstract notation
(i.e., without the vector and matrix indices). You also
need to accept (or inspect for yourself) the same structure
of eqs. with complex valued vectors, where, e.g. x = |ψ〉t.

Transformation of variables.— Suppose f(x) is a
smooth function. Then y = f(x) is also a generalized
Wiener process hence y must satisfy the same form of
Ito eq. as x, with some other diffusion G and drift U :

dy = Udt+
√

2GdW

where, and this is the point:

dy = df = dxf ′+
1
2
(dx)2f ′′ = (V dt+

√
2DdW )f ′+Ddtf ′′

leading to G = D(f ′)2 and U = V f ′+Df ′′. Observe(!!!):
Exact Taylor expansion in Ito differential dx needs ze-
roth, first and second order terms where the latter ones
are always proportional to dt hence never contribute to
diffusion but to drift.

Exercise: Change the variable x of the FPE for y =
f(x) and inspect that the new diffusion and drift are the
above G,U , resp.

Ito-corrected Leibniz rule.— Suppose x and y are any
two (maybe correlated) Wiener processes. Then, by Tay-
lor expansion of xy, we get:

d(xy) = xdy + ydx+ dxdy ,

where the third term on the r.h.s. is the Ito correction
with respect to the common Leibniz rule.

The bonus of Ito.— Prove that

M[xdy] = M[x]M[dy] .

This compensates us for the brake-down of the usual
Leibniz rule. (For Stratonowitch differentials, Leibniz
rule is maintained and M[xdy] needs the ‘Stratonowitch
correction’.)

Your first Schrödinger-Ito eq.— The naive Schrödin-
ger eq. of an electronic spin state |ψ〉t in white-noise
external magnetic field Hz(t) = 2wt would be d|ψ〉t/dt =
−iwtσ̂z|ψ〉t. Realize that you are in trouble to preserve
the norm of the state. Turn to the Ito calculus and start
from:

|ψ〉t+dt = exp [−iσ̂zdWt] |ψ〉t ,

expressing the same dynamics.
Exercise: Using Taylor expansion, derive the Ito-

Schrödinger eq. d|ψ〉t = . . . . Then prove that it preserves
the norm, i.e., calculate the Ito differential d[t〈ψ|ψ〉t] and
show it vanishes identically. Moreover, you should derive
the Ito-von-Neumann eq., too, which is the same as the
Ito-Schrödinger just expressed for the pure state projec-
tor P̂t = |ψ〉t t〈ψ|.


