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Abstract

We solve the Maxwell-Bloch equations of resonant nonlinear optics using GPUs and compare the computation
times with traditional single- and multithreaded programs. A detailed benchmarking of programs as a
function of various parameters shows how the massive parallelism built into GPUs becomes more and more
advantageous as the physical problem becomes more and more demanding. For the case of multimode light
propagating through an inhomogeneously broadened medium of many-level quantum systems, the program
executing on GPUs can be over 20 times faster than that executing on all cores of a modern CPU. The
methods presented can be applied in a wide area of atomic physics where the time evolution of atomic
ensembles is to be computed.
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1. Introduction

Interesting nonlinear phenomena that occur
when resonant laser pulses propagate through
atomic media have been studied extensively, more
lately driven by possible applications in quantum
communication and quantum computing. Perhaps
the best known such phenomenon is the so-called
self-induced transparency and the associated area-
theorem [1, 2], but numerous other important ef-
fects have been investigated, such as electromag-
netically induced transparency, slow light [3, 4],
matched pulses [5, 6, 7, 8] or photon echo [9, 10],
which can be used to create quantum memories de-
signed for single photons [11].
The fundamental difficulty of this field is the de-

termination of the coupled dynamical evolution of
the atomic systems and the laser fields in space and
time. The basic equations to be solved are the so-
called Maxwell-Bloch equations, which arise when
one considers the propagation of one or more elec-
tromagnetic fields (light pulses) through a medium
composed of “atoms”. In this context “atoms”
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are, in general, quantum systems with discrete in-
ternal states. They may be real atoms (such as
those found in dilute vapors of alkali atoms), im-
purity ions embedded in host crystals, or quan-
tum dots in semiconductor crystals whose excitons
give rise to discrete absorption lines. The propa-
gating fields are quasi-resonant with some of the
atomic transitions and intensive enough to signifi-
cantly change the atoms’ internal state, whose evo-
lution must thus be calculated by explicitly solving
the Schrödinger equation. (The equations derived
from the Schrödinger equation for atoms in optical
fields in this context are also known as the Optical
Bloch-Equations). At the same time, the medium
of atoms is assumed to be dense enough to affect
the pulses, whose variation must be obtained from
the Maxwell equations, containing a source term
due to the macroscopic polarization of the atomic
medium. Because the evolution of the atomic states
follows a nontrivial time dependence, the polariza-
tion term cannot be reduced to a set of linear and
nonlinear susceptibilities, one has to consider ex-
plicitly the coupled dynamical system of light and
atoms. These equations have been derived in a va-
riety of settings, starting from the classical case of
two-level atoms [2, 1] to more complex situations
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[5, 6, 12]. Being a set of partial differential equa-
tions, they admit analytical solutions only is some
very special cases.
In general, the solution of the Maxwell-Bloch

equations is possible only numerically. Unless the
simplest physical settings are considered, even the
numerical solution is a laborious computational
task. Sometimes it is necessary to consider the
propagation of several fields simultaneously and/or
use complex models for the atoms, with many quan-
tum states. One such case is when we consider
the full hyperfine level structure of alkali atoms
whose dilute gases are often used as a medium for
resonant nonlinear optical experiments. Another
case is when impurity ions in dielectric host crys-
tals are considered, where electronic transitions are
coupled to the vibrational motion of the ion in the
crystal lattice (the so-called localized vibrational
modes) [13, 14]. A further complication arises when
the medium is composed of atoms whose transition
lines are inhomogeneously broadened, i.e. whose
transition frequencies are not identical, but are dis-
tributed randomly around an average according to
some probability distribution function. This is in-
evitably the case in solid state media such as ion-
doped crystals or quantum dots and requires the
explicit solution of the Shrödinger equation for an
ensemble of atoms to obtain the macroscopic polar-
ization of the medium. In all these cases, solving
the equations numerically is a demanding problem.
Graphical processing units (GPUs) have proven

to be very useful in solving various numerical prob-
lems in recent years [15, 16, 17, 18]. The massive
parallelism that GPUs offer can be very advanta-
geous also when solving demanding problems in res-
onant nonlinear optics, most obviously when the re-
sponse of the medium is to be determined by using
a statistical ensemble of atoms. We have tested the
extent to which GPUs may be useful for these calcu-
lations by programming, running and benchmark-
ing three implementations of the same basic cal-
culation. A single-thread version, a multithreaded
version coded using OpenMP and executing on all
four cores of a modern CPU, and finally a mas-
sively parallel version utilizing GPUs coded with
the CUDA technology of Nvidia.
This paper is organized as follows. The formu-

lation of the physical problem and the equations
to be solved are presented in section 2. The gen-
eral computation scheme is presented in section 3.
The peculiarities of the various implementations of
one particular step, solving the Optical Bloch Equa-

tions for an ensemble of atoms are described in sec-
tion 4. In the present case, that is by far the most
time-consuming step of the integration. The results
are presented and discussed in section 5 and sum-
marized in 6.

2. Formulation of the problem

To be specific, we consider quantum systems that
can be used to model rare-earth-ion dopants in crys-
tals, with vibrational motion coupled to an elec-
tronic transition [12]. They have Nv ground state
sublevels |g,m⟩, and the same number of excited
state sublevels |e, n⟩ (m,n ∈ {0, . . . , Nv−1}) with a
dipole transition between any of the ground and ex-
cited states with transition element ⟨e, n|d̂|g,m⟩ =
degFn,m (here Fn,m is a Franck-Condon factor com-
ing from vibrational wave-function overlap). The
basic transition frequency between |g, 0⟩ → |e, 0⟩
is denoted by ωeg and is assumed to be inhomoge-
neously broadened. The level spacing of the ground
and excited state sublevels is taken to be the same
for each atom ν = νg = νe.

We consider light composed of equidistant quasi-
monochromatic modes with frequency spacing δ =
ν propagating through the medium. Restricting
ourselves to a single spatial dimension z, the electric
field can be written as

E(z, t′) =
1

2

∑
l

εl(z, t
′)e−i(ω0+l·δ)t′+iklz + c.c. (1)

The complex mode amplitudes εl vary little on the
length scale of k−1

l and timescale of ω−1
0 , and δ ≪

ω0 is assumed. For convenience we introduce the
retarded time t = t′ − z/c, which is equivalent to
using a reference frame that moves with the speed
of light across the medium. In the slowly varying
envelope approximation the wave equation for the
mode amplitudes will then become [12]:

∂

∂z
εl(z, t) = i

k0
2ϵ0ϵ

Pl(z, t), l ∈ {lmin, . . . , lmax}
(2)

where we have made use of kl ≈ k0 that follows
from previous considerations. The source terms on
the right-handside Pl(z, t) are the macroscopic po-
larizations due to the atoms excited by the fields.

The state of an atom at any z and t is given by
2Nv complex probability amplitudes contained in
the vector ψ, whose time evolution is governed by

the Hamiltonian Ĥ via the Schrödinger equation:

∂tψ(∆; z, t) = −iĤ(∆; z, t)ψ(∆; z, t) (3)
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where ∆ = ω0−ωeg is the detuning between the fre-
quency of the l = 0 mode and the basic resonance.
We have an inhomogeneously broadened atomic en-
semble, so ∆ is slightly different for each atom. The
inhomogeneous line shape function g(∆) describes
the distribution of atoms with respect to ∆. It is
typically a symmetric function peaked around 0,
e.g. a Gaussian or a Lorentzian. Introducing the
notation ψ(∆; z, t) = {am(∆; z, t), bn(∆; z, t)} for
the ground and excited state amplitudes separately,
we can write 3 (after some convenient phase trans-
formations) in the form known as Optical Bloch-
Equations (OBE):

∂tam(∆; z, t) = i(m(κg − δ) + ∆)am(∆; z, t)

+ i
deg
2~

∑
l

ε∗l (z, t)Fm,m+lbm+l(∆; z, t)

∂tbn(∆; z, t) = in(κe − δ)bn(∆; z, t)

+ i
deg
2~

∑
l

εl(z, t)Fn−l,nan−l(∆; z, t)

(4)

Clearly, the Hamiltonian matrix is of the form
Ĥ(∆; z, t) = ĤA(∆) + ĤI(z, t) where ĤA is a di-
agonal matrix independent of z, t. The interaction
part ĤI is independent of ∆, being composed of
nondiagonal blocks that depend on z and t through
the fields and connect the ground and excited state
amplitudes:

ĤI(z, t) =

(
0 Ω̂†(z, t)

Ω̂(z, t) 0

)
(5)

The Bloch part 4 of the equations is connected to
the Maxwell part 2 through the macroscopic po-
larization, which is calculated from the coherences
between the ground and excited state sublevels and
averaged over the inhomogeneous distribution (N
is the spatial density of atoms):

Pl(z, t) = 2Ndeg∑
m

Fm,m+l

∫
a∗m(∆; z, t)bm+l(∆; z, t)g(∆)d∆

(6)

The problem is thus to find the complex func-
tions εl(z, t) by solving Eqs. 2 for a set of NF

fields. The typical boundary condition used cor-
responds to one or two laser pulses entering the
medium at z = 0, that is, εl(0, t) = fl(t − t0),
where fl is a real function peaked around 0 for, say,

l ∈ {0, 1} and εl(0, t) = 0 for any other l. It is of
course insufficient to consider only the two modes
that enter the medium, as the nonlinear medium
can generate new modes (Raman-sideband genera-
tion). Typical initial conditions for the atoms would
be a0(∆; z, 0) = 1, am(∆; z, 0) = 0 for m ̸= 0 and
bn(∆; z, 0) = 0 corresponding to atoms in their low-
est vibrational ground states initially. This form
of the equations is more general than that usu-
ally treated in several respects. First, we allow a
large number of ground and excited states (we have
worked with up to Nv = 32). Second, we consider
a relatively large number of field modes and allow
each field to interact with multiple atomic transi-
tions.

3. Computation scheme

To study propagation phenomena, we need to
solve the Maxwell-Bloch equations 2 and 4 on the
domain z ∈ [0, zmax], t ∈ [0, tmax] with resolutions
hz and ht respectively, i.e. on the two-dimensional
space-time grid zj = j · hz, j ∈ {0, ..., Nz}, tk =
k · ht, k ∈ {0, ..., Nt}, Nz = zmax/hz + 1, Nt =
tmax/ht + 1. To calculate the corresponding values
of the slowly varying complex field envelopes εlj,k for
the NF modes of the set l ∈ {lmin, . . . , lmax}, we
need the macroscopic polarization of the medium
for each mode P l

j,k. This in turn must be obtained
from the corresponding values of the state vectors
ψD

j,k
for all the atoms D ∈ {0, . . . , N∆ − 1} in the

ensemble. Adding the boundary conditions for the
fields εl0,k = f lk and the initial condition for the

atomic states ψD

j,0
= A completes the formulation

of the problem.
A simple and robust method of solution is to use

finite difference schemes as sketched by the pseudo-
code for the general structure of the program (al-
gorithm 1). For each step in space we first iterate
over the points in the time domain (lines 2 to 7)
to advance all atomic states using a simple fourth-
order Runge-Kutta scheme (line 3 in algorithm 1,
function further detailed in algorithm 2). Then we
calculate the polarization for each mode by aver-
aging over all atoms in the ensemble (lines 4 to 6,
here β = Ndegk0/ϵ0ϵ). The fields are advanced
using a second-order Adams-Bashforth scheme to
the next spatial location (lines 8 to 12). With the
fields known at j + 1, the matrices Ĥj+1,k can be
constructed to be used in the next iteration. The
constraint of probability conservation |ψD

j,k
|2 = 1

3



can be used conveniently to monitor the solution’s
accuracy.

Algorithm 1 Global calculation scheme.

1: for j = 1 to Nz − 1 do
2: for k = 1 to Nt do
3: ψD

j,k
= RK4(ψD

j,k−1
, ĤD

j,k, Ĥ
D
j,k−1)

4: for l = lmin to lmax do
5: P l

j,k =
∑

D,m βgDFm,m+la
D
m,kb

D
m+l,k

6: end for
7: end for
8: for k = 1 to Nt do
9: for l = lmin to lmax do

10: εlj+1,k = εlj,k + 3
2
ihzP l

j,k − 1
2
ihzP l

j−1,k

11: end for
12: end for
13: end for

The pseudo-code shown here is just the bulk
of the program, miscellaneous tasks like starting
up, saving results or calculating state vector norms
for monitoring numerical accuracy have been omit-
ted. Note that we use mathematical notation for
brevity in the algorithms wherever this does not
hamper comprehension. The concise listings may
thus “hide” additional nested loops, for example
in the Runge-Kutta part (algorithm 2), where ψD

k
,

kDp are vectors and ĤD
k are matrices with complex

elements. Also not detailed here is the fact that be-
cause of the structure of the Hamiltonian (Eq. 5),
the matrix-vector multiplications are in fact per-
formed as multiplications by the diagonal elements
and the nondiagonal blocks Ω̂ separately to avoid
multiplying with a large number of zero elements.
As the Adams-Bashforth scheme requires the use of
two spatial points to calculate the fields at the next
one, the program is started up using a first-order
Euler method with a smaller spatial step.

Algorithm 2 The RK4 function. The index j of
the variables has been suppressed for clarity.

Require: ψD

k−1
,ĤD

k ,ĤD
k−1

1: for D = 0 to N∆ − 1 do
2: kD1 = −ihtĤ

D
k−1 · ψD

k−1

3: kD2 = −iht
1
2
(ĤD

k−1 + ĤD
k ) · (ψD

k−1
+ 1

2
kD1 )

4: kD3 = −iht
1
2
(ĤD

k−1 + ĤD
k ) · (ψD

k−1
+ 1

2
kD2 )

5: kD4 = −ihtĤ
D
k · (ψD

k−1
+ kD3 )

6: ψD

k
= ψD

k−1
+ 1

6
(kD1 + 2kD2 + 2kD3 + kD4 )

7: end for

The above two pseudocodes show that the main

parts of the calculation can be readily parallelized.
The iterations over the atoms of the ensemble at
line 3 (detailed in algorithm 2) are completely in-
dependent. The iteration to calculate polarization
modes (lines 4 to 6) can also be calculated inde-
pendently for each mode, just as the iteration to
advance the fields to the next point in space (lines
8 to 12). While all possibilities to parallelize cal-
culations for speeding them up were exploited in
both OpenMP and CUDA implementations, in this
paper we will detail only the various implementa-
tions of the Runge-Kutta function 2. This can be
justified by the fact that for real production runs
(i.e. a lot of atomic sublevels, field modes and
many atoms) it is this part that takes up by far the
most time. Profiling the GPU code using Nvidia’s
Compute Visual Profiler shows that depending on
input parameters, the Runge-Kutta function con-
sumes between 60-75% of the overall execution time
of the program, so it is the coding of this function
that has by far the greatest impact on the over-
all performance. The next most laborious part is
the computation of the polarization (lines 4-6 in
algorithm 1) which consumes about half of the re-
maining execution time. Note that the computa-
tion times shown and compared in section 5 are the
overall execution times for the whole program.

In the present approach, we advance all the atoms
one timestep, calculate the polarizations, and then
proceed to the next timestep as we can then reuse
the memory allocated to the atomic variables at ev-
ery step. One can also exchange the iterations to
calculate the whole time evolution of a single atom
before calculating another one. However, if the full
time evolution of all atomic variables is calculated
and stored before computing the polarizations, or-
ders of magnitude more memory is needed. Alter-
natively, one can also calculate the full time evolu-
tion of a single atom, increment the polarizations
with its contribution and then proceed to the next
atom, again reusing the memory. But when atoms
are calculated in parallel in this approach, possible
race conditions must be dealt with.

The size of the most time consuming part of the
computation, calculating the atomic evolution and
the polarization is clearly proportional to N∆ (al-
gorithm 2 and line 5 in algorithm 1). The depen-
dence of the computational complexity on the other
two important parameters, Nv and NF is not so
trivial. Theoretically the size of the nondiagonal
blocks Ω̂ of the Hamiltonian matrix appearing in
the RK4 function is proportional to N2

v , but if NF
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is low, the blocks will have a lot of zero elements.
Thus increasing Nv on its own does not mean that
the computational complexity will grow quadrati-
cally. On the other hand, increasing NF , while it
itself appears only linearly in the equations, also
increases the problem size by populating Ω̂ and Ω̂†

with nonzero elements.

4. Program implementation

Algorithm 1 was implemented in three differ-
ent programs. The simplest one was a sequen-
tial C++ code, compiled to execute on a single
CPU thread. The second program was very sim-
ilar, but used the OpenMP language extension to
run on multiple CPU threads simultaneously. The
third program used the C++ language extension of
Nvidia’s CUDATM technology to perform the cal-
culations on one of the test system’s GPUs. In all
three cases the -O3 optimization level was used by
the compiler and the execution of the test problems
was timed using the ftime() function call.
For each program, execution time has been inves-

tigated extensively as a function of input parame-
ters. To this end, three test problems were used,
which differed only in the number of fields whose
evolution we followed. The first problem, NF = 2
was a relatively simple task, often investigated al-
though with much simpler atomic systems. The sec-
ond and third problems, NF = 9 and NF = 19 were
the problems considered in [12]. Each of the prob-
lems were investigated with the same several values
of Nv and the same (large) range of N∆. Because
the number of fields determines just how many
nonzero elements the offdiagonal blocks Ω̂, Ω̂† of the
Hamiltonian have, it affects the work to be done a
great deal. Obviously, the more modes we consider,
the more distant coupling we obtain in terms of vi-
brational levels. This means that for more fields
to calculate, we should use more vibrational lev-
els as well, and vice versa. Therefore when using
exactly the same set of possible Nv values for the
problems, some cases were in fact “unphysical”, but
were retained all the same for a good comparison of
the performance. The speedup, defined as the ratio
of execution times for identical input parameters
S = Tsingle/TOpenMP or S = TOpenMP /TGPU has
been established in all cases. The conclusions pre-
sented in section 5 were drawn from a large num-
ber comparisons, even though only a fairly small,
representative set of results have been plotted to
illustrate the results.

4.1. The test system

The same, fairly current tabletop PC was used to
execute the programs in each case, with the most
important elements of the hardware configuration
being as follows:

• CPU: Intel R⃝CoreTMi7 870, 2.93GHz (Ne-
halem micro architecture, 45 nm)

• Main memory: 8 GB of DDR3, 1333 MHz

• GPU1: Geforce R⃝ GTX580 with 1536 MB
GDDR5, compute capability 2.0 (Fermi) and
1.54 GHz GPU Clock speed, 16 SM x 32 CUDA
cores

• GPU2: Geforce R⃝ GTX460 with 1024 MB
GDDR5, compute capability 2.1 (Fermi) and
1.45 GHz GPU Clock speed, 7 SM x 48 CUDA
cores

The OS of the test system was openSUSE 11.2,
64 bit Linux with the most important software
components as follows: kernel version: 2.6.31.5,
C++ compiler: gcc (SUSE Linux) 4.4.1, glibc ver-
sion: glibc-2.10.1, MPI implementation: openmpi-
1.2.8, CUDA runtime environment 4.0. The test
system was dedicated to the purpose of the calcu-
lations, it had no graphical login environment run-
ning (booted to runlevel 3), and had no user load
apart from a single distant login shell used to start
the calculations. This way a reliable benchmark
could be established, with the execution times of
the programs differing much less than one percent
between repeated runs in all but a very few cases.

4.2. Single-thread execution

Our program does not use any implicitly multi-
threaded library routines (such as NAG for linear
algebra), so the simple C++ code executes on a
singe CPU core at all times.

4.3. Parallel execution using OpenMP

OpenMP is an application program interface
for writing programs that employ multi-threaded,
shared memory parallelism. Compiler directives,
inserted in the C++ code, direct the forking and re-
joining of threads explicitly. In our case, the num-
ber of threads that the program forks for parallel
regions was defined at compile time to be either
four (the number of physical CPU cores) or eight
(the thread number that the OS could schedule si-
multaneously on the CPU due to Hyper-threading)
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and the dynamic alteration of the thread number
by the runtime was disabled. We have also found
it to be advantageous to define the thread affinity
by hand (via an environment variable), i.e. to bind
threads to specific cores explicitly. This prevents
thread migration operated by the OS kernel. Al-
lowing the kernel to schedule threads dynamically
on the cores results in a considerable fluctuation of
the execution times and, in general, greater execu-
tion times, probably due to a high number of L2
cache misses. This is similar to the behavior found
in [19]. However, this strategy is certain to be ad-
vantageous only for systems that are dedicated to
run the computation.
The OpenMP implementation of the RK4 rou-

tine is shown by the pseudocode in algorithm 3.
The threads are forked at line 1 and the subsequent
work sharing constructs #pragma omp for cause
the instructions within the loops to be executed by
the threads as a team. Each thread performs the
multiplication for different atoms (different value
of the loop variable D). Clauses following the di-
rective define how the threads are handed blocks
of the iteration to complete. Because of the sim-
plicity of this iteration, (a single, fixed-size matrix-
vector multiplication) a static scheduling was found
to be fastest, when one fourth(eighth) of the work
is handed in a contiguous block to each of the
four(eight) threads. In more complicated cases
(when the instruction count of iterations varies for
example), the work can be scheduled dynamically.
This function can also be implemented with a

single for loop over D that calculates the updated
state of an atom all at once (see algorithm 2), but
this method was found to be somewhat slower. The
reason is, that there is an implied barrier at the
end of each for loop where the threads synchronize.
With the listing shown here this synchronization
causes all the threads to work with the same one
of the four variables, {k1, . . . , k4} at any one time,
decreasing the chance of cache misses.

4.4. Parallel execution using CUDA - general con-
siderations

GPUs are powerful parallel computing machines
that support the SIMD (single instruction multi-
ple data) paradigm and can execute certain com-
putations much faster than traditional CPUs. Nu-
merous programing tools have appeared recently
that facilitate GPU program implementation for
scientific computations, while the architecture also
evolved to implement floating point operations,

Algorithm 3 RK4 function with OpenMP

Require: ψD

k−1
,ĤD

k ,ĤD
k−1

1: #pragma omp parallel. . . //fork team of threads

2: {
3: #pragma omp for // share work within team
4: for D = 0 to N∆ − 1 do
5: kD1 = −ihtĤ

D
k−1ψ

D

k−1

6: #pragma omp for
7: for D = 0 to N∆ − 1 do
8: kD2 = −iht

1
2
(ĤD

k−1 + ĤD
k )(ψD

k−1
+ 1

2
kD1 )

9: #pragma omp for
10: for D = 0 to N∆ − 1 do
11: kD3 = −iht

1
2
(ĤD

k−1 + ĤD
k )(ψD

k−1
+ 1

2
kD2 )

12: #pragma omp for
13: for D = 0 to N∆ − 1 do
14: kD4 = −ihtĤ

D
k (ψD

k−1
+ kD3 )

15: #pragma omp for
16: for D = 0 to N∆ − 1 do
17: ψD

k
= ψD

k−1
+ 1

6
(kD1 + 2kD2 + 2kD3 + kD4 )

18: }

both with single and double precision. One con-
venient tool is the CUDATM technology, which is
a general purpose parallel computing architecture
from Nvidia. It provides a set of extensions to the
C++ programming language for computations to be
executed on Nvidia graphics cards. The package in-
cludes tools to compile, debug, and profile programs
[20, 21, 22]. Complex numbers essential in quantum
theory can be (and in our case were) implemented
in the GPU code using a templated complex num-
ber type based on the native CUDA types float2
and double2 [23].

The basic CUDA program consists of a single
CPU thread (host thread) that initiates a series of
“kernel launches”, i.e. issues special function calls
to create a multitude of parallel threads executing
on the GPU (the “device” in CUDA terminology).
The GPU can only operate on data in device mem-
ory, so the necessary data structures must first be
created and initialized on the device.

The GPU is built up of a number of “streaming
multiprocessors” (SMs), each of which is composed
of individual “CUDA cores” (stream processors).
This division in the structure is very important,
as cores of a single SM share a fast cache (shared
memory). A kernel launch must define the kernel’s
geometry corresponding to this hardware structure
- the multitude of threads are ordered into three-
dimensional blocks, and the blocks into a three-
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dimensional grid. Threads of a single block always
execute on the same SM. They can cooperate via
the fast shared memory of the SM and their exe-
cution can be synchronized. A single SM will al-
ways execute threads of a single block at any one
time, grouped into ”warps” of 32 threads. Different
thread blocks must be independent, their order of
execution must be irrelevant. They can not be syn-
chronized and can cooperate only via much slower
global memory. The three-dimensional indexing of
threads and blocks is convenient when invoking vec-
tor and matrix calculations.
Choosing the correct kernel geometry is the most

important factor in optimal task distribution over
the GPU. The number of threads in a block should
preferably be a multiple of a SM’s number of cores
and threads that require synchronization must be
on the same block. The number of blocks should be
at least as many as the GPU’s SM number, but usu-
ally many more. Up to eight blocks may be active
on a SM with 48 warps altogether if SM resources
permit. The term SM “occupancy” refers to the
ratio of active warps to the maximum number of
warps supported per SM of the device. High occu-
pancy is important because it helps hide memory
latencies in global memory transactions. The GPU
can switch threads very easily, so if lots of warps
are active on a SM, warps with threads waiting for
memory transactions can be dumped and executed
later when the required data is cached. Kernel oc-
cupancy can be calculated and kernel geometry op-
timized using information returned by the compiler.
However, while low occupancy usually means low
performance, higher occupancy does not necessar-
ily mean greater execution speed.

4.5. Parallel execution using CUDA - the RK4
function

The general algorithm looks very similar when
written in CUDA C (algorithm 4) except lines 3,
4-6 and 8-12 in algorithm 1 are substituted by ker-
nels (lines 3, 5 and 8 in algorithm 4 respectively)
that launch threads on the GPU to do the compu-
tations. The general format as illustrated on line 3
is similar to a function call with the geometry de-
fined in two sets of three integers, grid1 and block1.
Different kernels are generally launched with differ-
ent geometries (grid2, block2 and grid3, block3).
Additionaly, results may be transfered back to the
host at line 7 to be saved if necessary - this part
is typically executed at every 20th step, which also
implies that most of the data will exist only on the

device and not in the host memory. The only time
data is transfered from the host to the device is at
startup when the boundary and initial conditions
are initialized on the device.

Algorithm 4 general algorithm,CUDA implemen-
tation
1: for j = 1 to Nz do
2: for k = 1 to Nt do
3: ψD

k
= RK4 ≪ grid1; block1 ≫ (. . .)

4:

5: P l
j,k = CalcPol ≪ grid2; block2 ≫ (. . .)

6: end for
7: // transfer ψD

k
and εlj,k to host if necessary

8: εlj+1,k = Adams≪ grid3; block3 ≫ (. . .)
9: end for

For the RK4 routine, it is most natural to choose
the threads calculating the evolution of a single
atom to be in one block (each block calculates a
different atom). The geometry of the kernel launch
was chosen to be grid1 = (N∆, 1, 1), block1 =
(Nv/M,Nv, 1), the block index enumerating the
atoms. In each block, N2

v /M threads cooperate
as detailed in algorithm 5. The multiplication of
the state vector by Ω̂† and Ω̂ is accomplished in
chunks of Nv rows and Nv/M columns at a time
(lines 3 to 9), with each thread performing 2M
multiplications. The results are accumulated in a
2Nv × Nv/M array C that is stored in the SM’s
cache. Then a reduction is calculated at lines 10
to 15 with less and less threads taking part in each
step. The synchronization of the threads after the
multiplications (line 9) and after each step of the re-
duction (line 15) are essential, that is why this cal-
culation cannot be spread over more blocks. Stor-
ing the results of each threads’ part of the work in
shared memory is also essential, as during the re-
duction some threads access the results calculated
by others. The element with the diagonal part of
the Hamiltonian is added only at the end (line 17)
when k1 is stored. All the ki are calculated in a
similar manner and are then summed to obtain the
new state vector.

The parameter M makes it possible to tune the
size of a block, its optimal choice is an important
question. For small Nv, M = 1 is clearly best, as a
block with less threads than CUDA cores per SM
cannot make full use of the SM. On the other hand,
if N2

v grows too large, M can be used to decrease
the thread number and shared memory usage to
be within the SM’s physical limits. (Choosing at
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Algorithm 5 RK4 kernel, CUDA implementation

Require: D // position within grid, D ∈ {0, N∆ − 1}
Require: n,m // position within block, n ∈

{0 . . . Nv/M − 1}, m ∈ {0 . . . Nv − 1}
Require: Ω̂, Ω̂′ //the nondiagonal blocks of the Hamil-

tonian for two consecutive time points
Require: ÊD //the vector of the diagonal elements of

the Hamiltonian
Require: ψD // the current state vector
1: declare vectors k1, k2, k3, k4 in shared memory
2: declare C, a 2Nv by Nv/M matrix in shared mem-

ory
3: Cm,n = Ω̂†

m,n · ψD
n+Nv

4: for j = 1 to M − 1 do
5: Cm,n = Cm,n + Ω̂†

m,n+jNv/M
· ψD

n+jNv/M+Nv

6: Cm+Nv,n = Ω̂m,n · ψD
n

7: for j = 1 to M − 1 do
8: Cm+Nv ,n = Cm,n + Ω̂m,n+jNv/M · ψD

n+jNv/M

9: syncthreads()
10: q = Nv/2M
11: while q! = 0
12: if n < q
13: Cm,n = Cm,n + Cm,n+q

14: q = q/2
15: syncthreads()
16: if n = 0 then
17: k1,m = iht(E

D
mψ

D
m − Cm,0) // k1 has been cal-

culated
// next to calculate k2, k3, k4 in a similar manner

18: Cm,n = 1/2·(Ω̂†
m,n+Ω̂†

m,n
′)·(ψD

n+Nv
+1/2·k1,n+Nv )

// etc...

19:
...

20: if n = 0 then
21: ψD,new

m = ψD
m + 1

6
(k1,m + 2k2,m + 2k3,m + k4,m)

most N2
v threads to calculate the multiplication by

a 2Nv × 2Nv matrix is justified by the fact that
only the nondiagonal Nv × Nv blocks Ω̂, Ω̂† have
elements outside the diagonal). The ideal choice of
M has been found by experimenting and is always
given together with Nv when discussing results in
section 5.

In a way, a single thread of the RK4 function’s
OpenMP implementation corresponds to block of
threads of the CUDA implementation, in that each
of these units does the calculation for a single atom.
While the CPU executes four threads on four cores
at any one time, the GPU executes as many blocks
as there are SM’s on the device (16 for GTX580 and
7 for GTX460).

4.6. Some final remarks

The other kernels of algorithm 4 (at lines 5 and
8) have also been optimized carefully for the even
distribution of the computational load on the SMs
of the GPU.

There are a number of further points when con-
sidering the usage of GPUs for a computation. One
is the question of moving data between host and de-
vice for example, which may result in a considerable
extra overhead over the time required purely for the
calculation. In our case however, this overhead is
completely negligible, as the data is “created” on
the device by iterating the propagation routine, and
only a small fraction is transferred to the host to be
saved at certain timesteps. Furthermore, the data
transfer can be executed asynchronously, so it does
not delay the execution of the subsequent kernels.

One important property of GPUs is the great
memory bandwidth and specialized memory access
patterns that allow accelerated data transfer very
important in some calculations. This property is
not exploited by the current problem. In fact, pro-
filing the most laborious part, the RK4 routine
shows that it is very heavily compute bound for
the physically interesting range of parameters.

5. Results and discussion

5.1. Speedup from single-thread to CPU multithread

Analysis of the execution times for the test prob-
lems shows that the speedup accomplished by using
multiple threads on the CPU compared to single-
thread program execution depends considerably on
the parameters that define the problem size NF , Nv

and N∆. For small N∆, single thread execution is
faster (not surprisingly), but as N∆ increased, the
speedup grows fast and attains more or less con-
stant values between 1.9-3.5 for four CPU threads
and between 2.2-4.0 for eight CPU threads. The
speedup gained with eight threads is consistently
higher than that gained with four threads, but it
usually does not reach 4 even though the program
executes on all four physical cores. Memory band-
width may have something to do with this, as well
as the fact that this processor has the ability to dy-
namically raise the frequency that its cores operate
at (Turbo Boost technology) until thermal limits
permit. When only a single core is in heavy use,
its operating frequency can be substantially higher
than when all four of them are fully utilized.
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Figure 1: Speedup of the GPU program compared to the
OpenMP implementation executing on 8 threads for the first
test problem (NF = 2), for various values of Nv as a function
of N∆.

5.2. Speedup from CPU multithread to GPU

To assess the performance gain achieved by us-
ing GPU programs, we calculated and plotted the
speedup for a wide range of parameters for all
three test problems. Because the eight-thread ex-
ecution on the CPU was always somewhat faster
than four-thread one, in what follows, we com-
pare the performance of the GPU codes exclusively
against that case i.e. from now on speedup means
S = TOpenMP8thread/TGPU . In addition, for the
CPU implementations we always use double preci-
sion variables as using only float precision does not
increase the execution speed. For the GPU imple-
mentation on the other hand, there is a considerable
speed difference between float and double precision,
it is thus important to determine whether float pre-
cision is sufficient to obtain valid physical results in
our case. Unfortunately, there are no analytical so-
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Figure 2: Speedup of the GPU program compared to the
OpenMP implementation executing on 8 threads for the sec-
ond test problem (NF = 9), for various values of Nv as a
function of N∆.

lutions that we can compare our numerical results
to, so after having experimented with the CPU pro-
gram to determine stepsize parameters that yield
acceptable results, we have compared the output of
the GPU program to that of the CPU program. As
expected, when using double precision on the GPU,
the output of the two programs is identical prac-
tically within the precision of the double variable
type. When using only float precision, the results of
the GPU program still agree to that of the CPU im-
plementation within the precision of the float vari-
able type. This means that the result is still very
reliable from a physical viewpoint, as the dominant
fields and probability amplitudes calculated by the
GPU code are equal to their CPU counterparts
within a relative error below 10−6. The relative
error for field and probability amplitudes that are
much smaller than the dominant ones (high order
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Figure 3: Speedup of the GPU program compared to the
OpenMP implementation executing on 8 threads for the
third test problem (NF = 19), for various values of Nv as a
function of N∆.

Raman sideband modes and high order vibrational
states of the ions) is substantially higher. This how-
ever is acceptable, as physically significant quanti-
ties such as atomic level probabilities and field mode
energies are proportional to the square of proba-
bility and field amplitudes, so the effects of these
levels and field modes are negligible. We can thus
conclude that maintaining float precision is usually
quite sufficient in the calculations to obtain valid
physical results in our case. Nevertheless, for the
benefit of possible applications that require dou-
ble precision for valid results, we compare both the
float and the double precision performance of the
GPU to that of the CPU. We compare the perfor-
mance of the two GPUs in the system against that
of the OpenMP program separately.

The primary results of our investigations are
shown in Figs 1,2 and 3 which depict the speedup

for both GPUs, for float and double precision cal-
culations as a function of N∆. The times used to
calculate the speedup are the times required for
the entire time program in every case. The curves
are plotted for each of the three test problems and
for several values of Nv. In each case the execu-
tion time with the optimal value of the parameter
M has been shown. From the figures it is clear
that the speedup always increases to attain a con-
stant value as N∆ is increased, and for both GPUs
using only float precision is roughly twice as fast
as using double precision. The speedup is prac-
tically constant for N∆ & 500. As this is still
somewhat small for a statistical ensemble from a
physical point of view, for practical purposes one
may safely assume that the speedup achieved by us-
ing GPUs for the current problem is the maximum
value that is attained. From the figures one can
see that the speedup achievable for the physically
interesting cases (many field modes, many atomic
levels and many atoms) can exceed 20 for the faster
of the two GPUs and float precision, and exceeds
10 for the same GPU but double precision. Note
that when accuracy is of no great concern, a further
speedup of some programs may be achieved using
faster, but less precise arithmetic functions such as
division or square root. We have not exploited this
possibility in our work.

There is an interesting and well defined dip in the
speedup on all of the figures for the GTX580. Less
visible, but there are also slight dips on the curves
for the GTX460 as well. The cause for the dips
relates to kernel occupancy and the explanation il-
lustrates how important is the ability of the GPU
to schedule a great number of warps for execution
simultaneously. As previously mentioned, the most
time consuming part of the computation, the calcu-
lation of the atomic time evolution (RK4 kernel) is
coded such that a single atom is calculated by a sin-
gle block i.e. it is scheduled on a single SM. Thus it
is obvious that choosing the number of atoms to be
an integer multiple of the SM number of the GPU
(16 for GTX580, 7 for GTX460) is advantageous
for performance, because all SMs can be handed
an equal share of the task. But that is not all -
analyzing the occupancy of the RK4 kernel shows
that more than one block can be scheduled on a SM
simultaneously, e.g. for Nv = 32 and M = 8 four
blocks, or forNv = 16 andM = 4 eight blocks. (For
the RK4 kernel, the occupancy depends only on Nv

andM , so it is the same for all three test problems.)
This means that e.g. for Nv = 32 and M = 8, the
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Nv = 32, M = 8 as a function of N∆ in seconds. The
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atoms that can be scheduled for execution on the two GPUs
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GTX580 board handles 4× 16 = 64 atoms simulta-
neously, while the GTX460 board handles 4×7 = 28
atoms. Performance is thus expected to be optimal
when N∆ is chosen an integer times these values.
Figure 4 shows the program execution time as

a function of N∆ with high resolution. For both
GPUs, the same pattern can be observed: the ex-
ecution time follows a step-like curve. It increases
slowly as N∆ increases until it reaches n × 64 or
n × 28 and then suddenly jumps when a single
”surplus” atom is added. This jump between e.g.
N∆ = n× 64 and N∆ = n× 64 + 1 is considerably
greater than the overall increase in execution time
between N∆ = n× 64 + 1 and N∆ = (n+ 1)× 64.
(Clearly, the overall execution time still increases
during this latter period as well because other ker-
nels also executed during the calculation do not fol-
low this occupancy pattern.) Because the compu-
tation time of the program executing on the CPU
increases much more smoothly, the speedup S will
be greatest when N∆ is chosen to be n × 64 (or
n×28). In figures 1, 2 and 3 depicting the speedup,
the lowest graph shows that the it peaks atN∆ = 64
for the GTX580 board, then decreases slightly for
the next two data points (N∆ = 80 and N∆ = 96)
and is optimal again for N∆ = 128. As the rest of
the data points are all integer multiples of 64, no
further dips are observed.
A similar analysis could be done for kernels per-

forming other steps in the program. It is most likely
that the parameters which yield optimal speedup
compared to the CPU program are not identical
for these. Therefore, in the case of different ap-

plications, where the calculation does not have the
computational load concentrated in a single step
to this extent, the performance gain will not be as
susceptible to the ideal choice of parameters.

The slower of the two GPUs still proved to be up
to an order of magnitude faster than the CPU itself
in performing the calculations. This is interesting
from an economical viewpoint - it was a relatively
low-end graphics board, costing less than the CPU
itself. Furthermore, several graphics boards may be
inserted in a desktop computer and used simultane-
ously to perform the calculations, multiplying the
available computing power.

6. Summary and Outlook

We have investigated the possibility of using
GPUs in a desktop computer for the numerical so-
lution of the Maxwell-Bloch equations of resonant
nonlinear optics. When multimode light propaga-
tion has to be investigated in a medium of com-
plicated (many level) atomic systems, whose reso-
nance frequencies are inhomogeneously broadened,
the problem becomes numerically very demanding.
However, the capability of GPUs for massively par-
allel calculations turn out to be very useful. We
have compared the execution time of three prob-
lems for a wide range of parameters to the execution
time of single- and multithread programs executing
on the CPU. We have found that for realistic ap-
plications, using a high-end GPU can easily yield a
factor 20 performance gain over the use of current
multicore CPUs, and even for a low-end GPU the
gain can be a factor of 10. Investigating the param-
eter dependence of the speedup, we have shown how
important it is to divide the computational load
over the serial multiprocessors of the GPU in an
optimal way.

While we investigated pulse propagation phe-
nomena, the most laborious part of our calcula-
tion was in fact a relatively common problem en-
countered in atomic physics. The solution of the
Schrödinger equation for statistical ensembles is, for
example, at the heart of the Quantum Monte-Carlo
scheme [24, 25] that is used widely. Whether the
ensemble is composed of simple, few-level quantum
systems, or complicated, many-level ones is not im-
portant, variables can always be grouped so that all
cores of the SMs are fully utilized. Therefore the
methods presented here and the conclusions drawn
about the applicability and efficiency of GPUs to
solve the problem are relevant to a much wider,
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more general field than pulse propagation in res-
onant nonlinear optics. Performance gains make
the effort of programming computations to execute
on GPUs worth while, especially because program-
ming tools aimed at providing easier access to the
computational powers of GPUs are being developed
at a fast pace and becoming available from high
level languages such as Matlab.
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Nagy, Comput. Phys. Commun. 182, (2011) 1467-1476.

[17] J. M. Alcaraz-Pelegrina, P. Rodŕıguez-Garćıa, Comput.
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