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We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counter-
propagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several con-
figurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such mul-
tiphoton adiabatic transitions for the manipulation of the atoms’ mechanical state. In particular, we compare
the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-
chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that
is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to
calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot
be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the
heating, and compare them to the numerical results. © 2009 Optical Society of America
OCIS codes: 020.3320, 020.4180, 320.1590.

o
t

s
b
s
t
o
i
p
e
c
t

e
d
a
t
s
a
s
p
a
a
t
f
o
l
s
o
e
t
c

. INTRODUCTION
he forces that resonant laser radiation can exert on at-
ms have been used extensively in past decades for cool-
ng, trapping, and manipulation of the atoms’ mechanical
tate [1]. The simplest type, the so-called radiation force
or scattering force) is mediated by absorption-
pontaneous emission cycles and was the first to gain
idespread use in atomic physics. Another force, medi-
ted by a sequence of consecutive, counterpropagating la-
er pulse pairs has also been investigated in detail. A pair
f such pulses (under appropriate conditions) can first ex-
ite the atoms, then return them to the ground state in a
ontrolled way, delivering 2�k momentum during the pro-
ess. Since the repetition frequency can be much greater
han the inverse spontaneous lifetime �, this force does
ot saturate as the radiation force does. One way to real-

ze this is with the usage of � pulses [2–4]. Another way is
o use frequency-chirped laser pulses that invert the
tomic state via adiabatic population transfer, also called
diabatic passage (AP) or sometimes adiabatic rapid pas-
age (ARP). This procedure has been first proposed for
sotope separation [5], and later suggested for the coher-
nt acceleration of atoms in atom optical applications, as
ell as the amplification of the cooling effect for atoms or
olecules with narrow line transitions [6–8]. The down-

ide of the AP force (and the analogous �-pulse force) is
hat the excitation and deexcitation of the atoms must be
chieved by the pulses propagating in the appropriate di-
ection. Should spontaneous emission occur, the force will
e reversed as the atom is accelerated in the wrong direc-
ion by the subsequent pulses. At first sight, the AP force
s therefore useful only for times that are short compared
o the spontaneous lifetime, for if a considerable fraction
0740-3224/09/040867-9/$15.00 © 2
f the atoms is allowed to go through spontaneous transi-
ions, the atomic ensemble is dispersed very quickly.

Experimental realizations of the AP force, however,
how that present technology does not allow a great num-
er of pulses to interact with the atoms within a single
pontaneous lifetime. The typical atomic lifetime used in
he experiments is of the order of 10–100 ns, but the use
f picosecond pulses, whose length would allow numerous
nteraction cycles within the lifetime, presents bandwidth
roblems. The full bandwidth of the chirped pulses may
asily span a range where other, unwanted, transitions
an be excited. Thus, pulses of a few nanoseconds dura-
ion are usually used [9–12].

On the other hand, it has been shown that the force ex-
rted on the atoms may continue to be large even if the
etrimental effect of spontaneous emission is taken into
ccount [13]. The requisite to this is that the timing be-
ween the forward and backward propagating pulses
hould be asymmetric—the time delay between the first
nd second pulses of a pulse pair should be considerably
maller than the time delay between subsequent pulse
airs. In this case, the average force on the atoms, as well
s the heating due to random reversal of the force tend to
finite (nonzero) value. This bears a strong resemblance

o the effect of bichromatic standing waves, where the
orce acting on the atoms can be attributed to a sequence
f counterpropagating � pulses due to the beating of the
ight field. Here the proper choice of the beat phase can
upply the asymmetry necessary for a prolonged duration
f the force [14–17]. Using a sequence of separately gen-
rated pulses has the advantage that the asymmetry of
he delay times can be much greater. Using frequency-
hirped pulses (as opposed to � pulses) has the advantage
009 Optical Society of America
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hat Doppler broadening of the atomic ensemble or the
ransverse intensity distribution of the laser pulses are
ot much of an issue.
Recently it has also been shown that when two coun-

erpropagating pulses overlap each other, multiphoton
diabatic processes are possible [18,19]. These transitions
an be generated either with a pair of pulses that are de-
uned from the atomic resonance in opposite directions, or
ith a pair of frequency-chirped laser pulses, and they

an be understood in terms of adiabatic Floquet theory
20–23]. The overall effect of such an interaction is very
imilar to that of two counterpropagating separated laser
ulses in both cases. The atoms are returned to the
round state at the end of the cycle and the momentum of
he whole ensemble is changed uniformly, i.e., all atoms
re accelerated by an equal amount. The only difference is
hat the momentum the atoms gain is 2N�k where N=1
s the usual separated pulse scheme, but depending on
ulse amplitude, pulse delay, and the magnitude of the
etuning or the chirp speed, higher values of the integer

are possible. This means that the force exerted on the
toms can be amplified several times over the usual
ounterpropagating-pulse scheme. Nevertheless, the
tatement in the previous paragraphs still remains true:
t is difficult to realize experimentally a pulse sequence
here a large number of pulse pairs interact with the at-
ms in a time shorter than the spontaneous lifetime of the
toms.
Multiphoton adiabatic passage (MAP) was also shown

o be useful in numerous other applications: for coherent
opulation transfer between Rydberg states of an atom
24,25], between vibrational states of diatomic molecules
26], or the population transfer between the metastable
tates of a � or tripod atom using a single chirped pulse
27,28].

In this paper, we examine the force exerted on the at-
ms by a sequence of counterpropagating, partially over-
apping laser pulses. We consider both a pair of constant
requency, oppositely detuned laser pulses and a pair of
requency-chirped pulses. We focus on the regime when
he overlapping laser pulses generate MAP. We show that
uch smaller pulse intensity is necessary to generate

uch transitions using chirped pulses. In addition, we ex-
mine the force when the laser pulses interact with the
toms for a time that is comparable to or much larger
han the spontaneous lifetime. In particular, we consider
he heating suffered by the atomic ensemble as a conse-
uence of spontaneous emission induced force reversal. A
imple model is also developed that can be used to esti-
ate the long-term effect of the pulse sequence on the at-

ms.

. AMPLIFICATION OF THE FORCE DUE TO
ULTIPHOTON ADIABATIC PASSAGE

. Basic Theory
o describe the interaction of a two-level atom and coun-
erpropagating resonant laser fields, we use the Hamil-
onian
Ĥ =
p̂2

2m
+ Ĥa − d̂E, �1�

here the first term is the kinetic energy due to center of
ass motion, the second term is the internal atomic en-

rgy Ĥa=��g�g��g�+��e�e��e� and the last one describes a
ipole interaction with a classical light field. Without any
oss of generality, we can write the classical electric field
n Eq. (1) as

E�x,t� = E+�t�cos�kx − �get − �+�t��

+ E−�t�cos�− kx − �get − �−�t��, �2�

here E±�t� are the slowly varying amplitudes of the two
ounterpropagating components, �±�t� are the phases
hat may contain a detuning or frequency chirp, and �ge
�e−�g is the frequency of the atomic transition. The
ign that indexes the amplitude and the phase shows the
irection of propagation. To calculate the coherent inter-
ction between the laser pulses and the atoms, it is most
onvenient to use the relevant Schrödinger equation for
he momentum-space probability amplitudes
�p , t� ,��p , t�, which constitute the two components of a
pinor wave function. The two probability amplitudes are
elated to the ket corresponding to the physical state of
he system by

�	� =� ���p�,t�e−i�gt�g,p�� + ��p�,t�e−i�et�e,p���dp�, �3�

here �g ,p�� , �e ,p�� are the usual electrotranslational
tates, i.e., plane-wave momentum states with a well-
efined electronic state. Inserting Eqs. (2) and (3), and the
amiltonian (1) into the Schrödinger equation and pro-

ecting with �g ,p� , �e ,p� we obtain equations of motion for
he probability amplitudes ��p , t� ,��p , t�. In doing this,
ne must not forget that the spatial variable x in Eq. (2)
ust be considered an operator for this purpose, and the

ecomposition of the cosine into exponentials will yield
he translational operators in momentum space necessary
or momentum conservation. With the rotating wave ap-
roximation and defining the Rabi frequencies �
±�t�
dgeE±�t� the equations will read [19]

i��t��p,t� =
p2

2m
��p,t� −

�
+�t�

2
ei�+�t���p + �k,t�

−
�
−�t�

2
ei�−�t���p − �k,t�,

i��t��p,t� =
p2

2m
��p,t� −

�
+�t�

2
e−i�+�t���p − �k,t�

−
�
−�t�

2
e−i�−�t���p + �k,t�. �4�

ere dge= �g�d̂�e� is the dipole matrix element and 
± are
aken to be real (again, without loss of generality). Equa-
ions (4) can be solved using a computer quite conve-
iently, and yield a valid description of the interaction for
hort times when spontaneous emission can be neglected
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ltogether. For prolonged interaction, however, we must
se the relevant Liouville equation for the density opera-
or, which can be augmented by phenomenological decay
erms to describe relaxation [22],

i��t�̂ = �Ĥ, �̂� − i��̂. �5�

he operator �̂ is taken to describe spontaneous emission
rocesses from the excited to the ground state, but no
ther transitions (to different atomic levels) or phase in-
errupting processes (such as collisions) are considered.
or one-dimensional motion the equations for the density
atrix elements are still tractable, though considerably
ore time consuming to solve than Eqs. (4).
In this paper we will consider Gaussian pulses and two

ifferent cases for the phase evolution. First, we consider
ulses with a constant detuning, which are tuned sym-
etrically above and below the resonance frequency—the

o-called � ,−� configuration. Second, we consider pulses
ith a linear chirp, whose central frequency is exactly

esonant with the atomic transition—the so-called � ,�
onfiguration. The forward and backward propagating
ulses are assumed to be identical in this case. In both
ases, the second pulse is assumed to arrive with a delay
1, which is the same order of magnitude as the pulse

ength  (see Fig. 1). Thus,


+�t� = 
0	�

2
exp
−

t2

22�, 
−�t� = 
+�t − T1�, �6�

�+�t� = �t + �0
+, �−�t� = − ��t − T1� + �0

−, �7�

or the � ,−� configuration or

�+�t� =
�

2
t2 + �0

+, �−�t� =
�

2
�t − T1�2 + �0

−, �8�

or the � ,� case. Here 
0 is a constant amplitude param-
ter such that the area of a pulse (the time integral of the
nvelope function) is just 
0��, � is a constant detun-
ng, and � is the linear chirp speed. Note that the param-
ter  called the pulse length in this paper is related to
he usual pulse width in intensity FWHM by intensity

2	ln 2�1.67.

. Multiphoton Adiabatic Passage
he usual scenario for using � pulses or AP for the ma-
ipulation of the atoms’ mechanical state is when the

t t’
0

Ω

T
c

T
1

ig. 1. (Color online) Timing of the laser pulse pairs. The second
ulse of the pair, which counterpropagates the first one arrives
ith a delay T1, which is the same order of magnitude as the
ulse length . The cycle then repeats itself after T2=Tc−T1
T1. (Arrows above the pulses symbolize the propagation

irection.)
ounterpropagating pulses arrive in succession, interact-
ng with the atoms separately. Provided that the pulses
nd the delay are short enough for spontaneous emission
o be neglected �T1 ,�1/��, the effect of a single pair of
ulses on the atomic momentum-space distribution func-
ions a�p , t�=�gg�p ,p , t�=��p , t��*�p , t� and b�p , t�
�ee�p ,p , t�=��p , t��*�p , t� will simply become

a�p,t�� = a�p − 2�k,t�,

b�p,t�� = b�p + 2�k,t�. �9�

he traditional AP force is mediated by a repetition of this
asic cycle many times in rapid succession.
A similar process is also possible when the two counter-

ropagating pulses do not interact with the atoms quite
eparately, but overlap each other partially—the second
ne arrives with a distinct delay, the same order of mag-
itude as the pulse length T1. Multiphoton adiabatic
rocesses are possible either when the two pulses are de-
uned symmetrically to either side of the transition [18] or
hen both pulses have a linear chirp [19]. When the pulse
mplitudes, the delay, and the detunings or the chirp
ave appropriate values, the overall effect of the laser
ulse pair on the atomic distributions can be similar to
hat of successive laser pulses in the AP case. The elec-
ronic state of the atoms is conserved and so are the
hapes of the ground and excited state momentum-space
istributions. However, the momentum transfer is in-
reased:

a�p,t�� = a�p − 2N�k,t�,

b�p,t�� = b�p + 2N�k,t�, �10�

here N is a small integer and N=1 is the traditional AP
ase. Figure 2 shows the average momentum transferred
o the atom �p̄= p̄�t��− p̄�t� (where p̄=�p�a�p�+b�p��dp) by

pair of overlapping laser pulses as a function of the
ulse amplitude 
0 (solid black curves). The figure also
hows the population of the excited state after the inter-
ction (multiplied by five to be visible). The data have
een obtained by numerically integrating Eqs. (4) using
arameters (a) �=100/, T1=2 and (b) � /2=20, T1
1.5 (parameters for which the adiabatic condition is
ell fulfilled) and assuming that the atoms are in the
round state just before the interaction. The momentum
ransfer displays distinct plateaus of 2N�k momentum
ransfer, where MAP is realized and the atoms are re-
urned to the ground state at the end of the interaction. It
s notable that the required pulse amplitude is much
maller in the � ,� configuration (i.e., the chirped-pulse
cheme)—the �p̄=6�k plateau occurs at around 
0
600 for the � ,−� case, and at 
0=60 for the � ,� case,
hich means that in pulse intensity the difference is 2 or-
ers of magnitude. It is also interesting to note that the
,−� configuration yields a counterintuitive direction for
he momentum transfer (i.e., the atoms are pushed oppo-
ite to the direction of propagation of the first pulse), and
his is irrespective of whether � is positive or negative.
This is why −�p̄ has been plotted in Fig. 2(a)]. In the � ,�
cheme, on the other hand, atoms are pushed in the di-
ection of propagation of the first pulse, again, irrespec-
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ive of whether � is positive or negative. Thus creating
ulse overlap in the usual AP force scheme can amplify
he force acting on the atoms several times. Since the
opulation transfer is adiabatic, the process is robust
ith respect to a slight change of the amplitude.
While the momentum transfer has been plotted here as
function of pulse amplitude, it is clear that, as in any

diabatic transition, these too are robust with respect to a
light change of all other parameters. This means that
hanging parameters like the time delay T1, or the detun-
ng or the chirp � one may observe similar curves with
lateaus of various orders N. In particular, at a given am-

ig. 2. (Color online) Solid black curves: average momentum ob-
ained by atoms in the ground state �p̄ during the interaction
ith a pair of counterpropagating pulses as a function of the nor-
alized pulse amplitude 
0. (a) �, −� configuration, with �
100/ and T1=2. (b) �, � configuration with �=20/2 and T1
1.5. Dashed curves: population of the excited state after the in-

eraction multiplied by 5 to be visible. (Note that −�p̄ has been
lotted for the �, −� case; see the text for an explanation.)
Floq

p
p
h

litude and chirp, decreasing the delay (i.e., increasing
he overlap) will yield higher order transitions—up to the
oint where the conditions of AP are violated.

. Elements of a Floquet Analysis
ultiphoton adiabatic transitions can be analyzed conve-

iently with the use of adiabatic Floquet theory [20–23].
o present a concise summary of the elements of this
heory that are relevant to the current problem, we start
rom a simplified form of Eqs. (4) that does not take into
ccount the atoms’ translational degree of freedom (this
pproximation will be justified later),

i��t��t� = −
��t�

2
��
+�t�ei�+�t� + �
−�t�ei�−�t��,

i��t��t� = −
��t�

2
��
+�t�e−i�+�t� + �
−�t�e−i�−�t��. �11�

he 2�2 Hamiltonian matrix of these equations depends
n time through the amplitudes 
+,
−, and the phases
+,�−. Since the phases appear in the exponent the time
ependence of the matrix is not slow; the usual method of
iagonalization to study adiabatic passage cannot be
sed. Now we assume that the frequency difference be-
ween the two fields is a constant, i.e., �+�t�−�−�t�=�t, in-
roduce the notation �+ for the instantaneous detuning of
he 
+ wave from the resonance and writing ���t�
��t�exp�i�+�t��, we perform a Fourier expansion of the
robability amplitudes ��t� ,���t�,

��t� = �
m

Am�t�exp�− im�t�,

���t� = �
m

Bm�t�exp�− im�t�. �12�

rom Eq. (11) we can then derive the equation of motion
or the vector composed of the Fourier amplitudes 	
�. . . ,Bm−1,Am−1,Bm ,Am ,Bm+1,Am+1, . . . � to be

i�t	 = HFloq	, �13�

here the matrix HFloq is an infinite tridiagonal matrix of
he form
− HFloq =�
� �

� �m − 1�� + �+ 
+/2


+/2 �m − 1�� 
−/2


−/2 m� + �+ 
+/2


+/2 m� 
−/2


−/2 �m + 1�� + �+ 
+/2


+/2 �m + 1�� �

� �

� . �14�
his form of the equations lends itself to the classical
heory of the adiabatic following much better, as the fast
ime exponents have been removed, the matrix H de-
ends on time only through the slowly varying pulse am-
litudes 
+,
− and the detuning �+. Note that while we
ave assumed � to be time independent for convenience,
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his is not essential; one can use this method with a slight
wist even when � depends slowly on time. The coeffi-
ients Am and Bm are merely Fourier components of two
robability amplitudes in this formalism, but they can be
hown to have a deeper meaning. The correspondence
m↔ �m ,g� can be made, where the Floquet state �m ,g�
enotes a combined state of field and atom, with the latter
eing in the ground state and the former having m pho-
ons removed from the 
+ component and emitted into
he 
− component, i.e., m photons exchanged between the
wo components compared to the initial state [20,23].
ikewise, the correspondence Bm↔ �m ,e� stands, where

m ,e� denotes a Floquet state with the atom in the excited
tate, m photons removed from the 
+ component and
−1 emitted into the 
− component. Though we ne-

lected the kinetic energy of the atom when writing Eqs.
11), we can clearly infer the momentum change of the
tom during the process by noting the number of photons
hat have been exchanged—a �0,g�→ �N ,g� transition im-
lies that a momentum of 2N�k has been transfered to
he atom.

Computing the eigenvalues and eigenvectors of the Flo-
uet matrix (14) (i.e., calculating the dressed states of the
tom in the field of the two pulses) as a function of time
ith various parameters (amplitude, delay, and detuning
r chirp), one can analyze easily the possible outcomes of
he interaction. Figure 3(a) shows a plot of Floquet eigen-
alues for a pair of symmetrically detuned pulses in the
,−� scheme. The thick black curve marks the energy of
he dressed state that is connected with the �0,g� Floquet
tate before the interaction, i.e., a ground state atom and
he fields in their initial states. This dressed state then
ransforms into the �−3,g� Floquet state, which corre-
ponds to three photons removed from the 
− field and
mitted into the 
+ field. Clearly, the atomic momentum
ust change by −6�k during this process. So if the chang-

ng of the fields is slow enough for adiabatic following to
ake place (with respect to the energy difference between
eighboring levels), the atom will go through a six-photon
diabatic process.
Further insight is provided by plotting the Floquet ei-

envalue of the �0,g� state when only the first pulse is
resent (thick black dashed curve), and the Floquet eigen-
alue of the �−3,g� state when only the second pulse is
resent (thick black dashed-dotted curve). A single field
ouples these with only one other Floquet state (
+

ouples �0,g� to �0,e� and 
− couples �−3,g� to �−2,e�), and
auses a strong Stark shift at the pulse peak. With only
ne pulse present, the atom is returned to its initial state
ithout the possibility of MAP (broken curves). But when
oth pulses are present, the two states that are Stark
hifted close to each other by the leading edge of the 
+

eld and the trailing edge of the 
− field connect during
he overlap reagion and a six-photon transition is real-
zed. For the parameters that were used to generate the
gure, 
±=420, �±= ±70 and T1=2 the conditions of
diabaticity are already fulfilled quite well. Figure 3(b)
hows a similar plot for a pair of counterpropagating
hirped pulses. This time, the adiabatic dressed state that
onnects �0,g� and �3,g� is shown with a thick black solid
urve, while the two broken (dashed and dashed-dotted)
hick black curves show the evolution of the initial and fi-
al states’s Floquet eigenvalue with only the first and the
econd pulses, respectively. It is visible on the plot that
he frequency sweep in itself provides a considerable shift
f the dressed state eigenvalues. Thus to move the inital
nd final states close to each other, we do not have to rely
olely on a Stark shift, so the pulse amplitude required
ay be much smaller in the chirped-pulse scheme. In-

eed, the parameters used to generate this plot are 
±
60, �±2=20, and T1=1.5.
Figure 3 helps us understand why neglecting the trans-

ational energy present in Eqs. (4) is justified. The rel-
vant energy difference between neighboring states on
he diagram is given by �. Provided we have pulses with
nanosecond duration (to beat spontaneous emission),
he order of magnitude of �gigahertz is much larger

ig. 3. (Color online) Floquet eigenvalues as a function of time
uring interaction with overlapping pulses. (a) �, −� configura-
ion for 
±=420, �±= ±70 and T1=2 and (b) �, � configuration
or 
±=60, �±2=20 and T1=1.5. Some levels are labeled with
he index of the corresponding Floquet state at the beginning and
t the end of the interaction. In particular, the evolution of the
loquet state that is connected with the �0,g� state before the in-
eraction is marked with a thick black curve.
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han the slight correction due to the kinetic energy term
1 MHz. Clearly, the approach outlined in this subsec-

ion can be used only to obtain a qualitative understand-
ng of the possible outcomes of the interaction. Whether
he pulse parameters really do suffice to create MAP must
e deduced from a numerical simulation of Eqs. (4), which
ake into full account of any nonadiabatic transitions as
ell.

. SPONTANEOUS EMISSION DURING
ROLONGED INTERACTION
s mentioned in the Introduction, present technology
oes not allow the AP force to be used in its pure form.
hile one can readily generate frequency-chirped laser

ulses whose duration is much shorter than the sponta-
eous lifetime of the atoms, the interaction of a large
umber of pulses during a time short compared to the

ifetime of the excited state is not possible. The main rea-
on for this is that very short pulses require a great chirp
peed and present bandwidth problems, opening the pos-
ibility of unwanted atomic transitions. Therefore, in
ractice, one has to be satisfied with a scenario where in-
ividual pulses are indeed much shorter than the excited
tate lifetime, but the whole interaction continues for
uch longer. This means that spontaneous emission can-
ot be left out of consideration. Even if only a small frac-
ion of the atoms goes through such a process during a
ingle cycle, the cumulative effect during many cycles can
e considerable.

. Numerical Calculations of the Density Matrix
s the most obvious step to include spontaneous emission

n the description, we have solved Eqs. (5) using a com-
uter. To facilitate the solution, the recoil due to sponta-
eous emission has been neglected. This is convenient be-
ause including a fractional change of the atomic
omentum requires a much finer resolution in momen-

um space, with the corresponding increase of matrix el-
ments. Figure 4 shows the result of a calculation in
hich the atoms interacted with 30 pairs of frequency-

hirped laser pulses. The parameters of the simulation
ere chosen to correspond to the parameters of meta-

table He, which was used in several experiments to dem-
nstrate the AP force [9,11], and the pulse parameters
ere similar to those used to produce Fig. 2(b), where sev-
ral higher-order plateaus can be seen. Thus �=1/97 ns,
=2 ns (which clearly fulfils �1/�), 
0=100/, �=20/2.
he delay was chosen to be T1=1.714, which at this am-
litude corresponds to the N=4 plateau and the cycle
ength was chosen to be Tc=80 ns. Since Tc�1/�, the
hole process lasts much longer than the spontaneous

ifetime, Tint=2400 ns in this case. Figure 4(a) displays
he momentum-space distribution of the atoms before and
fter the interaction. Figure 4(b) shows the changing of
he average momentum and that of the square of the mo-
entum space width in each cycle, i.e., �p̄ and ��p

2

�p
2�t��−�p

2�t�, in recoil units. The most important prop-
rty of the evolution is, that both �p̄ and ��p

2 converge to
tationary-state values. Therefore, in the long run there
s a constant force acting on the atoms (which, however, is
omewhat smaller than 8�k /T , the ideal case without
c
pontaneous emission) and a diffusive spreading in mo-
entum space—the width is proportional to 	Tint. The be-

avior depicted is typical—the stationary-state force and
iffusion constant depend a great deal on the parameters
sed (most importantly the T1 and Tc) but the general be-
avior remains the same.

. Simple Model of the Amplified Adiabatic Passage
orce
he behavior of the long-term effect of the overlapping la-
er pulses just seen is very similar to that of the usual AP
orce. For this latter case a very simple model can be used
o calculate the detrimental effects of spontaneous emis-
ion during prolonged interaction [13]. In this subsection
e generalize this simple model to the case of multipho-

on adiabatic processes. Even though the assumptions
sed to derive the original model have limited validity in
his case, the results turn out to be very useful.

To start, we need a set of equations that describe the
volution of the momentum-space distribution functions
hich also encompass the effect of spontaneous emission

o replace Eqs. (10). Defining q1=1−exp�−�T1� to denote
he probability of an atom emitting a photon spontane-
usly during T1, and q2=1−exp�−��Tc−T1�� to be the
ame for Tc−T1 we now write,

an+1�p� = �1 − q1�an�p − 2N�k� + q1q2an�p� + q2bn�p

+ 2N�k�,

bn+1�p� = �1 − q2�bn�p + 2N�k� + q1�1 − q2�an�p�, �15�

s the basic iteration rule for the momentum-space distri-
ution functions. In these formulas subscript n denotes

ig. 4. (Color online) (a) Momentum-space distribution func-
ions before (dashed curve) and after (solid curve) the interaction
ith 30 pairs of overlapping frequency-chirped laser pulses. The
arameters used for the calculation are �=1/97 ns, =2 ns, 
0
100/, �=20/2, T1=1.714 (which corresponds to the N=4 pla-

eau), Tc=80 ns. (b) The value of �p̄ (crosses) and ��p
2 (diamonds)

n units of �k after each cycle.
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he distribution functions just before the �n+1�th cycle (at
, see Fig. 1) and subscript n+1 denotes distribution func-
ions after the �n+1�th cycle, [just before the �n+2�th
ycle at t�]. The physical content of the single terms is
lear: an atom in state �g ,p� (ground state with momen-
um p) at the end of the cycle could have either (i) started
rom �g ,p−2N�k� and without emitting any photons spon-
aneously, received 2N�k momentum; (ii) started from
g ,p� and decayed twice obtaining no net momentum over-
ll; or (iii) started from �e ,p+2N�k�, received −2N�k mo-
entum and decayed after the second pulse. In a similar
anner, an atom in state �e ,p� at the end of the cycle

ould have either (i) started from �e ,p+2N�k� and es-
aped any spontaneous transitions receiving −2N�k mo-
entum, or (ii) started from �g ,p� and decayed after the

rst pulse, but not after the second one, obtaining no net
omentum overall.
Equations (15) can be used to calculate the the momen-

um distribution functions after each cycle. They are very
onvenient to use, because the evolution of the distribu-
ion functions can easily be studied for many cycles with-
ut actually solving Eqs. (4) and (5). They are basically
he MAP counterpart of the original model of [13] with
imply 2N�k inserted for the momentum transfer. As
uch, they have several shortcomings: First of all, they
ave been written to separate the effects of the laser
ulses and spontaneous transitions completely—however,
ith overlapping pulses such a separation can only be ap-
roximate, so our assumption has to be justified a poste-
iori by comparing the results derived from Eqs. (15) to a
ull simulation of Eqs. (5). Also (as with the original
odel) the recoil of spontaneously emitted photons has

een neglected, so the only source of heating included in
he model is that due to random force reversal at each
pontaneous emission event. This approximation can also
e justified a posteriori by observing that the latter is far
reater than the heating that could be attributed to ran-
om single-photon recoils using the time averaged popu-
ation of the excited state. Furthermore, these formulas
an no longer be used for arbitrary delays—the delay has
o correspond to one of the plateaus where there is full
diabatic population transfer and the atoms return to the
round state at the end of the interaction. The order N of
he plateau that corresponds to the delay has to be in-
erted into the formulas. Finally, any nonadiabatic tran-
itions are also neglected.

By integration and straightforward algebraic manipu-
ation of Eqs. (15) we can also derive simple iteration
ules for important quantities. The first of these are the
evel probabilities after n cycles defined as Pa,n
�an�p�dp and Pb,n=�bn�p�dp. An iteration rule for them
an be obtained simply by integrating Eqs. (15) with re-
pect to p to get

Pi,n+1 = Pi
st + �Pi,n − Pi

st��1 − qc� i � �a,b�, �16�

here qc=1−exp�−�Tc�, i.e., for prolonged interaction, the
xcited and ground-state probabilities converge to sta-
ionary values,
Pa
st =

q2

qc
, Pb

st =
q1�1 − q2�

qc
. �17�

y multiplying both of Eqs. (15) by p, adding the two, and
gain integrating with respect to p we get an iteration
ule for the average momentum,

�p̄ = p̄n+1 − p̄n = 2N�k��1 − q1�Pa,n − Pb,n�. �18�

s the average momentum gain depends only on the level
robabilities, for prolonged interaction �p̄ also converges
o a stationary value

�p̄st = 2N�k
q2 − q1

qc
. �19�

inally, we can also obtain an iteration rule for the mo-
entum space width of the distribution �p

2 if we multiply
qs. (15) by p2, add them, integrate with respect to p, and
se Eq. (18). With some straightforward algebraic ma-
ipulation it is not difficult to show that the asymptotic
orm for the iteration rule has the form

��p
2 = �p,n+1

2 − �p,n
2 = Kst, �20�

here Kst is a constant and can be calculated to be

Kst = 8N2�2k2
q1q2�1 − q1��1 − q2��2 − q1��2 − q2�

qc
3

+ 4N2�2k2
q1q2�4 − q1 − q2 − 2qc�

qc
2 . �21�

o the model predicts the long-term effect of the counter-
ropagating, overlapping laser pulses that induce MAP to
e a constant force acting on the atoms and a constant
eating of the ensemble. This is in accordance with the
ndings of Subsection 3.A. The results are identical to the
ormulas derived in [13] for the usual AP force case except
or the factor N and N2 in the momentum gain and mo-

entum diffusion formulas.

. Discussion
he first question that arises is obviously the applicabil-

ty of the model for the quantitative estimation of the
AP force. The basic assumption that could be used for

eparated laser pulses, that there is a full, “instanta-
eous” inversion of the atomic populations, is not valid for
ultiphoton adiabatic passage. Plotting the population
istories for various delay values corresponding to differ-
nt MAP plateaus shows that the population of the ex-
ited state never reaches unity during the interaction. On
he other hand, the time interval, during which there is a
onsiderable population in the excited state, can be some-
hat longer than T1 assumed by the simple model. Over-
ll, the effect of the two laser pulses and spontaneous
mission cannot be separated in time as for nonoverlap-
ing pulses, calculating the probability of spontaneous
mission as before is rather an order of magnitude esti-
ate. Moreover, nonadiabatic transitions that can have

onsiderable cumulative effect are neglected by the model
ltogether.
To evaluate the usefulness of the simple formulas for

he steady-state MAP force Eqs. (19) and (21), we have
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alculated the evolution of the atomic momentum-space
istribution for numerous different values of Tc, T1, and 
sing Eqs. (5). From the solutions, we have extracted the
elevant constants �p̄st and ��p

2 and compared them with
he predictions of the simple model. Figure 5 shows an ex-
mple of the comparison for a pulse length of =2 ns and
wo different cycle lengths Tc=80 and 40 ns (other param-
ters are the same as those used to produce Fig. 4). The
gures show the values of �p̄st and ��p

2 as a function of
he plateau order N calculated from the simulation
squares) and the simple model (stars). Note that the de-
ay T1 is different for each N. The figures show that the
alue of the momentum transfer per cycle is predicted
ery well by the model—the exact result is just slightly
bove the value obtained from the model. The increase of
he momentum distribution width shows a much larger
iscrepancy between model and simulation. However, one
an see from the figures that the estimate of the model is
onservative in all cases, i.e., the force is (slightly) under-
stimated, while the heating is overestimated. Therefore
he model can be very useful for estimating the force and
he heating in a given situation.

Equation (19) readily shows us that in case of pro-
onged interaction, the momentum transferred per cycle
s less than the ideal 2N�k value. In case of a symmetric
ime sequence of the pulses T1=Tc /2 the steady-state
orce is zero [q1=q2 in Eq. (19)] and as the asymmetry
the ratio Tc /T1) increases it gets closer and closer to the
deal value. The reason for this is intuitively clear: the de-
rease of the force is due to atoms that emit spontaneous
hotons and thus “get out of phase” with the rest of the
nsemble, being accelerated in the opposite direction. The
horter T1 is compared to Tc−T1 the bigger the chance
hat an atom already “out of phase” with the majority will
eturn via another spontaneous transition before the
tart of the next cycle. The use of MAP on higher-order
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ig. 5. (a) Comparison of the simulation results (squares) and
he simple model (stars): (a) and (c) depict the steady state mo-
entum transfer per cycle �p̄st for Tc=80 and 40 ns, respectively.

b) and (d) depict the heating per cycle ��p
2 for Tc=80 and 40 ns,

espectively. All quantities are plotted as a function of N, so the
elay T1 is different in each case. Other parameters are the same
s for Fig. 4: �=1/97 ns, =2 ns, 
 =100/, �=20/2.
0
lateaus is thus not only advantageous because the mo-
entum transfered per cycle is proportional to N, but be-

ause �p̄ also increases as T1 is decreased. Indeed, the
voidance of pulse overlap was a fundamental limit in the
revious experimental realizations of the usual ARP
orce. The asymmetry realized in the studies of [9,11] was
bout Tc /T1=4, which yields an average force of about
k /Tc instead of the ideal 2�k /Tc.
The formula that describes the heating of the atomic

nsemble Eq. (21) can also be investigated easily to show
hat the heating is largest in the case T1=Tc /2 and de-
reases rapidly with increasing ratio of Tc /T1. On the
ther hand, the stationary value of ��p

2 is proportional to
2, so using a higher-order plateau to increase the force
as its price. It may be more favorable to take two 4�k
ycle steps instead of one 8�k step if experimental possi-
ilities and interaction times permit, because the overall
eating will be smaller in the former case. Another disad-
antage of higher-order peaks is that they are narrower
n the space of parameters, so the interaction is less ro-
ust. This may have the consequence, for example that
he Doppler shift the atoms acquire during acceleration
ill drive them out of the parameter range of the peak

ooner.
From the behavior shown in Fig. 4 it can also be seen

hat if the atoms start from the ground state, the force
onverges to the stationary-state value from above, and
he diffusion constant converges from below—which
eans that for practical purposes, the longer the tran-

ient behavior the better.
The simple formulas Eqs. (19) and (21) contain only the

elay and cycle times T1 and Tc as parameters. But the
uestion of what values could be used for T1 with any
iven physical pulse parameters , 
0 and � can only be
alculated from numerical solutions of Eqs. (4). Thus the
imple model can be thought of as a substitute for solving
q. (5) for all parameters only in conjunction with Eqs.

4). Nevertheless, solving the former is much more time
onsuming than the latter—not only are the number of
ariables necessary to consider in the density-matrix de-
cription much larger, the equations also have to be
olved for a time much longer than 1/� to find the steady-
tate evolution. Conversely, Eqs. (4) have to be solved only
or one cycle with any given set of parameters to find out
f they are suitable for realizing a full multiphoton adia-
atic passage with some N, and then the simple model
an be used to estimate the steady-state behavior for
arge interaction times. For the most promising param-
ter values, the full density-matrix simulation can also be
erformed to confirm the estimates, but the simple model
akes it unnecessary to do the most time-consuming cal-

ulations for every set of parameters.

. SUMMARY
n this paper, we have investigated the effect of short
ounterpropagating laser pulses on the mechanical state
f two-level atoms. In particular, we have considered the
ituation when the laser pulses overlap each other par-
ially and induce multiphoton adiabatic passage (MAP).
e have investigated pairs of constant frequency, oppo-

itely detuned pulses as well as pairs of frequency-chirped
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ulses. MAP in these cases can be understood with the
se of adiabatic Floquet theory, and this also shows why

nducing MAP with chirped pulses requires much smaller
ntensities than with oppositely detuned pulses.

We have examined the behavior of the momentum-
tate distribution of the atoms when they interact with a
equence of pulse pairs for a prolonged time, such that
pontaneous emission cannot be neglected. It was shown
hat the long-term effect of such a pulse sequence tends to
e a constant force and a momentum-space diffusion
heating). The force acting on the atoms is identical in na-
ure to the usual adiabatic passage force that is exerted
y separated, counterpropagating chirped laser pulses,
ut its magnitude is amplified several times. There are
wo reasons for the amplification of the force: on the one
and, the atoms receive 2N�k momentum from each
ulse pair where N may be a small integer that is larger
han one. On the other hand, allowing the two pulses of
he cycle to overlap increases the asymmetry of timing be-
ween the two pulses of a cycle and the start of the next
ycle, and this too increases the overall force acting on the
toms for long interaction times.
We have also derived a simple model that, in conjunc-

ion with the numerical solution of the momentum-space
chrödinger equation for a single pair of pulses, can be
sed to estimate the long-term effect of the sequence of la-
er pulses. The model correctly accounts for the depen-
ence of the force on the timing parameters (the delay T1
etween pulses in the pulse pairs and the cycle time Tc).
sing the model, one can avoid time consuming numeri-

al solutions for the density-matrix equations for a large
umber of parameter sets.
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