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1. INTRODUCTION

The mechanical effects of resonant laser radiation on free
atoms have been studied extensively for more than two
decades (see Refs. 1-5 and references therein). During
this time, most of the attention has been paid to the ef-
fects of stationary-state laser fields, i.e., fields whose am-
plitudes (and, in most cases, frequencies) do not change
during the interaction (e.g., various standing-wave con-
figurations). Several interesting effects have been dis-
cussed, however, where changing laser fields play an im-
portant role. Deflection of atomic beams by means of
absorption and stimulated emission from chirped laser
pulses,® deflection of atomic beams with intense laser
pulses retroreflected from a mirror to form standing
waves,” Doppler cooling in pulsed fields,® adiabatic cool-
ing in slowly decaying standing waves,*'° coherent beam
splitting in multilevel systems, using a counterintuitive
pulse sequence in the adiabatic-passage regime,'’'2 and
manipulation and cooling by means of chirped laser
pulses'®1* are some examples.

Most of the effects mentioned above (with Refs. 7 and 8
being the only exceptions) involve slowly changing fields
that induce changes in the adiabatic-passage regime.
These effects are also coherent processes, which might be
hampered by spontaneous emission. Some of these
methods (e.g., Refs. 11 and 12) are affected very little by
spontaneous processes because they involve only ground-
state atoms and are thus largely immune to incoherent ef-
fects. Other methods for deflection and manipulation of
atoms (see Refs. 6, 13, and 14) do not share this property.
Because they involve atoms in their excited states, they
may be greatly influenced by spontaneous emission.
While the changing of the fields should be slow in these
processes compared with the Rabi frequency, and there-
fore with sufficiently strong fields the adiabatic passage
regime may in theory be preserved even if the processes
last only a fraction of the spontaneous lifetime of the
atom, realistic experimental situations may still prevent
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the usage of these methods of manipulation for most at-
oms. The reason for this is that it may not be possible to
conclude the processes with existing short-pulse lasers in
a fraction of a spontaneous lifetime. It is therefore ad-
visable to investigate how spontaneous emission might
affect the application of these proposed methods.

In our work we are concerned with the proposals of
Refs. 6, 13, and 14 for deflection and manipulation of at-
oms. The principal idea in these proposals is to use coun-
terpropagating laser pulses, whose frequency is chirped to
excite and de-excite the atomic ensemble. These pulses
excite and de-excite the whole of the atomic ensemble in
the adiabatic-passage regime, and the atoms receive a
mechanical momentum of 27k (two-photon momenta)
with each absorption—stimulated-emission process. To
carry the treatment one step further, we relax the re-
quirement that the whole process take place during a
time when spontaneous emission is negligible. The as-
sumption we make is that spontaneous emission is negli-
gible during the action of a single laser pulse but not be-
tween the pulses. We thus get valuable predictions
about what happens if the action of the series of laser
pulses continues for longer than the spontaneous lifetime
of the atom. These proposals are similar to that realized
in Ref. 15, in which atoms are subject to a series of II
pulses from alternating directions. The greatest handi-
cap of that scheme is that producing an exact inversion of
the populations throughout the atomic ensemble is diffi-
cult. The use of chirped pulses in the adiabatic-passage
regime is much more robust and largely immune to the
handicaps of the II-pulse method. Our analysis, how-
ever, is valid also for this case if all the atoms can be as-
sumed to experience a perfect Il pulse.

2. MODEL

We consider the motion of a beam of two-level atoms
through a region where the atoms interact with counter-
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Fig. 1. Schematic arrangement of the situation considered; a
collimated atomic beam crosses a region where it interacts with
short, chirped laser pulses from alternating directions.
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Fig. 2. Time sequence of the laser pulses; one elementary cycle
lasts from the beginning of one pulse at ¢; to the beginning of the

third pulse at t3. The arrows on top depict the direction of
propagation of the pulses.

propagating, short, frequency-chirped laser pulses. The
direction of propagation of the laser pulses is perpendicu-
lar to the direction of propagation of the atomic beam
(Fig. 1), and the frequency of the pulses is assumed to
pass through the resonance frequency of the two-level at-
oms. Furthermore, the pulses are assumed not to over-
lap each other in the region of interaction, i.e., atoms in
this region experience a series of separate pulses from al-
ternating directions. One pulse propagates toward the
positive x direction, then a time 7; later one propagates in
the opposite direction, and after a time 75 this elementary
cycle is repeated (Fig. 2). Atoms enter the interaction re-
gion at random times, (i.e., the beam of atoms is assumed
to be continuous), and the time they interact with the la-
ser pulses is simply the time needed to cross the interac-
tion region, which is determined by the longitudinal ve-
locity. It is assumed that this interaction time is long
compared with the cycle time u = 7; + 7. We are con-
cerned only with the description of the transverse motion
of the atoms; their longitudinal velocity along the beam is
not treated in the equations, because it only determines
the interaction time with the laser pulses.

To treat the transverse motion of atoms along the x
axis (the direction of the propagation of the laser pulses),
we should try to solve the Schrodinger equation for the
density-matrix elements ¢; ;(pq, p2), which determine
the state of the atoms in the x direction. Here the indices
i, j € {g, e} represent the internal states of the two-level
atom (ground and excited states), and the wvariables
P1, P2 are the momentum variables along the x axis.
The solution of these equations for the case of a large
number of consecutive, counterpropagating pulses pre-
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sents the same problems as for the case of standing
waves, 14 namely, there are large numbers of coupled
equations. To complicate matters further, spontaneous
emission couples an infinite number of density-matrix el-
ements, and the combined effects of the laser pulses and
spontaneous emission produce a set of equations that are
very hard to solve for realistic situations.

It has been shown'3'46 that if spontaneous emission
can be neglected, and the variation of the envelope and
the frequency of the laser pulses is slow enough for the
conditions of adiabatic following to be fulfilled, the prob-
lem may be simplified. In this case the solutions for the
time evolution of the momentum—space distribution func-
tions in the absence of spontaneous emission will be such
that at the end of the laser pulse the distributions of the
ground and excited states will be exchanged and shifted
by 7k in momentum space [i.e., 0, .(p, p, 1) = Q..(p
+ fik,p + hk, ty) and Qeelp + hk, p + hk, t])
= Qg4p, P, t1); see Fig. 2 for the definitions of the
times ¢;, t1]. In other words, all atoms in their ground
states are left in their excited states by the laser pulse
and receive a momentum 7%k, while those in the excited
states before the pulse are all de-excited and receive a mo-
mentum —#%k. Using these results, we may simplify the
problem by considering laser pulses whose duration is
much shorter than the natural lifetime of the atoms and
neglect the effects of spontaneous emission during the ac-
tion of the pulses. We shall retain the effects of sponta-
neous emission between the pulses. This means that our
model is valid only if 7y, 79, Ty > 7,, where 7, is the du-
ration of the laser pulses and T; = I'"! is the lifetime of
the excited state. (I is the spontaneous emission rate of
the atom.) All these simplifications allow the writing of a
simple master equation for the effect of an elementary
cycle of two counterpropagating laser pulses on the
momentum—space distributions of the atoms.

Let us introduce the notations a(z) = @, (2, z) and
b(z) = @, .(z, z) for the distributions of the ground and
excited states of the atom, respectively. We have used
the dimensionless momentum parameter z = p/fik, ie.,
the unit of momentum is the photon momentum. Since
the first pulse in the elementary cycle propagates toward
the positive x direction, the distribution functions at a
time ¢; immediately after the laser pulse are related to
those at the time ¢; (see Fig. 2) just before the pulse by

a(ti7 Z) = b(tl) z + 1)>
b(t1,2z) =a(t;,z —1). (2.1)

The evolution of the distributions from ¢; to ¢, just before
the second pulse, which is due to spontaneous emission,
may be written as

a(ty, z) = a(ty, z) + [1 — exp(—I'ry)]
+1
X f f(z"b(¢1, z + 2")dz’,
-1

b(ty, z) = exp(—T'm)b(¢1, 2). (2.2)

Here we have denoted the probability of the spontane-
ously emitted photon to have a momentum z’ along the x
axis by f(z'). Since the probability of spontaneous emis-
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sion is the same in all directions, this function is simply
the projection of the surface of the three-dimensional unit
sphere to the x-axis. The action of the second pulse coun-
terpropagating to the first one has the effect

a(té, Z) = b(t2) z - 1)7
b(ty, z) = alty, z + 1), (2.3)

while the time 7, elapsing from ¢', after the second pulse
till £, just before the start of the new cycle, has the effect

a(tS’ Z) = a(té’ Z) + [1 - eXp(_F’Tz)]
+1
X J f(z2")b(ty, z + 2")dz’,
-1

b(tz, z) = exp(—I'7y)b(¢5, 2). (2.9

To simplify matters a little further, we write f(z')
= §(z'), i.e., we neglect the recoil that is due to the spon-
taneously emitted photons. Combining Eqs. (2.1)—(2.4)
and introducing the notations P; = exp(—I'ry) and P,
= exp(—I'r) for the probabilities of the nonoccurrence of
spontaneous emission during the time intervals 7; and
79, we may write the cumulative effect of a full cycle of
laser pulses on the distributions as

a(ts, z) = Pia(ty, 2 — 2) + (1 — P1)(1 — Py)a(ty, 2)
+ (1 - PZ)b(t17 z + 2)7

b(ts, z) = Pob(ty, z + 2) + Po(1 — Pyla(ty, 2).
(2.5)

By adding these equations, for the total velocity—space
distribution g(z) = a(z) + b(z) we get

g(ts, z) = b(ty,z + 2) + a(ty, 2)(1 — Py)
+ Pia(ty, z — 2). (2.6)

Equations (2.5) describe the evolution of the velocity-
distribution functions of the atoms at discrete times.
They describe the effect of one elementary cycle of two
counterpropagating laser pulses and the effect of sponta-
neous emission between the pulses. To analyze them
further, we shall consider the evolution of various mo-
ments of the distributions under the action of the laser
pulses. Introducing the notations P, = [a(z)dz and P,
= [b(z)dz, the probabilities for the atoms to be in the
ground state or the excited state (subject to the constraint
P, + P, = 1), we may integrate Egs. (2.5) with respect to
z to get

P,(t3) =1 — Py + P1PyP,(t1), (2.7a)

Pb(t3) = Pz - P1P2Pa(t1). (27b)

It is easy to prove that these equations describe the relax-
ation of the ground- and excited-state probabilities to sta-
tionary values, which are left unchanged by the action of

a full cycle: PS5 = P,(t3) = P,(¢1), 5= Py(ts)
= Pu(ty). From Egs. (2.7) we get
prt— 1P 2.8
e (282
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Py(1 - Py)

st __
Py = 1-P,P, " (2.8b)
It can be seen that Eq. (2.7a) is of the form
P,(t3) = Py + [Py(t1) — P}/1P,Py, (2.9)

and thus the value of the ground-state probability at a
time ¢t = n(7; + 79), where n is the number of full cycles
after the arrival of the first pulse of the first cycle at ¢,
= 0,1is

P,(t) = P5' + [P,(ty) — Pi'lexp(—Tt),

so that P,(¢) — P35’ when t — o.

Turning to the first-order moments of the distributions,
we may multiply Egs. (2.5) by z and integrate to obtain
equations for the average velocities:

(2.10)

Z, = Jza(z)dz, zZy = fzb(z)dz. (2.11)
The relation z = [zg(z)dz = z, + z, is obviously ful-
filled. The evolution of z, and z, is now

Z4(t3) = 24(¢1)(1 — Py + P1Py) + (1 — Py)
X [2p(t1) — 2Py(t1)] + 2P1P,(¢y),
(2.12a)
Zp(ts) = Pa[zp(t1) — 2P(¢1)] + Po(1

- Pl)ga(tl)-

By adding these two equations [or by multiplying Eq.
(2.6) by z and integrating], we get

2(tg) = z4(t3) + 2p(ts) = 2(t1) + 2[P1P,(t1) — Pp(t1)],
(2.13)

for the evolution of the average momentum of the atom
under the action of a full cycle of laser pulses. This equa-
tion has a simple physical meaning; and it could have
been derived by the following semiclassical argument:
The atoms that are in the ground state just before the
first pulse and do not spontaneously fluoresce before the
second pulse (the probability of which is P,P,) receive a
momentum 2%k during the interaction. The atoms that
are in ground state just before the first pulse but decay
before the second pulse do not gain any momentum dur-
ing the cycle. The atoms that are in an excited state be-
fore the first pulse receive a momentum —2#k%. The av-
erage gain in momentum is just 2(P;P, — Pp) in
normalized units.

Remembering that the probabilities P, and P, evolve
toward steady-state values, it is also evident that the av-
erage momentum Az gained in a cycle also has a steady
limit. This value is

(2.12b)

A st __ ﬂ (2 14)
2 T 41 PPy :

and is practically reached after a few times I' "' have
elapsed. This means that the average force acting on the
atoms relaxes to a steady-state value. It can be seen that
the value of the momentum received during a cycle is re-
versed if 7; and 75 are exchanged, which reflects the fact
that exchanging these two intervals is the same as revers-
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ing the directions of propagation of the pulses. The value
of Az®! increases with the difference between 7; and 7.
If 7, approaches zero with 7o being constant, the gained
momentum approaches its maximum value of two-laser-
photon momenta. This behavior may be explained by
noting that this change of momentum depends on P¢’; the
larger this value, the more likely that an atom will be
pushed in the direction of the first pulse, and the less
likely that it will be pushed in the opposite direction [see
Eq. (2.13)]. The behavior of P is such that it increases
at a given value of 7, if 7; decreases or at a given 7 if 7o
increases [Eq. (2.8a)]. This is because an atom that is in
its ground state before the first pulse will be in its excited
state after the first pulse and may decay during ;. The
shorter 7; is, the smaller the probability is that it will de-
cay. On the other hand, if an atom is in its excited state
after the second pulse (either because it was in its excited
state before the first pulse or because it was in its ground
state before the first pulse but decayed during 7,), it has a
chance to decay during 75 and to be in the ground state
before the start of the next cycle. The longer 7, is, the
greater is the probability that it does so. It is thus un-
derstandable that decreasing 7; or increasing 7, both in-
crease P'. If 7; = 7y, the force approaches zero in the
steady-state limit.

Finally, we deduce the evolution of the width o
= z72 — 272 of the velocity distribution. Multiplying
Eq. (2.6) by 22, integrating it, and using Eq. (2.13), after
some straightforward calculations, we obtain

2

0. 2(t3) = 0. %(ty) + 4Py + 1)Q(t1) + W(ty),

(2.15)

where we have introduced the notations
Q = Pyz, — Puzy, (2.16a)
W = 4(P, + P,P,) — 4(P,P, — P,)%2.  (2.16b)

It can be seen from these equations that the changing of
the width of the distribution during a cycle may easily be
negative, i.e., it is possible to imagine situations where
the distribution becomes narrower after the action of two
laser pulses.

As for the long-term evolution, it is obvious that W(z),
being composed only of the probabilities of the ground and
the excited states, has a steady-state value to which it re-
laxes. The quantity @(¢) is proportional to the difference
of the average momentum of the ground-state distribu-
tion and that of the excited-state distribution @
= P,Py(z,/P, — z3/Pp). Using Egs. (2.12), one may
deduce that the asymptotic form of the equation for this
quantity (i.e., the form taken by the equation when
enough time has elapsed so that P, , = Pit,b) is similar to
that of the probabilities

Q(t3) = Q@ + P1Py[Q(t1) — @], (2.17)
with
2P Py(1 — Py)(1 — Py?)

st = . 2.1
(1 PPy 218)

All this means that the long-term evolution of the stan-
dard deviation will be similar to a diffusion:
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0 %(ts) = 0.%(¢) + 4Py + D@ + W' = ¢.%(ty) + K,
(2.19)
i.e., the square of the standard deviation will increase by
the same amount in each cycle. By substitution of Egs.
(2.8), (2.16b), and (2.18) into Eq. (2.19) one may verify
that K is positive for arbitrary values of 7;,75 so that the
long-term evolution of the width of the distribution will be
a spreading.
Finally, with the notations introduced above, we may
write the equation giving the quantity z(n) after n cycles
in terms of the initial values in a relatively simple form:

n—1

z(n) = 2(0) + 26 2[P,(i)Py — Py(i)]

=2z(0) + nAz + 2(P, + 1)

« [P.0) — P P2 000
Pu0) = P —pp e 2

The evolution of the average momentum thus consists of
two separate terms. The second term describes a change
that is constant with each cycle, the cumulative effect of
which is simply proportional to the number of cycles ap-
plied. This constant depends solely on the times 77, 79
that elapse between the pulses. This term describes the
behavior of an atom that has reached the stationary state
with respect to the probabilities P, and P, . The other
term in the equation describes a transient behavior that
is due to a difference between the initial state of the atom
and the stationary state. This term is constant for times
¢t > I'! and may simply be calculated as the convergent
sum of an infinite geometrical series.

The precise time evolution of ¢,2 is not this easy to ex-
press. However, iterating Eqgs. (2.9), (2.12), and (2.15),
we may calculate the evolution of the width of the distri-
bution for arbitrary initial conditions.

It is also appropriate to investigate the domain of ap-
plicability of our model. The predictions of the present
model should be compared with a full numerical simula-
tion of the problem [i.e., without the initial assumption of
perfect adiabatic passage without spontaneous emission,
as in Eq. (2.5)]. Such a comparison can provide valuable
information as to precisely how much larger 7;, 75, and
I' ! need to be than 7, (laser-pulse duration) for the pre-
dictions of the model to coincide with the more exact
simulations. Although a full quantum simulation has
not been performed because of the difficulties, a much
simpler simulation of the expectation value of the center-
of-mass coordinate (the first moment of the Schrodinger
equation) derived from Ehrenfest’s theorem!” has been
done. The results were compared with Egs. (2.9) and
(2.20). It has been found that for a pulse duration of 7,
~ 0.006T7! and 7y, 75 = 107, the predictions of the
present model were already almost identical to the exact
simulations.

3. DISCUSSION

A. Deflection of an Atomic Beam
We are now in a position to consider the interaction of at-
oms with a series of chirped pulses for the deflection of
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the atomic beam. There are two major requirements: to
shift the mean value of the transversal momentum of the
atoms as much as possible (in other words, we would like
the average force to be as large as possible) and to limit
the dispersion of the transversal velocity as much as pos-
sible. In fact, the spread of the transversal momentum
should be kept much smaller than the change of average
momentum during the given interaction time if deflection
is to have a meaning at all.

Let us first investigate the effects of the laser pulses in
the steady-state limit. We may define an average force
acting on the atoms by f*' = Az*'/(7; + 75) and an aver-
age diffusion constant by D** = K/(7; + 75), noting that
the increase of z and o,%2 may be calculated by multiply-
ing these values by the time elapsed only at discrete mo-
ments at the end of each cycle. It is instructive to plot
this force and this diffusion constant as functions of two
variables composed of 7; and 79: u = 7; + 79 gives the
cycle time, while v = (79 — 71)/(71 + 79) gives the rela-
tion of 7y and 7, within one cycle. The plots of /%' and
D%t in the region u € [0.01,0.1] are shown on Fig. 3. The
unit of time is T 1. It can be seen that for any given v,
both the force and the diffusion constant grow with the
decrease of u, except for v = 0, in which case the force re-
mains zero. In fact it is not hard to deduce from Egs.
(2.14) and (2.16)—(2.19) that both the force and the diffu-
sion constant diverge as the cycle time approaches zero,
except for v = 0, in which case f*' remains zero. This is
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Fig. 3. (a) Stationary-state force %' and (b) diffusion constant
D5' as functions of u = 7y + 7, pulse length and v = (7
— 71)/(71 + 75) in the region u € [0.01, 0.1]. The unit of mo-
mentum is A%, and the unit of time is I' 1.
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understandable from the fact that the number of cycles
per unit time increases as the cycle time decreases. It
can be seen from Fig. 3(a) that for any given u, the force
is an odd function of v, which means that exchanging 7,
and 7y reverses the force. The reason is that in the sta-
tionary regime, when the initial conditions are no longer
of importance, our choice of first pulse within a cycle is ar-
bitrary. Exchanging 7; and 7y is therefore equivalent to
saying that we shall call the pulse propagating toward the
negative x direction the first pulse. The value of the
force increases with the difference between 7; and 7.
This is a consequence of the dependence of Az*! on 7; and
7o already discussed. The fact that the diffusion con-
stant is maximum for a given cycle time at v = 0 and de-
creases toward v = =1 may be explained by noting that
the two parts of the distribution a(z) and b(z) are pushed
in opposite directions by the pulses in momentum space.
The smaller the fraction of the atoms in an excited state
before the first pulse (the smaller P}), the smaller is the
fraction of the atoms that move opposite to the majority in
momentum space, and hence the smaller the dispersive
effect on the distribution.

Comparison of the numerical values of f° and D%’ on
Fig. 3 is not easy because D*' gives the increase of the
square of the width of the distribution per unit time. It
is obvious, however, that the two major requirements (the
force should be as large as possible, while the widening of
the distribution should be as small as possible) both re-
quire v to be in the vicinity of 1, i.e., 7; to be small com-
pared to 7.

We shall now consider atoms with a single longitudinal
velocity, i.e., the interaction time with the laser pulses is
the same for all atoms. The initial distribution of the
transversal velocity is assumed to be some smooth distri-
bution gy(z) (e.g., a Gaussian), located around z = 0 and
having some initial spread o,,. The average transversal
velocity is thus assumed to be zero. Atoms arrive at the
interaction region in their ground states. To determine
the average transversal momentum and the width of the
distribution, we must first determine the initial values
P, 4(0), z,3(0), and 0,2(0). We must remember, how-
ever, that atoms arrive at the interaction region at ran-
dom times, i.e., we have no way of knowing whether they
actually interact with the pulse we call first in a cycle ini-
tially. Therefore we must say that the initial distribu-
tion consists of two terms: One, when the atom arrives
during the interval 79 with a probability 7 /(7 + 79) and
experiences a pulse propagating toward the positive x di-
rection first, i.e., what we refer to as the first pulse of a
cycle. The other term arises when the atom arrives dur-
ing the interval 7; and interacts with the second pulse of
a cycle first. The first full cycle of laser pulses will there-
fore find this atom in a different state from the state in
which it was prepared before the interaction. These at-
oms will obviously start moving in the opposite direction
from the rest, and this will have a dispersive effect on the
distribution. The initial distribution will therefore be of
the form

- 1- Py — 1
ao(z) = ngo(z) + (1 = Py) mgo(z + 1),

1
(3.1a)
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bo(z) = P, TLgo(z + 1), (3.1b)

1t 7o

and so we should determine the initial quantities from
these new initial distributions:

Pyry
PQ(O) =1- m, (3.2a)
_ Py~ 1)my _ Py
2,(0) = T zp(0) = Tty
(3.2b)
9 9 T1T2
0'2(0) = 0y + m (3.2¢)
1 2

For a given time ¢ > I' ! we may now approximate Eq.
(2.20) as the convergent sum of an infinite geometrical se-
ries from the transient term, plus the stationary force
multiplied by the time that has elapsed. By doing this,
we have neglected the fact that, because of the discrete
nature of the interaction, some atoms may not experience
the same number of cycles [and certainly not a fractional
number of cycles if ¢ # n(7; + 79)], but may exit the in-
teraction region half a cycle or a full cycle sooner depend-
ing on the time of arrival. This jitter, however, causes an
error that is of the order of one photon momentum, which
is at most the same order of magnitude (and usually less)
than the error caused by neglecting the recoil of the spon-
taneously emitted photons. When writing Egs. (3.1) we
have also neglected the fact that some atoms may arrive
during a pulse, and interaction with a fraction of a pulse
may not completely invert their internal states of excita-
tion but leave them in some superpositional state. This
approximation is justified by assuming 7,5 > 7,.

The total momentum transferred and the width of the
distribution, assuming an initial width of 0,4 = 10 after a
time ¢ = 50I' !, can be seen in Fig. 4. It can clearly be
seen that effective deflection of the atomic beam is pos-
sible and that the results are best if the cycle time and the
ratio of 7; to 7 are as small as possible. It may be seen
from the figure, that significant momentum transfer (of
the order of 10*%4%) may occur in a relatively short time
(by comparison, the momentum transfer from the scatter-
ing force exerted by a simple cw laser beam from one side
would be at most a few times 10%% during this time), and
the widening of the distribution may be kept smaller then
the deflection.

It is notable that when the goal is to deflect the atomic
beam, making 7; as small as possible compared with 7, is
best for three reasons. The average force acting on the
atoms at a given cycle time is largest and the diffusion
constant is smallest when the proportion of 7; is smallest;
furthermore, the initial distribution [Eqgs. (3.2)] is the
most favorable. (Fewer atoms have a chance of arriving
during 7; to experience a second pulse first and start mov-
ing in the wrong direction in velocity space.)

Up to now we have considered only the average velocity
of the distribution and its width in velocity space. This
information is only a fraction of what there is to know
about the distribution function. If one examines the pre-
cise evolution of the distribution [by numerical simulation
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Fig. 4. (a) Total momentum [ transferred to the atoms during a
time 50I' ! and (b) width o, of the distribution after this time in
the region u € [0.01,0.1], assuming an initial width of o,
= 10.

i

Fig. 5. Evolution of the velocity distribution of atoms g(z) for
the first 40 cycles of laser pulses. The intervals between the
pulses are 7y = 0.03, 75 = 0.1, the initial Gaussian distribution
has been normalized to N = 1000, and the initial width is o,
= 5hk. T on the horizontal axis gives time measured by the
number of cycles.

of the master equation, Eq. (2.5)], it turns out that there
are several other peculiarities that may be easily under-
stood.

First of all we shall examine the first phase of the evo-
lution, a transient domain, during which the probabilities
of the ground and excited states P,, P; reach their sta-
tionary state values. The time needed for this is a few
times I' !, Figure 5 depicts the evolution of the distribu-
tion function for the first 40 cycles of laser pulses. The
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intervals between the pulses are 7, = 0.03' ! and
= 0.1 ! (so the first 40 cycles amount to 3" 1), and the
initial distribution is taken to be a Gaussian with a width
of 0,0 = 5k and normalized to N = 1000 for conve-
nience. It can be seen that the distribution develops to
be highly asymmetric, because those atoms that enter
during the interval 7; start moving in the opposite direc-
tion as those that enter during 7. These two peaks can
be clearly seen from the figure. (Because the two inter-
vals are not equal, a smaller number of atoms arrive dur-
ing 7; and the corresponding peak is proportionally
smaller.) As the separation of the peaks continues, the
smaller peak, whose atoms spend most of their time in
the excited state, gradually disperses because the atoms
undergo spontaneous emission and reverse their motion
in velocity space. After time 3 I' ! has elapsed, it can no
longer be distinguished, but the whole distribution is
highly asymmetrical with a long tail. Note that if the ini-
tial width of the distribution is wider than the separation
of the two distinct peaks during this short time, the two
peaks will not be resolved at all.

Next we shall examine the evolution of the distribution
on a slightly longer scale. After the transient domain
discussed earlier, the probabilities P, , P, reach their sta-
tionary values, and the changing of the average velocity
and the width of the distribution becomes constant with
each cycle. The shape of the distribution, however, ex-
hibits an asymmetric shape for times much larger than
I'"!. Figure 6 depicts the evolution of the distribution
function from the 80th cycle to the 400th cycle of laser
pulses. (Note that the orientation of the figure is differ-
ent from that of Fig. 5 for a clear view.) The intervals
between the pulses are 7, = 0.02I' ! and 7, = 0.1T!
(slightly different from the previous figure). The initial
distribution is the same as in Fig. 5. It can be seen that
the asymmetry of the distribution persists for times ¢
> T'"!. This phenomenon may be explained as follows:
Atoms enter the interaction region and start accelerating
in one direction or the other depending on when they ar-
rived. Occasionally, they make a spontaneous transition
when they are in an excited state and reverse their mo-
tion in velocity space. This behavior is similar to that of

Fig. 6. Evolution of the velocity distribution of atoms g(z) from
after the 80th cycle to the 400th cycle. The intervals between
the pulses are 7; = 0.02, 7, = 0.1, the initial Gaussian distribu-
tion has been normalized to N = 1000, and the initial width is
o, = bfik. Note that the orientation of this figure is different
from that of Fig. 5, for a clear view.
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the case of a two-valued fluctuating force as described in
Ref. 18. By the time the first transient phase is over (i.e.,
one peak has already dispersed) the distribution will con-
sist of a peak, which moves at a rate of 2A4% per cycle in
velocity space and a tail, which drags behind. Initially,
this tail will consist mainly of atoms that have entered
the interaction region during 7;, but as time progresses,
more and more atoms will break off from the large peak
whose atoms entered during 7, as they, too, spend some of
their time in the excited state and undergo spontaneous
emission. Thus the leading peak, which bears the char-
acteristics of the original distribution and is made up of
atoms that have not yet undergone spontaneous emission
(and the corresponding reversal of movement in velocity
space), shrinks and the distribution smoothens. This,
however, can be expected to happen only if all the atoms
have undergone spontaneous emission at least several
times. The average number of spontaneous transitions is
proportional to I' and to the average time that an atom
spends in its excited state during the interaction. If we
assume the atoms to have reached the stationary state
with respect to the internal state, this average probability
turns out to be

2(1 — PP

F(Tl + 7'2) ’ (33)

(Py) =

which can be very small if 7; < 79. This means that the
average time during which an atom continues gathering
speed in a certain direction, ((P,)I')"!, may be much
larger than T'"!. As in this particular case, (P,)
~ 1/3.6, this peak can be seen to move at a rate of 2hk
per cycle for times much greater than the spontaneous
lifetime of the atoms (see Fig. 6). As more and more at-
oms fall behind from the original peak, the maximum of
the distribution shifts, but the characteristics of the ini-
tial distribution are preserved in the form of a steep lead-
ing edge for a long time. If the initial distribution is not
this narrow, the effects are much less dramatic.

Equation (3.3) also helps in understanding why the
broadening of the velocity distribution caused by the re-
coil of spontaneously emitted photons is negligible com-
pared with the widening caused by the occasional rever-
sal of the force acting on the atom after an event of
spontaneous fluorescence. Since the atom spends most of
its time in its ground state, the average rate of spontane-
ous emission is much smaller than I For example, for
the distribution of Fig. 6, we would have to include the
widening effects of approximately 13 photons per atom
emitted in random directions during the whole 400 cycles
depicted in the figure, which is negligible.

Note that the physical mechanisms causing the deflec-
tion and spreading of the atomic beam in our scheme are
very similar to those of Ref. 19, in which bichromatic
standing waves were used to slow an atomic beam. The
effect of bichromatic standing waves under certain cir-
cumstances may be interpreted as the action of counter-
propagating IT pulses. Our method has the advantage
that, if 7y > 75, the force acting on the atoms will be large
and the dispersive effect of the pulses on the velocity dis-
tribution will be small for arbitrarily long times. As the
situation corresponding to 7; > 79 may not be achieved
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with bichromatic standing waves, the usefulness of
bichromatic standing waves is clear only for times ¢
< T L

B. Splitting of an Atomic Beam

In the previous subsection, we have considered the long-
term evolution of the whole ensemble of atoms. The fact
that some atoms arrive during the interval 7; and thus
start moving in the wrong direction was taken into ac-
count in the initial distributions [Egs. (3.1)]. After a long
time the difference between these two cases is obviously
smeared out by the dispersion of the beam. It has been
mentioned, however, that for short times (¢ < I'"!) these
two parts of the atomic beam start moving in opposite di-
rections initially. This may cause a clear splitting of the
atomic beam.

When the splitting of an atomic beam is desired, the
usual requirements are that the beam should be split in
two equal parts. They should be separated clearly, as
much as possible in velocity space, and they should re-
main collimated as far as possible. If 7; = 75, the num-
ber of atoms arriving during these two intervals will be
equal. It is also clear from Egs. (2.20) and (2.14) that in
this case the steady-state force is zero, and the change of
average momentum is described by the transient term in
Eq. (2.20).

Let us now consider the same situation as in Subsec-
tion 3.A, i.e., a monochromatic beam of atoms with some
initial transversal-velocity spread crossing the interaction
region. We shall assume 7 = 75 and consider the atoms
arriving at the interaction region during 7; and 7, sepa-
rately. Those that arrive during the interval 7o will see a
pulse propagating toward the positive x direction first
and will thus begin acquiring momentum in this direction
as described by Eq. (2.20). On the other hand, for the at-
oms that arrive during 7;, we may consider the pulse
propagating toward the negative x direction to be the first
in the cycle and still apply Eq. (2.20) with only its sign re-
versed (i.e., we are now considering two separate cases
when applying the equations, as opposed to the approach
of Subsection 3.A, in which we combined these two cases
in the initial distributions, Eqs. 3.1). The equation de-
scribing the dispersion of the distribution is the same in
both cases. Thus the two parts of the beam will be de-
flected in opposite directions, and if the spreading of these
two beams can be kept much smaller than this deflection,

S5=200

Fig. 7. Evolution of the velocity distribution of atoms for the
first 100 cycles of laser pulses when 7; = 75 = 0.02. Initial dis-
tribution is the same as for Figs. 5 and 6.
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we have realized a beam splitter. It is for times ¢

< I'"! that the effects of dispersion can be expected to be
negligible compared with the separation of these two
packets. It is also evident that the initial distribution
must be narrower than the separation for the two peaks
to be resolved at all.

Figure 7 shows the evolution of the distribution func-
tion of the atoms when 7, = 79 = 0.02. For times much
shorter than the spontaneous lifetime, the two peaks are
clearly resolved. As time progresses, more and more at-
oms are lost from these peaks owing to spontaneous emis-
sion. Note that the time of evolution depicted on the fig-
ure is ¢ = 4I' ! (100 cycles) to show how atoms are lost
from the peaks as time progresses. For interaction times
t < T7!, the separated peaks at the end would not be so
much smaller than half the one at the beginning. Mak-
ing 7; = 79 as small as possible increases the efficiency of
the beam splitter because the atoms acquire more mo-
mentum during unit time as the cycle time decreases.
There is no optimum cycle time for efficiency within this
model. Decreasing cycle time increases the efficiency
without limits, but for very small cycle times the model
will cease to be valid because the duration of the pulses
will not be negligible compared with the cycle time for a
realistic situation, or the two-level atom approximation
may not be sufficient for pulses of very short durations
and hence very large bandwidths. Also note that this
scheme of beam splitting is analogous to the one using
bichromatic standing waves.2’

4. SUMMARY

The effect of a series of counterpropagating, chirped laser
pulses on the transversal velocity distribution of an
atomic beam has been investigated. The duration of the
pulses has been assumed to be very short compared with
the spontaneous lifetime of the atoms. For this reason,
the effects of spontaneous emission were assumed to be
nonnegligible only between the laser pulses. It has been
shown that depending on the ratio of the times that
elapse between the pulses and interaction time, the
atomic beam may be effectively deflected or split into two
halves. A strong dispersive effect on the transversal-
velocity distribution of the atoms has also been predicted,
wherein the atoms interact with the laser pulses for
longer than the spontaneous lifetime. It is the conclu-
sion of this paper that such a series of laser pulses may be
useful for the manipulation of atomic beams.
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