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We propose and investigate theoretically a novel scheme for transient slowing and cooling of two-level quan-
tum systems with narrow transition linewidths by a sequence of counterpropagating, short, linearly polarized
laser pulses with special frequency chirping. Both internal degrees of freedom and the motion of the center of

mass of quantum systems are considered quantum mechanically.

Interaction with a large number of laser

pulses during the decay time permits a drastic decrease in the cooling time of such systems. © 1996 Optical

Society of America.

1. INTRODUCTION

Lately there has been considerable progress in laser ma-
nipulation, including slowing, cooling, and trapping of
atoms.'™ Important applications of laser cooling include
high-resolution spectroscopy and frequency standards'?
with cooled and trapped atoms as well as the construction
of novel forms of matter with cooled atoms trapped in the
optical lattices induced by the interference of multiple la-
ser beams.?8

The spontaneous emission of the excited atoms pro-
vides a dissipation mechanism for the standard schemes
of Doppler cooling by laser radiation.”® This is true for
more complicated schemes of laser cooling as well. With
more complex schemes, both the Doppler, Tp
= #I'/(2kp), and the recoil, Ty = (fik)%/(Mkpg), limits
for the laser (one-dimensional) cooling can be overcome
(see, for example, Refs. 9 and 10). In these formulas I' is
the spontaneous emission rate from the excited atomic
state, k; is the wave number of the laser radiation, and
kp is the Boltzmann constant. It is important to note
that spontaneous emission not only plays the role of an
energy-dissipation mechanism leading to thermal equilib-
rium with a reservoir but, owing to a random walk in mo-
mentum space, provides a mechanism for the atoms to
diffuse into the zero-velocity trapped state, as described
in Refs. 9 and 10.

In some experimental situations, however, the sponta-
neous decay time of excited quantum systems (QS’s) is too
long, and the standard schemes for laser cooling cannot
be readily applied. Such a situation takes place, for ex-
ample in the case of QS’s with narrow transition widths
(metastable atomic states), for which the time of flight
through the interaction region with the laser field is of the
order of the spontaneous relaxation time. The use of
trains of laser pulses with durations shorter than the re-
laxation time of the QS provides means for effective laser
manipulation of the QS in such experimental situations.

Interaction of the laser pulses with the QS in the cases
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mentioned above has essentially a transient character
and needs a full quantum-mechanical description of both
the internal degrees of freedom and the motion of the cen-
ter of mass of the QS.!

Splitting of the atomic wave packet in velocity space as
the result of the action of an ultrashort laser pulse in the
coherent regime of interaction was obtained in the re-
search reported in Refs. 1, 11, and 12. A transient re-
gime of cooling by a sequence of short laser pulses from a
narrow-band traveling-wave field that is periodically
turned on and off under the condition that the atoms de-
cay completely between the pulses was investigated in the
study cited in Ref. 13.

A novel scheme of transient laser cooling of a QS with a
narrow transition linewidth by a sequence of counter-
propagating short laser pulses with special frequency
chirping is proposed and investigated in this paper.

The laser cooling scheme proposed consists of two
steps. First a velocity-selective excitation of the en-
semble of a two-level QS is produced by a laser pulse with
a Gaussian envelope [shown in the Fig. 1(a), with fre-
quency chirping presented in Fig. 1(b)]. This pulse is
termed asymmetrically chirped. The asymmetrically
chirped laser pulse excites simultaneously the part of the
ensemble of the QS’s that have velocities v, for example,
v > v, (v, is the central velocity of the Maxwellian veloc-
ity distribution of the ensemble of QS’s), in the laboratory
reference system opposite the pulse propagation direction
and pushes these QS’s toward the central velocity v, by
transmitting to them a momentum #k; (k; is the wave
vector of the laser pulse), leaving the other QS’s in the en-
semble (with v < v,) in their ground states. This initial
preparation of the ensemble of QS’s by asymmetric exci-
tation permits the shifting, afterward, of the velocity dis-
tributions of the excited and unexcited QS’s toward each
other in velocity space by acting with successive counter-
propagating pulses. These pulses have frequency chirp-
ing [shown in Fig. 1(c)] and are termed symmetrically
chirped pulses. More precisely, the second laser pulse
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Fig. 1. (a) Time dependence of the normalized Rabi frequency
QOp of a Gaussian laser pulse. (b) Time dependence of the nor-
malized detuning €(¢) = w;(¢) — w, for a QS having zero veloc-
ity in the laboratory reference frame in the case of an asymmetri-
cally chirped Gaussian laser pulse. (c) Time dependence of the
normalized detuning € (¢) in the case of a symmetrically chirped
Gaussian laser pulse.

with symmetrical frequency chirping and counterpropa-
gating to the first asymmetrically chirped one interacts
with all velocity groups of QS’s. This pulse excites the
QS’s with v < v, and pushes them toward the central ve-
locity in the direction of wave vector ky by transmitting to
them a momentum #iky. The same laser pulse simulta-
neously deexcites the QS’s with v > v, previously excited
by the first pulse and pushes them in the direction oppo-
site that of ky by transmitting to them a momentum
— #k,. In what follows, |k;| = |ky| = %, is assumed for
the sake of simplicity.

Transmission of mechanical momentum from the elec-
tromagnetic field to QS’s in the manipulation scheme de-
scribed above takes place during successive stimulated
excitation and deexcitation of the QS’s by counterpropa-
gating laser pulses with durations of the trains of pulses
shorter than the relaxation times of the QS’s. It is nec-
essary for our manipulation scheme that a QS being ex-
cited (deexcited) by a laser pulse transit into a quantum
state in which the next laser pulse counterpropagating to
the first one can deexcite (excite) this QS. This means
that the QS’s have to transit to the initial quantum state
after each act of the excitation—deexcitation process.

The application of laser pulses linearly polarized in the
same direction seems to be the most convenient laser con-
figuration for the scheme of transient laser manipulation
described above. In this configuration the laser fields
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provide transitions between the sublevels of QS’s with the
same magnetic numbers (having their quantization axes
along the direction of the electric strength vectors of the
laser fields). However, this configuration restricts use of
the method of momentum families,*"16 which essentially
simplifies the analysis of the generalized Bloch equations
in the case of the ¢ < ¢~ configuration of circularly
polarized counterpropagating laser pulses. Note that the
theory of laser cooling in the field of counterpropagating
linearly polarized cw laser fields in the weak-field limit
was developed in the research reported in Refs. 17 and 18.
This approach corresponds to the assumption of indepen-
dent action of the counterpropagating laser beams. Asis
shown in the present paper, the restriction of the weak-
field limit is no longer important if the counterpropagat-
ing laser pulses with suitably chirped frequencies do not
overlap and the conditions of the adiabatic passage (AP)
regime'? are fulfilled.

This paper is organized as follows: In Section 2 we de-
rive the set of generalized Bloch equations in the momen-
tum representation describing the behavior of two-level
QS’s in the field of short trains of linearly polarized coun-
terpropagating laser pulses in the density-matrix formal-
ism. The evolution of the density-matrix elements owing
to spontaneous emission is discussed as well. The re-
sults of the laser manipulation of QS’s are presented in
Section 3, based on the numerical simulation of the equa-
tions derived. In Section 4 we summarize the results on
laser slowing and cooling of two-level QS’s with narrow
transition lines obtained in the present paper. The
theory of the AP regime is developed in Appendix A,
which describes the interaction of a linearly polarized la-
ser pulse with a two-level QS that is initially in an arbi-
trary superpositional quantum state.

2. MATHEMATICAL FORMALISM

We begin with the equation for the density matrix
p(rn, r'y') of the QS, with r being the coordinate of the
center of mass and 7 describing the internal motion of the
QS (Ref. 20):

J N N N
it~ p=(H—H"*)p+itiRp, 1)

where H = fIO(r, 7 + V(r, 7)), where ﬂo(r, 7 1is the
atomic Hamiltonian:

. N 12
Ho(rﬂ]) = HO(”) - ﬁA?

Ho(n) () = Eniba(m). @)

Here A is the Laplacian and the interaction Hamiltonian
V in the dipole approximation is V(r, n) = —&(n)E(r),
where d(7) is the dipole moment operator of the QS and
E(r) is the strength of the laser field. E, is the energy of
the nth eigenstate of the QS with wave function ¢, , and
m is the mass of the QS. The operator R in Eq. (1) de-
scribes interaction with the vacuum fluctuations that
cause relaxation of the QS. The operator H' is the same
as H but acts on the variables with the coordinates r’
and 7'.
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The strength E(r, ¢) of the field of two counterpropagat-
ing linearly polarized laser pulses is

E(r, t) = 1/26] A(t)expli(wt — kyz)] + A(f)
X expli(wt + krz)] + c.cl}, (3)

where z is the coordinate along which one-dimensional
slowing and cooling is under consideration. e is the unit
vector of polarization of the fields, A(¢) and A(¢) are the
amplitudes of the laser pulses with frequency o and wave
number & propagating in the positive (+) and negative
(—) directions, respectively, of the Z axes.

We expand the density matrix p(r#, r’ ') over the dis-
crete set of eigenfunctions i, (7) of the quantum states |n)
of the internal motion of the QS and over the continuous
spectrum of eigenfunctions exp(i«z/%) of the free motion
of the QS with momentum «:

p(rn, r'n’")
= fJ deK’[Z (K, &' O, (), (")
X exp[ — i/h(E, — E,,)t]

X exp[ilfi(kz — K’z’)]]. (4)

A. Evolution Owing to Stimulated Transitions

In what follows we neglect the relaxation processes dur-
ing the interaction with laser pulses, assuming the dura-
tion of each laser train to be significantly shorter than the
relaxation time of the QS. After substitution of Egs. (3)
and (4) into Eq. (1), and using the orthonormality of the
functions ¢, and the orthogonality conditions for the func-
tions exp(i«z/#), we obtain

2 + i (k% — k'?)

a; (K’K,)
ot 2m a

i .
=2z [2 diplapn(k + kp k") A exp(iot)

+ay,(k — kp,k') A* exp(—iwt)

+a,,(k— kp,k') A exp(iot)

+ apy(k + kp k") A* exp(—iwt)]
- E dgmlanm(x, k" + kp) A* exp(—iwt)

+ ay,(k,k" — kp) A exp(iot)

+ a,,,(k,«" — k1) A* exp(—iwt)
+ ap,(k,k' + k) A expliot)]

X exp{it/hi[(E; — E,) — (E, — E,)]1}, (5)

where d;; is the dipole-moment matrix element for the
transition between the |i) and the |j) quantum states.
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The equations obtained are valid for QS’s with arbi-
trary numbers of levels in the field of two linearly polar-
ized counterpropagating laser pulses. In the case of a
two-level QS we haven, m, 1, g = 1, 2.

The relation d;; = d;;(1 — &;), j = 1, 2, takes place
for an isotropic QS, where §; is Kronecker’s delta func-
tion. We obtain from Eq. (5) in the momentum represen-
tation and in the resonant approximation (rotating-wave
approximation) the following set of equations for the non-
diagonal density-matrix elements p;o(«k, k') = aq9(k, «')
exp(—iet) and for the elements aq1(k, «') = n{(k, ")
and ag(k, k') = nay(k, k'):

d
— + &9k, k') |pra(k, k')

i +
= ﬁdm{ Alngg(k + kp, k') — ny(k, " — k)]

+ A[nzz(K —ky, k") — nulx, & + k)],

n(x, k')

[— + &k, k')

i + -
= ﬁ{dm[le(K + kr, k')A + py(x — ky, k') A]

— dig*[pre(k, k" + k) A* + pra(k, k' —kp) A*]},

d
|:_ + g(K, K,) n22(K7 K’)
at
= L dgilpral — k., ) A*
%% 21LP12{ K L, K
+ pia(k + ky, &) A¥] = do*[par(x, &' — k) A
+ poalk, k' + kyp) A]}, (6)
where

€(t) = w(t) — wo,

(Ey — Ey)/t,

wo

"N o— 5 ih 2 12
§12(K’ K) 1€ + %(K - K )’

1 h
E(k, k') = ;—m(K2 -

The functions n(x) = ny(k, k' = k) and ny(x)
= ngo(k, k' = k) are the probabilities of finding the QS
with momentum p = Ak in the ground or the excited
state, respectively, and describe the populations of these

states. We have for these functions, putting xk = «’ into
Egs. (6),
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— nq(x)
at

i +
= ﬁ{dm[Pm(K + kp, k) A

+

+ por(k — kr, k) A — Al— dyg*[pias, K + k) A*

+ pro(k, Kk — k) A*]},

gnz(K)

1 +
= %{dm[f’lz(K — kL, k) A*

+ pro(k + b, k) A — A — A¥]

= do1*[par(k, k — kp) A + poy(x, k + kr) A,

J
5 + &19(k, k + kL) |p1a(k, k + kp)

— o duof Alnal + kp) = na(x)]

+ A[nzz(K —kr, k+ kp) — nu(x, k+ 2k}
(7

It is easy to show that

p1e(k, k') = por*(k', k).

We assume that no overlap takes place between the
counterpropagating pulses that we are considering: The
ensemble of QS’s interacts with only one laser pulse at a
time. If, for instance, A = 0, then we have a closed set
of equations for n(x), no(k + k), and po(k, k + k), as
follows from Egs. (7). The same is true for the case of
A = 0. In the latter case a closed set of equations for
nq(x), ngo(k — k), and pia(k, k — k) follows from Egs. (7)
by substitution: k; — —k;, A — A.

We have to use as the initial conditions for the solution
of Eqgs. (7) for each subsequent laser pulse the values of
the QS parameters obtained after interaction with the
previous pulse counterpropagating to the current one.
So, for example, we need to know the value of
p1o(k, k + k) obtained after the interaction of the QS
with the A pulse to calculate the result of its interaction
with the following A pulse from Egs. (7). To do this we
have to solve Egs. (7) for pjs(, k + k) in the field of the
A laser pulse when A = 0:

J
i E19(k, kK + kL) |pralk, k + k)

= iOp[noo(k — kr, & + kr) — ny(k, & + 2k1)],
(8)

QOp = (d19/2h) A are the Rabi frequencies.

The density-matrix elements nqyo(x — &, k + k) and
nq1(k, k + 2k;) appear in Eq. (8). These elements are
diagonal with respect to the internal transitions and non-
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diagonal with respect to the transitions between the
quantum states of motion of the center of mass; they de-
scribe multiphoton processes of absorption (emission) of
photons from one laser pulse and emission (absorption)
into another counterpropagating one.

It is clear that the number of equations to be solved for
the density-matrix elements grows with an increase in
the number of successive pumping laser pulses, similarly
to the case of a QS interacting with a standing electro-
magnetic wave."1%17  The only difference between the
cases discussed in those papers and the one in the present
paper is the absence of a standing laser field periodically
modulated in space owing to the lack of overlap of the
counterpropagating laser pulses assumed in our consider-
ation. Note that no localization effects of the QS take
place because a standing laser field is absent from our
manipulation scheme.

Assuming that the laser pulses are frequency chirped,
we consider the case when the conditions of the AP re-
gime are fulfilled (see Appendix A, where the theory of the
AP regime is developed for interaction of the laser pulse
with the QS initially in a superpositional quantum state).
_ It is important to note that the population difference
Zy(t) = no(k = k) —ni(x) at the end of the
frequency-chirped laser pulse (¢ — +%) does not depend
on the initial values of the nondiagonal density-matrix el-
ements in the first approximation of the AP approach, as
follows from Eqs. (A6) of Appendix A. So we have to
solve Egs. (7) to determine the populations n,(x) and
no(k + kp) lor ng(k — k)] after the action of an A (or
an A) pulse, using the values of n,(x) and ny(x + k) ob-
tained after the action of the previous A (or A) pulse as
the initial conditions. The initial value of the nondiago-
nal matrix element pyo(k, k + k1) [or pia(k, kK — k)] does
not significantly influence the values of the populations
obtained after interaction with the laser pulses in the AP
regime. So in the AP regime of interaction we can re-
strict our consideration to solving only Eqs. (7) instead of
considering the set of Egs. (8) and those generated from
them and obeying the development of the nondiagonal
density-matrix element pja(x, k + kr) [or pio(k, k — kp)]
in the field of the A (or the A) pulse. This peculiarity of
the AP regime in the case of suitably chirped laser pulses
essentially simplifies the mathematical consideration of
the interaction of QS’s with counterpropagating trains of
laser pulses and allows us to consider the actions of the
counterpropagating laser pulses independently from each
other with no restrictions on the intensities of the laser
pulses as in the weak-intensity approach.!® Also, the co-
incidence of the results of calculations for velocity distri-
butions in the density-matrix formalism of the present
paper, in which independence of actions of the counter-
propagating pulses is assumed, and those of Ref. 21, in
which the formalism of the wave functions was used,
clearly shows the correctness of this statement.

A. Evolution Owing to Spontaneous Emission

Spontaneous emission is assumed to take place mainly af-
ter the action of the counterpropagating trains of laser
pulses and not during their interaction. So we can con-
sider that this process occurs in the absence of laser ra-
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diation. This essentially simplifies the theoretical con-
sideration. We have to solve the following equations
describing the evolution of the populations of the QS’s
that is due to spontaneous emission:

9 (k) = (na(x))

gt "V T

d

ﬁng(K) = - %:); 9)
ik

(nq(k)) = f LF(K')nz(K + «')dk’, (10)
—tiky,

where T is the spontaneous decay time and F(«')d«’ is
the probability that the spontaneously emitted photon
with linear polarization will have its momentum between
k' and «’' + d«’' along the Z-space axis of the laser
manipulation!”:

Poo = (1o <
(k) = v E .
We obtain for the population of the ground state after

relaxation of the QS from the excited state [see Egs. (9)]

nl(Ky - +OO)

fiky,

=nqy(«,0) + f F(«')ng(k + «',0)dx’, (11)

—tiky,
where n1(x,0) and ny(x,0) are the values of the popula-
tions obtained at the end of the previous cycle of laser ma-
nipulation.

3. RESULTS AND DISCUSSION

We consider laser pulses that have linear frequency chirp
in the process of cooling described above. The frequency
detuning € 5(¢) from resonance for such a laser pulse is

€19(K,t) = o — 0o + 2yt ¥ fikx/m, (12)

with + corresponding to the A pulse with detuning ¢
and — to the A pulse with detuning ;. Here the fre-
quency shifts = Ak «/m that are due to the Doppler effect
have been included in the detunings e o.

The scheme of manipulation is as follows: An
ensemble of QS’s which are initially in the ground
state: ng(k, t = —») = 0, with equilibrium Maxwellian
distribution of the ground-state population n(v/vg, ¢
= —w) = ny(v/vg) on the dimensionless velocity
v/vg = hik/(mvg) with the maximum atv = v,:

no(v/vg) = exp[ —(v/vg — v./vg)*/q?],

77_1/2qu

13)

is irradiated by subsequent laser pulses A and A that
have symmetrical frequency chirps [see Fig. 1(c)].
vg = hkp/m is the recoil velocity and ¢ = vyp/vg, where
vy is the equilibrium thermal velocity of the ensemble.
Gaussian intensity envelope I;(¢) is assumed for laser
pulses with Rabi frequency Qx(¢) and duration T:
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1 2

2

t/TR

Qg(t) = QW) exp , (14)

TL/TR

where 7 = (kpvg) L.

The parameters of the laser pulses are chosen so that
the conditions of AP are fulfilled and the spontaneous de-
cay of the excited QS is negligible during the trains of
counterpropagating laser pulses. Thus, slowing of the
ensemble takes place and the initial velocity distribution
is pushed to one having a central velocity v, = 0. The
resulting velocity distribution of the ensemble after the
action of 10 (an even number) laser pulses A and A is
shown in Fig. 2. This figure clearly demonstrates the pro-
cess of slowing by frequency chirped pulses in AP regime.

Let us now treat cooling of the ensemble with the ve-
locity distribution obtained by considering this distribu-
tion as an initial one.

The first laser pulse applied for cooling (the 11th from
the beginning of the manipulation process) is assumed to
be an asymmetrically chirped A pulse [see Fig. 1(b)].
The detuning €,(«, ¢) passes through zero during the fre-
quency chirping of the laser pulse, depending on the ve-
locity of the QS. The chirping can be performed in such a
way that €/(k, ¢) passes through zero only for a QS mov-
ing from the left to the right (with x > 0) in the labora-
tory reference frame. Transition to the excited state
takes place for these QS’s, which are initially in the
ground state. At the same time, the QS’s moving from
the right to the left (with « < 0) stay in their ground
states, far from resonance with the laser field [Fig.
3(a)l. Then we use laser pulses with symmetrical fre-
quency chirping to push the distributions of the excited
and unexcited QS’s toward each other. The resulting ve-
locity distributions of QS’s in the excited and the ground
states after the action of 15 laser pulses (with the first
pulse being asymmetrically chirped and with the other 14
being symmetrically chirped and propagating in the posi-
tive and the negative directions of the Z axes along which
the cooling is being performed) are shown in Fig. 3(b).

At this point of interaction, relaxation of the excited

1.1 T - —
1.0 -
0.9 -
0.8
0.7 +
0.6 |

0.4 |

02 |-
0l
0.0

State probabilities

VIR

Fig. 2. Velocity distribution of the ensemble of two-level QS’s
after the action of 10 symmetrically chirped counterpropagating
laser pulses with Gaussian envelopes [see Eq. (14)] and with lin-
ear frequency chirp: w;(t) = wy + 2¢1k vgt/7r. The dashed
curve is the initial Maxwellian velocity distribution of the en-
semble, described by Eq. (13). The parameters applied are
c1=8m; Qg™ = 127, 7, = 75,9 = 10, and v /vy = 10.
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Fig. 3. Velocity distribution function of the ensemble of two-
level QS’s in the ground (n;) and in the excited (n,) states: (a)
After the action of the first asymmetrically chirped laser pulse
[see Fig. 1(b)]. The dashed curve represents the velocity distri-
bution of the QS obtained after the slowing process (see Fig.
2). (b) After the action of 14 subsequent counterpropagating
symmetrically chirped laser pulses. (c) The intermediate quasi-
equilibrium velocity distribution function of the ensemble after
the first relaxation to the ground state. The dashed curve is the
same as the solid curve in Fig. 2.

QS’s to their ground states is assumed to take place. The
resulting equilibrium velocity distribution obtained by in-
tegration according Eq. (11) is shown in Fig. 3(c).

In the second step, as in the first one, we perform an
excitation of nearly the half of the ensemble of QS’s by an
asymmetrically frequency-chirped laser pulse [Fig. 4(a)]
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and use laser pulses with symmetrical frequency chirping
to push the distributions of the excited and unexcited
QS’s toward each other [Fig. 4(b)]l. The final resulting
velocity distribution after the second relaxation process is
shown in Fig. 5. It displays narrowing of the velocity dis-
tribution, i.e., cooling of the ensemble of QS’s. This is the

10
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Fig. 4. Velocity distribution function of the ensemble of two-
level QS’s in the ground (n;) and in the excited (n,) states: (a)
After the action of an asymmetrically chirped laser pulse applied
after the first relaxation process, the 16th from the beginning of
the cooling process. (b) After the action of 8 symmetrically
chirped laser pulses applied after the first relaxation process, the
24th ones from the beginning of the laser cooling, with the 1st
and the 16th asymmetrically chirped.
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Fig. 5. Final quasi-equilibrium velocity distribution of the en-
semble after the second relaxation process (the first cooling
cycle).
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first cycle of laser cooling. Repetition of this cycle can
lead to significant cooling of the ensemble of QS’s. The
analysis shows that the slope of the final velocity distri-
bution depends on the duration and the peak intensity of
the laser pulse.

4. CONCLUSIONS

To summarize, we have presented the results obtained by
fully quantum consideration of both the internal degrees
of freedom and the motion of the center of mass of a QS
with a narrow transition linewidth in our novel scheme of
transient slowing and cooling by frequency-chirped coun-
terpropagating short laser pulses.

The theory of AP has been developed in this paper for
QS’s initially in an arbitrary superpositional quantum
state. Based on this theory, it has been demonstrated
that in the case of short counterpropagating frequency-
chirped laser pulses in the AP regime of interaction there
is no need for restrictions such as those of the weak-
intensity approach. This simplifies a fully quantum de-
scription of the motion of a QS in a field of short trains of
counterpropagating frequency-chirped laser pulses.

Slowing of two-level QS’s has been demonstrated by
successive action with short, symmetrically chirped coun-
terpropagating laser pulses. Cooling of the ensemble of
QS’s with near-zero central velocity obtained after the
slowing process was accomplished by application of asym-
metrically and successive symmetrically chirped laser
pulses. The former, applied first to the ensemble of QS’s
in the ground state, excites only the half of the ensemble
of QS’s with positive (or negative) velocities in the labora-
tory reference frame and leaves the other half of the en-
semble in the ground state. Subsequent application of
symmetrically chirped pulses results the shifting of the
excited and the unexcited parts of the velocity distribu-
tions of the QS’s toward each other. Cooling of the en-
semble takes place after the spontaneous transition of the
excited part of the ensemble to the ground state. The
method proposed can provide effective cooling of the en-
semble of QS’s during a few cooling cycles.

If, for an estimation of the pulse duration, we use pa-
rameters corresponding to fine-structure transitions of
heavy ions!®: m = 200 amu, T; = 10™* s, and 2wk,
= 350 nm, we obtain 7, = 75 =m/(hk?) =98
X 1078 s for the duration of the laser pulses used in our
simulations. The number of symmetrically chirped
pulses of nanosecond duration applied after the asymmet-
ric excitation and before the relaxation of the QS’s takes
place is of the order of 10%. This is also the factor by
which the cooling time is reduced, compared, for example,
to the transient cooling applied in a storage ring.!®> So
the interaction of a QS with a large number of pulses dur-
ing the decay time greatly reduces the cooling time by
providing effective cooling of the QS within a few cycles.

It is important to note that the bandwidth of the asym-
metrically chirped pulse has to be restricted when selec-
tive excitation is to take place in an ensemble of QS’s.
That is, the bandwidth of the asymmetrically chirped la-
ser pulse has to be less than the width of the Doppler-
broadened absorption line of the QS that is being cooled.
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The minimum temperature obtainable by the cooling
scheme proposed in the present paper, with the asymmet-
ric laser pulses of duration 7;, = 7 used in our simula-
tions (see also the estimations above) is limited by the
temperature T'p , which corresponds to the recoil limit of
the laser cooling. The latter one coincides in our case
with the temperature T; = #/(7 kp) determined by the
bandwidths of the laser pulses. The temperature 7', will
be the limiting temperature for our cooling scheme in the
case of asymmetric laser pulses with shorter durations
when 7 L < T R -

Note that the above-mentioned restriction on the band-
width (duration) of the asymmetric pulses is not impor-
tant in the case of symmetrically chirped pulses, which
excite and deexcite all the QS’s in the ensemble in the AP
regime under consideration. The only additional re-
quirement is that the frequency chirping of these pulses
be produced to include not only the Doppler-broadened
absorption line of the QS but the bandwidth of the laser
pulse. This situation is similar to the one described in
Ref. 22 for a homogeneously broadened atomic system, in
which the picosecond frequency-chirped laser pulses cre-
ate an inversion profile that is far narrower than the
pulse spectrum.

APPENDIX A: THEORY OF ADIABATIC
PASSAGE WITH ARBITRARY INITIAL
CONDITIONS

It is convenient in the AP regime to use the effective spin
vector formalism in which the dynamic response of a two-
level QS to a driving electromagnetic field, for example

A (A), apart from relaxation processes is desgribg:d by
the generalized Bloch equations for the vector R ( R):

JR/dt = QX R, (A1)

where

Q(t) = =61 QOR(E) + 650(8),
0%(t) = O2(t) + 0%(0);
X(k, £) = pra(k, k * k) + pro*(k, & = k),

Y(k, t) = ilp1g*(k, & * k) — pro(k, & + k)],

X

Z(k, 1) = ny(x = k) = ny(x),
where the effective detuning E(t) is

0 = (i, K+ k) =i[e(t) T kv], v = hrim.

We have the following equations from Eq. (A1) for the
functions X , 1?, and Z:
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C X-av

ot = ’

O Y- —0X + 0pZ

E - R%>

- —apY A2
4= r T (A2)

The assumption of slow variation in time of the angle
formed by the vector of the generalized Rabi frequency Q
(from now on we drop the superscripts for the sake of sim-
plicity) with the Z axis in abstract space with respect to
Rabi frequency Oy forms the basis of the AP
approximation!®21:23;

|60 — 69
= <

1, (A3)
|v] 070,

where the overdot denotes time derivation.

Another assumption that generally was made in the
earlier considerations of AP2425 wags that the QS is in a
pure state initially, before the interaction with the laser
pulse. However, the situation when the QS is initially in
a superpositional state is the case that often occurs in the
schemes of interaction with trains of laser pulses. We
present in this appendix the results of the theory of AP
developed for interaction of laser pulses with QS’s ini-
tially in arbitrary superpositional states. The laser
pulses are assumed to be frequency chirped.

It is convenient to transform the reference system in
abstract space into one obtained by rotation of the coordi-
nate system around the Y axis with the new Z’ axis coin-
ciding with the vector of the generalized Rabi frequency
Q. This transformation has the following form:

X' = = X cosla(t)] ¥ Z sin[a(t)],
Z' = = X sin[a(t)] = Z cos[a(t)],
Y =Y, (A4)

where a(¢) is the angle between the instantaneous direc-
tion of the vector (¢) and that at the beginning of the
interaction at ¢ — —o. The upper sign corresponds to
the case when the initial effective detuning 6(t = —)
> 0. The lower sign is valid for negative initial values of
the detuning 6(¢ = —») < 0.

The set of Eqgs. (A2) has the following form in the new
coordinate system after transformation into the new time
variable

¢
B J Q(t')de':
to

X +vpzZ = FY,
Y = =X,

Z'r

v(BX', (A5)

where the overdot denotes derivation over the time vari-
able B.
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The small parameter v < 1 [see inequality (A3)] ap-
pears in the equations obtained. The smallness of this
parameter allows us to use perturbative methods for ap-
proximate solution of Egs. (A5):

X'=x0+x1+x2+...,
Y,:y0+y1+y2+...,

Z,:Zo+21+22+...

>

where ¢, (¢ =x,y,2z) is of the order of »" and
n=20,1,2, ...

The solution of Egs. (A5) in the zero-order (n = 0) ap-
proximation after their transformation into the old non-
rotating coordinate system is as follows:

o(t
Xo(t) = * #t)) [X(—)cos(B) + Y(—)sin(B)]

Qg(t)
Q)

T

Z(—=),

Yo(t) = * X(—o0)sin(B) + Y(—*)cos(B),

(¢ Qp(t
Zo(t) = = %Z(—w) + QR(E)) [X(—c0)cos(B)
T Y(—)sin(8)]. (A6)

The relations X(—«) = Y(—) = 0 take place when the
QS is in the ground or in the excited state initially, and
we obtain the well-known solutions for the population dif-
ference Z(¢) and the nondiagonal matrix element
p=(X+iY)/21124%

As follows from Egs. (A4), corresponding to the zero-
order approximation (AP regime), the influence of the ini-
tial values X(—) and Y(—») of the nondiagonal elements
of the density matrix is negligible at the end of the laser
pulse when Qz(¢ — +x) = 0.

Note that new features of the process of interaction of
the laser pulse with the QS appear when the latter is ini-
tially in a superpositional state, ie., X(—«) # 0,
Y(—x) # 0, or both. For example, an oscillation regime
can be predicted in this case that is absent in the case of
X(—x) = Y(—»o) = 0. This can influence the behavior of
the internal motion of the QS as well as the motion of its
center of mass. One can predict other interesting fea-
tures of the propagation effects by taking into account the
variation of the laser pulse that is due to interaction with
the QS.26

*On leave from Research Institute “Lazerayin Tech-
nika,” Yerevan State University, Yerevan, Armenia.
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