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Post-Hebbian learning rules in retrospective

Hebb marked a new era by introducing his learning rule and resulted in
the sprouting of many new branches of theories and models on the mecha-
nisms and algorithms of learning and related areas.

Two characteristics of the original postulate [Hebb, 1949] played key role
in the development of post-Hebbian learning rules. First, in spite of being
biologically motivated, it was a verbally described, phenomenological rule,
without having view on detailed physiological mechanisms. Second, the idea
seemed to be extremely convincing, therefore it became a widespread theo-
retical framework and a generally applied formal tool in the field of neural
networks. Based on these two properties, the development of Hebb’s idea
followed two main directions. First, the postulate inspired an intensive and
long lasting search for finding the molecular and cellular basis of the learning
phenomena - which have been assumed to be Hebbian - thus this movement
has been absorbed by neurobiology. Second, because of its computational
usefulness, many variations evolved from the biologically inspired learning
rules, and were applied to huge number of very different problems of artifi-
cial neural networks, without claiming any relation to biological foundation.
Several families of rules sprouted from the original idea will be discussed. Be-
fore doing it, we have to note that what we qualify as Hebbian, post-Hebbian,
and non-Hebbian learning rule is may be subjective and time-varying.

While there is a broad overview: A PHENOMENOLOGICAL OVERVIEW
OF HEBBIAN SYNAPTIC PLASTICITY in this book, here we focus our at-
tention dominantly to computational implementations of the Hebbian rules.
However, in the first part of the article the different roots and new sprouts
related to Hebbs hypothesis, such as psychological motivated conditioning,
neural development and physiological realistic cellular level learning phenom-
ena are discussed, respectively. Than families of formal Hebbian learning
—algorithms are reviewed.

Variations on the Hebbian theme: motivations
Conditioning
It had been known since the end of the nineteenth century that mature
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nerve cells cannot divide. Thus learning could not result from the prolifera-
tion of new neurons, therefore the locus of learning must be the connections
between cells. Such kinds of phenomena are related to the neural basis of
classical conditioning. The first attempt to model conditioning in terms of
synaptic change was due to Hebb.

Hebb’s original intention was to connect the behaviour of whole organ-
isms to neural mechanisms by using concepts represnted by cell assemblies.
Specifically, classical conditioning involves the development of an association
between two otherwise unrelated events over number of trails in which the
events are temporally paired. Typically, the presentation of a neutral stimu-
lus - one that does not naturally provoke behavior - is immediately followed
with the presentation of unconditioned stimulus — an event that does not
require training to produce a response-resulting in the eliciting of an uncon-
ditioned response.

Classical conditioning has been described by the Rescorla and Wagner’s
model [Rescorla and Wagner, 1972]. They gave a formal model of condition-
ing which expresses the capacity a conditional stimulus (CS) has to become
associated with an unconditional stimulus (US) at any given time. The cen-
tral idea of the Wagner-Rescola model is that learning occurs if when events
violate expectations. More specifically, whenever the actual US level received
on a trial differs from the level expected. The Rescola-Wagner rule can be
interpreted that the discrepancy between expected and actual values deter-
mines the measure of reinforcement. So, the rule and its many later modifi-
cations, are over the the “unsupervised learning” paradigm. One drawback
of of the Rescorla - Wagner model that it completely ignores the temporal
sequence of information.

Development

The formation and refinement of neural circuits involve both the establish-
ment of new, and the elimination of already existing connections. Specifically,
the mechanism for leading synaptic elimination is called axonal or synaptic
competition. Neuromuscular junctions and the visual system are the two
best investigated examples, where synaptic competition plays an important
role. A large variety of different generalized Hebbian learning rules applied
for neural development was reviewed by [van Ooyen, 2001].

3



The different mechanisms of competition elaborated in population bio-
logical context have been adopted in neural context.

In consumptive competition, in systems of consumers and resources (e.g.
predators and preys, respectively), each individual consumer tries to avoid
the others and hinders the others solely by consuming resources that they
might otherwise have consumed; in other words, consumers hinder each other
because they share the same resources. In neurobiology, competition is com-
monly associated with this dependence on shared resources.

In interference competition, instead of hindrance through dependence on
shared resources, there is direct interference between individuals. This oc-
curs, for example, if there are direct negative interactions e.g. aggressive or
toxic interactions between individuals. In axonal competition, nerve termi-
nals could seek to destroy each other by releasing proteases.

Long term potentiation - long term depression

Long-term potentiation (LTP) was first discovered in the hippocampus
and is very prominent there. LTP is an increase in synaptic strength that
can be rapidly induced by brief periods of synaptic stimulation and which
has been reported to last for hours in vitro, and for days and weeks in vivo.

The LTP (and later the LTD) after their discovery, have been regarded
as the physiological basis of Hebbian learning. Subsequently, the properties
of the LTP and LTD became more clear, and the question arises, whether
the LTP and LTD could really be considered as the microscopical basis of
the phenomenological Hebb type learning. Formally, the question is that
how to specify the general functional F' to serve as a learning rule with the
known properties of LTP and LTD. Recognizing the existence of this gap be-
tween biological mechanisms and the long-used Hebbian learning rule, there
have been many attempts to derive the corresponding phenomenological rule
based on more or less detailed neurochemical mechanisms.

The time-course of LTP may be insufficient to sustain long-term memory,

but there appear to be multiple LTP mechanisms, and one dependent on pro-
tein synthesis might serve long-term memory: inhibition of protein synthesis
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disrupts the maintenance of LTP, but leaves the induction of LTP relatively
or totally intact. It is possible to relate properties and mechanisms of long-
term synaptic plasticity in the mammalian brain to learning and memory.

An example for the new synaptic bidirectional Hebbian rules was intro-
duced [Grzywacz and Burgi, 1998]. This rule was compared with physiologi-
cal homosynaptic conditions in the hippocampus, with the results indicating
the consistency of this rule with LTP and LTD phenomenologies. The phe-
nomenologies considered included the reversible dynamics of LTP and LTD
and the effects of N-methyl-D-aspartate blockers and phosphatase inhibitors.

Timing

Studies in cortical and hippocampal slices have shown that back-propagating
action potentials may contribute to induce persistent synaptic potentiation
or depression. The timing of presynaptic and postsynaptic action poten-
tials play a decisive role in determining the sign of synaptic modification
[Markram et al., 1997]. The temporal order of the synaptic input and the
postsynaptic spike within a narrow temporal window determines whether
LTP or LTD is elicited, according to a temporally asymmetric Hebbian learn-
ing rule.

Bi and Poo [Bi and Poo, 1998] showed that postsynaptic spiking that
peaked within a time window of 20ms after synaptic activation resulted in
LTP, while spiking within a window of 20ms before synaptic activation led
to LTD. They suggested that a narrow and asymmetric window for the in-
duction of synaptic modification should be taken into account.

The majority of the generalized Hebbian rules are based on statistical
properties of presynaptic and postsyanptic activity (e.g. activity product,
activity covariance etc.) without considering the detailed temporal structure
of the spike patterns. Relative time spiking, however, has been taken into
account even earlier (e.g. [Sutton and Barto, 1981].

Since changes in synaptic efficacy can depend on the precise timing rela-
tions of pre- and postsynaptic spikes, phenomenological 'temporal learning
rules’ generate opposite change in synaptic efficiency depending on whether
the postsynaptic spike in advance of, or follow, the presynaptic spike. There



is an attempt to show that differential Hebbian learning could be a proper
framework to take into account the timing effects [Roberts, 1999].

Generalized Hebbian rules and their phenomenological derivations

Hebb’s idea has been formalized in many variations. The first, and sim-
plest versions of the Hebbian-learning rule have the important properties of
being local, interactive (specifically conjunctional, and time-dependent, as we
will now explain. If we accept these requirements, these properties should be
attempted to preserve in course of its generalization.

The most general form of Hebb’s rule to express the idea above, is that
the synaptic weight from neuron ¢ to neuron j changes according to:

Loy (t) = Fai,a) )
where F' is a functional, and a; and a; are presynaptic and postsynaptic
activity functions (i.e., they may include activity levels over some period of
time and not just the current activity values. To define specific learning
rules, i.e., the form of F', a few points should be clarified.

1) What are the assumptions about the locality of the modifying signal?
In many cases, the modification of a synapse between neurons 7 and j de-
pends on the state of these two cells alone, i.e., the mechanism is local. In
this case teacher or external reinforcement signals are not explicitly involved:
local synapses are the bases of the unsupervised learning.

2) How, if at all, do the presynaptic and postsynaptic cells interact? Con-
sider first the potential answers for the “if at all” part of the question. The
modification can be interactive, if both the pre- and postsynaptic cells are
involved, and non-interactive, if either the pre- or postsynaptic cell alone
influences the modification. The mechanism of the interaction may be con-
junctional or correlational. In the first case, the co-occurrence of the pre-
and postsynaptic activity is sufficient to cause synaptic change, while in the
second case the covariance of the two activities has to be taken into account.
(From a formal point of view, additive interactions - e.g., given with the
function F(a; & a;) - could have been defined, but they are considered as
non-interactive rules. In other words, not only an entire rule, but even each



term of it can be evaluated as interactive or non-interactive.)

3) What are the assumptions about the form of the time-dependent ac-
tivity functions? In the simplest case, only the actual activity values are
involved. In somewhat more complex situations, short-term averaged activ-
ity values determine the synaptic change. More generally, the history of the
activity values plays a role in the modification process.

The simplest Hebbian learning rule can be formalized as:

Dg(t) = kou(t) ay(1), k>0 @)
This rule expresses the conjunction among pre- and postsynaptic elements

(using neurobiological terminology) or associative conditioning (in psycholog-

ical terms), by a simple product of the actual states of pre- and post- synaptic

elements, a;(t) and a;(t).

A characteristic and unfortunate property of the simplest Hebbian rule (1)

is that the synaptic strengths are ever increasing.

g (t) = kg(as(t)) hla (1) 3)

where g and h, functions of the actual activity, serve as some measure of the
post- and presynaptic activity (i.e., g, h > 0); and

d

V() = kglai() h(a;()) (4)

where g and h are now functionals of the activity function. A special case of
(5) is
d t
g (t) = k / a;(t)dt / a;(t)dt (5)
0

0
which takes into account the total activity history.

There is a particular time-dependent, local and conjunctional rule, which
does not increase the synaptic weight. This is the case when the pre- and
postsynaptic activities are negatively correlated:

d

%’wi]’(t) = ka'i(t) aj(t)’ k<0 (6)
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This “anti-Hebbian” rule (there is some confusion in the literature con-
cerning this terminology, here it is used in the sense that k& < 0) or “decor-

relation” rule was suggested to describe features of dissociations of patterns
[Barlow and Foldiak, 1989].

There are both brutal and sophisticated methods to eliminate the un-
pleasant property of ever-increasing weights which, unless compensated for,
yields a network with saturated synaptic weights and thus no effective pat-
tern discrimination. The qualification “brutal” was adopted for the situation
when some external constraint (taking into account somehow the finiteness of
resources) is applied to the internal mechanism. First, a predetermined up-
per bound can be given, such as the maximal value of the synaptic strength.
Second, the so-called normalization procedure (which appeared already in
[Rochester et al., 1956] gives a finite-sum constraint on all synaptic strengths,
and can be interpreted as a competition of the presynaptic elements for post-
synaptic resources (therefore it violates locality). Such rules may explain
some aspects of neural development

More sophisticated methods decrease the synaptic strengths selectively.
[Brown et al., 1990] use the expression generalized Hebbian synaptic mecha-
nism for cases where interactive synaptic increase is combined with activity-
dependent synaptic depression. The underlying mechanism behind synaptic
depression may be of interactive or non-interactive type.

Instead of giving a formal derivation of the rules which are able to describe
selective decrease, two important special cases are mentioned. First, the rule

d

2w (1) = kg(ai(t)) (ha; (1)) = 0(2)) (™)

implements synaptic increase only if the h(a;(t)) presynaptic activity is larger
than the 0(¢) modification threshold. If presynaptic activity is smaller than
the threshold, the synaptic weight decreases. Second,

1) = (9(ai(t)) — 0(0) hlas (1) ®)

implements a postsynaptic control mechanism on the modification process.



The learning rules (8) and (9) can be written in the forms of kgh — kfg
and kgh — k6h, respectively. Each of these expressions may be interpreted as
the sum of a Hebbian interactive term and a non-interactive term. In the first
case the decrease is due to the postsynaptic activity g and is called “heterosy-
naptic” depression, while in the second case it depends on the presynaptic
activity A and is called “homosynaptic” depression. Learning rules of the
form (9) were suggested by [Bienenstock et al., 1982] and thus sometimes
referred as the “BCM theory” - and used to model the plasticity of visual
cortex. 6(t) was identified with a nonlinear function of the averaged postsy-

naptic activity:
0(t) = [g(t)]” )

where [-] is the average taken for a period of time. The suggestion that the
occurrence of either homosynaptic long-term potentiation (LTP) or long-
term depression (LTD) depends on the strength of the depolarizing current
induced by an NMDA blocker (which increases the modification threshold)
in the visual cortex seemed to be justified experimentally.

The learning expression has also been described in the form (g, [g])h,
where the two-variable function ¢ depends on an “actual value” and an “av-
eraged” quantity, so an underlying microscopic stochastic mechanism should
exist behind the phenomenological and deterministic formalism.

The weaker form of the interactive rule (namely when correlational and
not conjunctional interactions were assumed), namely

%wij(t) =k (ai(t) = [a:(1)]) (a5 (t) — [a;(2)]) (10)

was offered by [Rochester et al., 1956]. Depending on the sign of the cor-
relation, the rule is capable of describing either synaptic enhancement or
decrease. Covariance was suggested to induce associative LTD in the hip-
pocampus.

Another way to describe the decrease of synaptic weights is the introduc-
tion of a spontaneous decay (or “forgetting”) term. The original Hebbian
rule (2) supplemented with a decay term reads as

d
270 (£) = —kawi (1) + kaai(t)ay (1) (11)



(Instead of first order decay, a quadratic forgetting term was also introduced
and studied to improve the stability properties of the learning rule.) If the
decay is not spontaneous, but modulated with the postsynaptic activity, the
rule has the form
d

i (1) = —kiwi;()ai(t) + kaai(t)a; (t) = ait) (koa; (t) — kiwis (1)) - (12)
and describes the phenomenon called “competitive learning”. Postsynaptic
neurons compete for incoming resources: the larger the postsynaptic activity,
the larger the measure of learning.

d d d
awij(t) = k%ai(t)%aj(t) (13)

This rule is an example of differential learning mechanisms [Klopf, 1986].
The rate of change of activities obviously may be positive or negative, i.e.,
both synaptic increase and decrease may occur. The differential competitive

rule.
d d
%wij(t) = Eai(t)(kgaj(t) — klwij(t)) (14)

implements the “learn only if change” principle.

In some cases, the time delay due to signal transmission is explicitly taken
into account, consequently earlier presynaptic activities, rather than current
activities, are in conjunction:

d
%w”(t) =k a,(t) aj(t — 7') (15)

This spirit of “timing sensitivity” is materialized in the rule

d d

used to describe conditioning (see e.g., [Sejnowski and Tesauro, 1990].
Hebbiam mechanisms and Hebbian algorithms
Hebb proposed that the connection between two neurons will be increased

if activity in the neurons is temporally paired. More specifically, the Hebbian
model proposes that the strength of a particular connection will increase if
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the use of the synapse contributes to the occurrence of an action potential in
the postsynaptic neuron. This account critically depends upon coincidence
detectors in the postsynaptic neuron.

The underlying biophysical mechanisms and algorithms of even general-
ized Hebbian synaptic modification were reviewed by [Brown et al., 1990]. In
the subsequent years system level computational models of the neural bases
of learning and memory started also to proliferate.

The general question has been, and still it is, whether how to connect
the formal algorithms of the neural basis of learning phenomena. Although
many commonly used learning rules lead to successful models of plasticity
and learning, they are inconsistent with neurophysiology. Other rules, more
physiologically plausible, fail to specify relevant properties, such as bidirec-
tionality and the biological mechanism that prevents synapses from changing
from excitatory to inhibitory, and vice versa. Newer attempts try to over-
come these difficulties.

Discussion: Over the Hebbian paradigm

It is certainly not true that all learning rules could be interpreted in (even
generalized) Hebbian sense. It is difficult, however, to draw the borderline
between the Hebbian and “non-Hebbian” frameworks. One possible choice
is to consider a learning rule is Hebbian, if only two elements (one presy-
naptic and one postsynaptic) are involved. If we accept these limitations,
we can determine what is labeled as non-Hebbian learning rule. Many types
of supervised learning rules used in the ANN, such as delta rules, and its
variations certainly belong to this category. Heterosynaptic plasticity and
modifiability of synaptic triads and glomeruli - where more than two cells
are explicitly involved in the modification process - could be understood
also, as non-Hebbian. Such choice, however, would also exclude rules with
the normalization procedure.

What is the relationship between the homosynaptic (or Hebbian activity-
dependent), and heterosynaptic (or modulatory input-dependent) plasticity?
It was suggested that Hebbian mechanisms are used primarily for learning
and for forming short-term memory traces but they are not sufficient to re-
cruit the events required to maintain a long-term memory [Bailey et al., 2000].
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In contrast, heterosynaptic plasticity commonly recruits long-term memory
mechanisms that lead to transcription and to synaptic growth. When jointly
recruited, homosynaptic mechanisms assure that learning is effectively estab-
lished and heterosynaptic mechanisms ensure that memory is maintained.

The spirit of the Hebbian idea survived more than a half century. It
will be interesting to see whether what kinds of phenomenological learning
rules will be derived in the next several years starting from cellular level
experimental and modeling studies of synaptic modifiability.
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