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We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counter-
propagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several con-
figurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such mul-
tiphoton adiabatic transitions for the manipulation of the atoms’ mechanical state. In particular, we compare
the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-
chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that
is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to
calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot
be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the
heating, and compare them to the numerical results. © 2009 Optical Society of America
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1. INTRODUCTION

The forces that resonant laser radiation can exert on at-
oms have been used extensively in past decades for cool-
ing, trapping, and manipulation of the atoms’ mechanical
state [1]. The simplest type, the so-called radiation force
(or scattering force) is mediated by absorption-
spontaneous emission cycles and was the first to gain
widespread use in atomic physics. Another force, medi-
ated by a sequence of consecutive, counterpropagating la-
ser pulse pairs has also been investigated in detail. A pair
of such pulses (under appropriate conditions) can first ex-
cite the atoms, then return them to the ground state in a
controlled way, delivering 24k momentum during the pro-
cess. Since the repetition frequency can be much greater
than the inverse spontaneous lifetime I', this force does
not saturate as the radiation force does. One way to real-
ize this is with the usage of 7 pulses [2—4]. Another way is
to use frequency-chirped laser pulses that invert the
atomic state via adiabatic population transfer, also called
adiabatic passage (AP) or sometimes adiabatic rapid pas-
sage (ARP). This procedure has been first proposed for
isotope separation [5], and later suggested for the coher-
ent acceleration of atoms in atom optical applications, as
well as the amplification of the cooling effect for atoms or
molecules with narrow line transitions [6-8]. The down-
side of the AP force (and the analogous m-pulse force) is
that the excitation and deexcitation of the atoms must be
achieved by the pulses propagating in the appropriate di-
rection. Should spontaneous emission occur, the force will
be reversed as the atom is accelerated in the wrong direc-
tion by the subsequent pulses. At first sight, the AP force
is therefore useful only for times that are short compared
to the spontaneous lifetime, for if a considerable fraction
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of the atoms is allowed to go through spontaneous transi-
tions, the atomic ensemble is dispersed very quickly.

Experimental realizations of the AP force, however,
show that present technology does not allow a great num-
ber of pulses to interact with the atoms within a single
spontaneous lifetime. The typical atomic lifetime used in
the experiments is of the order of 10—100 ns, but the use
of picosecond pulses, whose length would allow numerous
interaction cycles within the lifetime, presents bandwidth
problems. The full bandwidth of the chirped pulses may
easily span a range where other, unwanted, transitions
can be excited. Thus, pulses of a few nanoseconds dura-
tion are usually used [9-12].

On the other hand, it has been shown that the force ex-
erted on the atoms may continue to be large even if the
detrimental effect of spontaneous emission is taken into
account [13]. The requisite to this is that the timing be-
tween the forward and backward propagating pulses
should be asymmetric—the time delay between the first
and second pulses of a pulse pair should be considerably
smaller than the time delay between subsequent pulse
pairs. In this case, the average force on the atoms, as well
as the heating due to random reversal of the force tend to
a finite (nonzero) value. This bears a strong resemblance
to the effect of bichromatic standing waves, where the
force acting on the atoms can be attributed to a sequence
of counterpropagating 7 pulses due to the beating of the
light field. Here the proper choice of the beat phase can
supply the asymmetry necessary for a prolonged duration
of the force [14-17]. Using a sequence of separately gen-
erated pulses has the advantage that the asymmetry of
the delay times can be much greater. Using frequency-
chirped pulses (as opposed to 7 pulses) has the advantage
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that Doppler broadening of the atomic ensemble or the
transverse intensity distribution of the laser pulses are
not much of an issue.

Recently it has also been shown that when two coun-
terpropagating pulses overlap each other, multiphoton
adiabatic processes are possible [18,19]. These transitions
can be generated either with a pair of pulses that are de-
tuned from the atomic resonance in opposite directions, or
with a pair of frequency-chirped laser pulses, and they
can be understood in terms of adiabatic Floquet theory
[20—-23]. The overall effect of such an interaction is very
similar to that of two counterpropagating separated laser
pulses in both cases. The atoms are returned to the
ground state at the end of the cycle and the momentum of
the whole ensemble is changed uniformly, i.e., all atoms
are accelerated by an equal amount. The only difference is
that the momentum the atoms gain is 2N%k where N=1
is the usual separated pulse scheme, but depending on
pulse amplitude, pulse delay, and the magnitude of the
detuning or the chirp speed, higher values of the integer
N are possible. This means that the force exerted on the
atoms can be amplified several times over the usual
counterpropagating-pulse scheme. Nevertheless, the
statement in the previous paragraphs still remains true:
it is difficult to realize experimentally a pulse sequence
where a large number of pulse pairs interact with the at-
oms in a time shorter than the spontaneous lifetime of the
atoms.

Multiphoton adiabatic passage (MAP) was also shown
to be useful in numerous other applications: for coherent
population transfer between Rydberg states of an atom
[24,25], between vibrational states of diatomic molecules
[26], or the population transfer between the metastable
states of a A or tripod atom using a single chirped pulse
[27,28].

In this paper, we examine the force exerted on the at-
oms by a sequence of counterpropagating, partially over-
lapping laser pulses. We consider both a pair of constant
frequency, oppositely detuned laser pulses and a pair of
frequency-chirped pulses. We focus on the regime when
the overlapping laser pulses generate MAP. We show that
much smaller pulse intensity is necessary to generate
such transitions using chirped pulses. In addition, we ex-
amine the force when the laser pulses interact with the
atoms for a time that is comparable to or much larger
than the spontaneous lifetime. In particular, we consider
the heating suffered by the atomic ensemble as a conse-
quence of spontaneous emission induced force reversal. A
simple model is also developed that can be used to esti-
mate the long-term effect of the pulse sequence on the at-
oms.

2. AMPLIFICATION OF THE FORCE DUE TO
MULTIPHOTON ADIABATIC PASSAGE

A. Basic Theory

To describe the interaction of a two-level atom and coun-
terpropagating resonant laser fields, we use the Hamil-
tonian
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=—+H,-dE, (1)
2m

where the first term is the kinetic energy due to center of
mass motion, the second term is the internal atomic en-

ergy ﬁazha}g|g>(g\+hwe|e)(e\ and the last one describes a
dipole interaction with a classical light field. Without any
loss of generality, we can write the classical electric field
in Eq. (1) as

E(x,t) = E*(t)cos[kx — wgt — ¢*(2)]
+E~(t)cos[— kx — wgt — ¢7(t)], (2)

where E*(t) are the slowly varying amplitudes of the two
counterpropagating components, ¢*(¢) are the phases
that may contain a detuning or frequency chirp, and wg,
=w,—wg is the frequency of the atomic transition. The
sign that indexes the amplitude and the phase shows the
direction of propagation. To calculate the coherent inter-
action between the laser pulses and the atoms, it is most
convenient to use the relevant Schrodinger equation for
the momentum-space probability amplitudes
a(p,t),B(p,t), which constitute the two components of a
spinor wave function. The two probability amplitudes are
related to the ket corresponding to the physical state of
the system by

) = f [alp’ te”*lg,p'y + B’ D le,p")1dp’, (3)

where |g,p’),le,p’) are the usual electrotranslational
states, i.e., plane-wave momentum states with a well-
defined electronic state. Inserting Eqgs. (2) and (3), and the
Hamiltonian (1) into the Schrodinger equation and pro-
jecting with {g,p|,{e,p| we obtain equations of motion for
the probability amplitudes «a(p,t),B(p,t). In doing this,
one must not forget that the spatial variable x in Eq. (2)
must be considered an operator for this purpose, and the
decomposition of the cosine into exponentials will yield
the translational operators in momentum space necessary
for momentum conservation. With the rotating wave ap-
proximation and defining the Rabi frequencies #Q*(¢)
=dg E*(t) the equations will read [19]

, p’ HOIR
ifid,o(p,t) = —alp,t) - e " OB(p + hk,t)
2m 2
Q)
- e " OB(p - hik,t),
. p® @
ihd,B(p,t) = —PBp,t) - e " Da(p - fik,t)
2m 2
Q)
- e Oa(p + Rk t). (4)

Here dge=<g|cA1|e) is the dipole matrix element and Q* are
taken to be real (again, without loss of generality). Equa-
tions (4) can be solved using a computer quite conve-
niently, and yield a valid description of the interaction for
short times when spontaneous emission can be neglected
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altogether. For prolonged interaction, however, we must
use the relevant Liouville equation for the density opera-
tor, which can be augmented by phenomenological decay
terms to describe relaxation [22],

ihap=[H,p]-ihl . (5)

The operator I is taken to describe spontaneous emission
processes from the excited to the ground state, but no
other transitions (to different atomic levels) or phase in-
terrupting processes (such as collisions) are considered.
For one-dimensional motion the equations for the density
matrix elements are still tractable, though considerably
more time consuming to solve than Egs. (4).

In this paper we will consider Gaussian pulses and two
different cases for the phase evolution. First, we consider
pulses with a constant detuning, which are tuned sym-
metrically above and below the resonance frequency—the
so-called &,-46 configuration. Second, we consider pulses
with a linear chirp, whose central frequency is exactly
resonant with the atomic transition—the so-called B,
configuration. The forward and backward propagating
pulses are assumed to be identical in this case. In both
cases, the second pulse is assumed to arrive with a delay
T, which is the same order of magnitude as the pulse
length 7 (see Fig. 1). Thus,

T #2
Q) =y 5P| "5z | Q) =0¢t-Ty), (6)

PO =+ g, $()=-dt-T+ ¢y, (7

for the &,-46 configuration or
B B
') = §t2 +d5, ()= §(t - T+ &, (8)

for the B, B case. Here () is a constant amplitude param-
eter such that the area of a pulse (the time integral of the
envelope function) is just Qg7X 7, §is a constant detun-
ing, and B is the linear chirp speed. Note that the param-
eter 7 called the pulse length in this paper is related to
the usual pulse width in intensity FWHM by 7iptensity
=12\In2~1.67r.

B. Multiphoton Adiabatic Passage
The usual scenario for using 7 pulses or AP for the ma-
nipulation of the atoms’ mechanical state is when the

—>

0

t t
Fig. 1. (Color online) Timing of the laser pulse pairs. The second
pulse of the pair, which counterpropagates the first one arrives
with a delay T, which is the same order of magnitude as the
pulse length 7. The cycle then repeats itself after T9=T,-T;
>T,. (Arrows above the pulses symbolize the propagation
direction.)
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counterpropagating pulses arrive in succession, interact-
ing with the atoms separately. Provided that the pulses
and the delay are short enough for spontaneous emission
to be neglected (T,7<1/I'), the effect of a single pair of
pulses on the atomic momentum-space distribution func-
tions  a(p,t)=pgP,p,t)=alp,t)a*(p,t) and  b(p,t)
=pee(p,p0,t)=Bp,t) B (p,t) will simply become

a(p’t,) = a(p - 2ﬁk7t)7

b(p,t') =b(p + 2hk,t). (9)

The traditional AP force is mediated by a repetition of this
basic cycle many times in rapid succession.

A similar process is also possible when the two counter-
propagating pulses do not interact with the atoms quite
separately, but overlap each other partially—the second
one arrives with a distinct delay, the same order of mag-
nitude as the pulse length T'; ~ 7. Multiphoton adiabatic
processes are possible either when the two pulses are de-
tuned symmetrically to either side of the transition [18] or
when both pulses have a linear chirp [19]. When the pulse
amplitudes, the delay, and the detunings or the chirp
have appropriate values, the overall effect of the laser
pulse pair on the atomic distributions can be similar to
that of successive laser pulses in the AP case. The elec-
tronic state of the atoms is conserved and so are the
shapes of the ground and excited state momentum-space
distributions. However, the momentum transfer is in-
creased:

a(p,t’)=a(p - 2N#hk,t),

b(p,t') = b(p + 2Ntik 1), (10)

where N is a small integer and N=1 is the traditional AP
case. Figure 2 shows the average momentum transferred
to the atom Ap=p(¢')-p(t) (where p=[pla(p)+b(p)]dp) by
a pair of overlapping laser pulses as a function of the
pulse amplitude Qg7 (solid black curves). The figure also
shows the population of the excited state after the inter-
action (multiplied by five to be visible). The data have
been obtained by numerically integrating Eqs. (4) using
parameters (a) 6=100/7, Ty=27 and (b) B/7#=20, T,
=1.57 (parameters for which the adiabatic condition is
well fulfilled) and assuming that the atoms are in the
ground state just before the interaction. The momentum
transfer displays distinct plateaus of 2NAk momentum
transfer, where MAP is realized and the atoms are re-
turned to the ground state at the end of the interaction. It
is notable that the required pulse amplitude is much
smaller in the B, configuration (i.e., the chirped-pulse
scheme)—the Ap=67#k plateau occurs at around Q,7
=600 for the §,-6 case, and at y7=60 for the 3,8 case,
which means that in pulse intensity the difference is 2 or-
ders of magnitude. It is also interesting to note that the
8,—6 configuration yields a counterintuitive direction for
the momentum transfer (i.e., the atoms are pushed oppo-
site to the direction of propagation of the first pulse), and
this is irrespective of whether & is positive or negative.
[This is why —Ap has been plotted in Fig. 2(a)]. In the 8,8
scheme, on the other hand, atoms are pushed in the di-
rection of propagation of the first pulse, again, irrespec-
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Fig. 2. (Color online) Solid black curves: average momentum ob-
tained by atoms in the ground state Ap during the interaction
with a pair of counterpropagating pulses as a function of the nor-
malized pulse amplitude Qg7. (a) §, —& configuration, with &
=100/7 and T;=27. (b) B, B configuration with 8=20/7 and T,
=1.57. Dashed curves: population of the excited state after the in-
teraction multiplied by 5 to be visible. (Note that —Ap has been
plotted for the &, -4 case; see the text for an explanation.)

tive of whether B is positive or negative. Thus creating
pulse overlap in the usual AP force scheme can amplify
the force acting on the atoms several times. Since the
population transfer is adiabatic, the process is robust
with respect to a slight change of the amplitude.

While the momentum transfer has been plotted here as
a function of pulse amplitude, it is clear that, as in any
adiabatic transition, these too are robust with respect to a
slight change of all other parameters. This means that
changing parameters like the time delay 7', or the detun-
ing or the chirp B one may observe similar curves with
plateaus of various orders N. In particular, at a given am-

(m-1DA+6" Q2
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plitude and chirp, decreasing the delay (i.e., increasing
the overlap) will yield higher order transitions—up to the
point where the conditions of AP are violated.

C. Elements of a Floquet Analysis

Multiphoton adiabatic transitions can be analyzed conve-
niently with the use of adiabatic Floquet theory [20—23].
To present a concise summary of the elements of this
theory that are relevant to the current problem, we start
from a simplified form of Eqgs. (4) that does not take into
account the atoms’ translational degree of freedom (this
approximation will be justified later),

: B() o, -
ihoelt) = - ?[ﬁQJ'(t)e“” O 4 5O (£)e' O],

alt
ihd,Bt) = - g[ﬁﬂ*(t)e‘id’w) +1Q (e W] (11)

The 2 X 2 Hamiltonian matrix of these equations depends
on time through the amplitudes Q*,Q", and the phases
¢*,¢~. Since the phases appear in the exponent the time
dependence of the matrix is not slow; the usual method of
diagonalization to study adiabatic passage cannot be
used. Now we assume that the frequency difference be-
tween the two fields is a constant, i.e., ¢*(¢)— ¢~ (¢)=At, in-
troduce the notation 6" for the instantaneous detuning of
the Q% wave from the resonance and writing B'(¢)
=p(t)exp(ip*(t)), we perform a Fourier expansion of the
probability amplitudes «(t), 8'(¢),

alt) = D, A,,(t)exp(- imAt),

B'(t) = X, B,,(t)exp(- imAt). (12)

From Eq. (11) we can then derive the equation of motion
for the vector composed of the Fourier amplitudes ¥
=(- .. aBm—l ’Am—l ’Bm ’Am ’Bm+1aAm+1’ .. ) to be

19,V = HpyogV, (13)

where the matrix Hpyoq is an infinite tridiagonal matrix of
the form

QOr/2 (m-1)A Q7/2
Q772 mA+6 QF/2

- HFloq =

This form of the equations lends itself to the classical
theory of the adiabatic following much better, as the fast
time exponents have been removed, the matrix Hp,q de-

Q2 mA Q7/2

(14)

Q72 (m+DA+8 QY2
Q2 (m +1)A

pends on time only through the slowly varying pulse am-
plitudes Q*,Q~ and the detuning &". Note that while we
have assumed A to be time independent for convenience,
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this is not essential; one can use this method with a slight
twist even when A depends slowly on time. The coeffi-
cients A,, and B,, are merely Fourier components of two
probability amplitudes in this formalism, but they can be
shown to have a deeper meaning. The correspondence
A,, < |m,g) can be made, where the Floquet state |m,g)
denotes a combined state of field and atom, with the latter
being in the ground state and the former having m pho-
tons removed from the (* component and emitted into
the ()~ component, i.e., m photons exchanged between the
two components compared to the initial state [20,23].
Likewise, the correspondence B,,« |m,e) stands, where
|m ,e) denotes a Floquet state with the atom in the excited
state, m photons removed from the (Q* component and
m—1 emitted into the (Q~ component. Though we ne-
glected the kinetic energy of the atom when writing Egs.
(11), we can clearly infer the momentum change of the
atom during the process by noting the number of photons
that have been exchanged—a |0,g) —|N,g) transition im-
plies that a momentum of 2N7% has been transfered to
the atom.

Computing the eigenvalues and eigenvectors of the Flo-
quet matrix (14) (i.e., calculating the dressed states of the
atom in the field of the two pulses) as a function of time
with various parameters (amplitude, delay, and detuning
or chirp), one can analyze easily the possible outcomes of
the interaction. Figure 3(a) shows a plot of Floquet eigen-
values for a pair of symmetrically detuned pulses in the
8,—06 scheme. The thick black curve marks the energy of
the dressed state that is connected with the |0,g) Floquet
state before the interaction, i.e., a ground state atom and
the fields in their initial states. This dressed state then
transforms into the |-3,g) Floquet state, which corre-
sponds to three photons removed from the Q- field and
emitted into the Q* field. Clearly, the atomic momentum
must change by —6#4k during this process. So if the chang-
ing of the fields is slow enough for adiabatic following to
take place (with respect to the energy difference between
neighboring levels), the atom will go through a six-photon
adiabatic process.

Further insight is provided by plotting the Floquet ei-
genvalue of the |0,g) state when only the first pulse is
present (thick black dashed curve), and the Floquet eigen-
value of the |-3,g) state when only the second pulse is
present (thick black dashed-dotted curve). A single field
couples these with only one other Floquet state (Q*
couples [0,g) to |0,e) and Q- couples |-3,g) to |-2,e)), and
causes a strong Stark shift at the pulse peak. With only
one pulse present, the atom is returned to its initial state
without the possibility of MAP (broken curves). But when
both pulses are present, the two states that are Stark
shifted close to each other by the leading edge of the Q*
field and the trailing edge of the )~ field connect during
the overlap reagion and a six-photon transition is real-
ized. For the parameters that were used to generate the
figure, O*r=420, §*7=+70 and T;=27 the conditions of
adiabaticity are already fulfilled quite well. Figure 3(b)
shows a similar plot for a pair of counterpropagating
chirped pulses. This time, the adiabatic dressed state that
connects |0,g) and |3,g) is shown with a thick black solid
curve, while the two broken (dashed and dashed-dotted)
thick black curves show the evolution of the initial and fi-
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Fig. 3. (Color online) Floquet eigenvalues as a function of time
during interaction with overlapping pulses. (a) &, -8 configura-
tion for Q*7r=420, 5*7=+70 and T;=27 and (b) B, B configuration
for O*7=60, B*?=20 and T;=1.57. Some levels are labeled with
the index of the corresponding Floquet state at the beginning and
at the end of the interaction. In particular, the evolution of the
Floquet state that is connected with the |0,g) state before the in-
teraction is marked with a thick black curve.

nal states’s Floquet eigenvalue with only the first and the
second pulses, respectively. It is visible on the plot that
the frequency sweep in itself provides a considerable shift
of the dressed state eigenvalues. Thus to move the inital
and final states close to each other, we do not have to rely
solely on a Stark shift, so the pulse amplitude required
may be much smaller in the chirped-pulse scheme. In-
deed, the parameters used to generate this plot are Q*r
=60, g*7?=20, and T;=1.57.

Figure 3 helps us understand why neglecting the trans-
lational energy present in Eqs. (4) is justified. The rel-
evant energy difference between neighboring states on
the diagram is given by A. Provided we have pulses with
7~nanosecond duration (to beat spontaneous emission),
the order of magnitude of A~gigahertz is much larger
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than the slight correction due to the kinetic energy term
<1 MHz. Clearly, the approach outlined in this subsec-
tion can be used only to obtain a qualitative understand-
ing of the possible outcomes of the interaction. Whether
the pulse parameters really do suffice to create MAP must
be deduced from a numerical simulation of Egs. (4), which
take into full account of any nonadiabatic transitions as
well.

3. SPONTANEOUS EMISSION DURING
PROLONGED INTERACTION

As mentioned in the Introduction, present technology
does not allow the AP force to be used in its pure form.
While one can readily generate frequency-chirped laser
pulses whose duration is much shorter than the sponta-
neous lifetime of the atoms, the interaction of a large
number of pulses during a time short compared to the
lifetime of the excited state is not possible. The main rea-
son for this is that very short pulses require a great chirp
speed and present bandwidth problems, opening the pos-
sibility of unwanted atomic transitions. Therefore, in
practice, one has to be satisfied with a scenario where in-
dividual pulses are indeed much shorter than the excited
state lifetime, but the whole interaction continues for
much longer. This means that spontaneous emission can-
not be left out of consideration. Even if only a small frac-
tion of the atoms goes through such a process during a
single cycle, the cumulative effect during many cycles can
be considerable.

A. Numerical Calculations of the Density Matrix

As the most obvious step to include spontaneous emission
in the description, we have solved Eqs. (5) using a com-
puter. To facilitate the solution, the recoil due to sponta-
neous emission has been neglected. This is convenient be-
cause including a fractional change of the atomic
momentum requires a much finer resolution in momen-
tum space, with the corresponding increase of matrix el-
ements. Figure 4 shows the result of a calculation in
which the atoms interacted with 30 pairs of frequency-
chirped laser pulses. The parameters of the simulation
were chosen to correspond to the parameters of meta-
stable He, which was used in several experiments to dem-
onstrate the AP force [9,11], and the pulse parameters
were similar to those used to produce Fig. 2(b), where sev-
eral higher-order plateaus can be seen. Thus '=1/97 ns,
7=2 ns (which clearly fulfils 7<1/I"), Qy=100/7, B=20/7>.
The delay was chosen to be T';=1.7147, which at this am-
plitude corresponds to the N=4 plateau and the cycle
length was chosen to be T,=80 ns. Since T,=~1/T, the
whole process lasts much longer than the spontaneous
lifetime, T},,=2400 ns in this case. Figure 4(a) displays
the momentum-space distribution of the atoms before and
after the interaction. Figure 4(b) shows the changing of
the average momentum and that of the square of the mo-
mentum space width in each cycle, i.e., Ap and Aoﬁ
=a§(t’)—o§(t), in recoil units. The most important prop-
erty of the evolution is, that both Ap and Aoﬁ converge to
stationary-state values. Therefore, in the long run there
is a constant force acting on the atoms (which, however, is
somewhat smaller than 8%k/T,, the ideal case without
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Fig. 4. (Color online) (a) Momentum-space distribution func-
tions before (dashed curve) and after (solid curve) the interaction
with 30 pairs of overlapping frequency-chirped laser pulses. The
parameters used for the calculation are I'=1/97 ns, 7=2 ns, (),
=100/7, 8=20/72, T1=1.7147 (which corresponds to the N=4 pla-
teau), T,=80 ns. (b) The value of Ap (crosses) and Au’i (diamonds)
in units of 2k after each cycle.

spontaneous emission) and a diffusive spreading in mo-
mentum space—the width is proportional to \m The be-
havior depicted is typical—the stationary-state force and
diffusion constant depend a great deal on the parameters
used (most importantly the T'; and T',) but the general be-
havior remains the same.

B. Simple Model of the Amplified Adiabatic Passage
Force

The behavior of the long-term effect of the overlapping la-
ser pulses just seen is very similar to that of the usual AP
force. For this latter case a very simple model can be used
to calculate the detrimental effects of spontaneous emis-
sion during prolonged interaction [13]. In this subsection
we generalize this simple model to the case of multipho-
ton adiabatic processes. Even though the assumptions
used to derive the original model have limited validity in
this case, the results turn out to be very useful.

To start, we need a set of equations that describe the
evolution of the momentum-space distribution functions
which also encompass the effect of spontaneous emission
to replace Eqgs. (10). Defining q;=1-exp(-I'T;) to denote
the probability of an atom emitting a photon spontane-
ously during T4, and q9=1-exp[-TI'(T,-T;)] to be the
same for T,-T; we now write,

a,41(p) = (1 = q1)a,(p - 2Nhk) + q192a,(p) + q2b,(p
+ 2Nhk),

b,+1(p) = (1-q2)b,(p + 2Nfik) + q1(1 - gs)a,(p),  (15)

as the basic iteration rule for the momentum-space distri-
bution functions. In these formulas subscript n denotes
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the distribution functions just before the (n+1)th cycle (at
t, see Fig. 1) and subscript n+1 denotes distribution func-
tions after the (n+1)th cycle, [just before the (n+2)th
cycle at #']. The physical content of the single terms is
clear: an atom in state |g,p) (ground state with momen-
tum p) at the end of the cycle could have either (i) started
from |g,p —2N7k) and without emitting any photons spon-
taneously, received 2NAk momentum; (ii) started from
lg,p) and decayed twice obtaining no net momentum over-
all; or (iii) started from |e,p +2N#k), received —2N#k mo-
mentum and decayed after the second pulse. In a similar
manner, an atom in state |e,p) at the end of the cycle
could have either (i) started from |e,p+2N7%k) and es-
caped any spontaneous transitions receiving —2N#%k mo-
mentum, or (ii) started from |g,p) and decayed after the
first pulse, but not after the second one, obtaining no net
momentum overall.

Equations (15) can be used to calculate the the momen-
tum distribution functions after each cycle. They are very
convenient to use, because the evolution of the distribu-
tion functions can easily be studied for many cycles with-
out actually solving Eqgs. (4) and (5). They are basically
the MAP counterpart of the original model of [13] with
simply 2N#Ak inserted for the momentum transfer. As
such, they have several shortcomings: First of all, they
have been written to separate the effects of the laser
pulses and spontaneous transitions completely—however,
with overlapping pulses such a separation can only be ap-
proximate, so our assumption has to be justified a poste-
riori by comparing the results derived from Egs. (15) to a
full simulation of Eqgs. (5). Also (as with the original
model) the recoil of spontaneously emitted photons has
been neglected, so the only source of heating included in
the model is that due to random force reversal at each
spontaneous emission event. This approximation can also
be justified a posteriori by observing that the latter is far
greater than the heating that could be attributed to ran-
dom single-photon recoils using the time averaged popu-
lation of the excited state. Furthermore, these formulas
can no longer be used for arbitrary delays—the delay has
to correspond to one of the plateaus where there is full
adiabatic population transfer and the atoms return to the
ground state at the end of the interaction. The order N of
the plateau that corresponds to the delay has to be in-
serted into the formulas. Finally, any nonadiabatic tran-
sitions are also neglected.

By integration and straightforward algebraic manipu-
lation of Egs. (15) we can also derive simple iteration
rules for important quantities. The first of these are the
level probabilities after n cycles defined as P,,
=[a,(p)dp and P} ,=[b,(p)dp. An iteration rule for them
can be obtained simply by integrating Eqs. (15) with re-
spect to p to get

Pi,n+1 =P?t + (Pi,n _Pft)(l _qc) I’ € {a7b}, (16)

where q.=1-exp(-I'T,), i.e., for prolonged interaction, the
excited and ground-state probabilities converge to sta-
tionary values,
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By multiplying both of Egs. (15) by p, adding the two, and
again integrating with respect to p we get an iteration
rule for the average momentum,

Ap =ﬁn+1_ﬁn=2Nhk[(1_ql)Pa,n_Pb,n]- (18)

As the average momentum gain depends only on the level
probabilities, for prolonged interaction Ap also converges
to a stationary value

_ q2—4q1
Aps = 2Nk . (19)
qc

Finally, we can also obtain an iteration rule for the mo-
mentum space width of the distribution 0127 if we multiply
Egs. (15) by p?, add them, integrate with respect to p, and
use Eq. (18). With some straightforward algebraic ma-
nipulation it is not difficult to show that the asymptotic
form for the iteration rule has the form

Adi=0> o, =K, (20)

pn+l

where K* is a constant and can be calculated to be

q192(1 —q1)(1-q3)(2 -q1)(2 - q5)

K" = 8N’k -
9.

q192(4-q1-q2-2q,)

q’

+4AN?*h2R2? (21)

So the model predicts the long-term effect of the counter-
propagating, overlapping laser pulses that induce MAP to
be a constant force acting on the atoms and a constant
heating of the ensemble. This is in accordance with the
findings of Subsection 3.A. The results are identical to the
formulas derived in [13] for the usual AP force case except
for the factor N and N? in the momentum gain and mo-
mentum diffusion formulas.

C. Discussion
The first question that arises is obviously the applicabil-
ity of the model for the quantitative estimation of the
MAP force. The basic assumption that could be used for
separated laser pulses, that there is a full, “instanta-
neous” inversion of the atomic populations, is not valid for
multiphoton adiabatic passage. Plotting the population
histories for various delay values corresponding to differ-
ent MAP plateaus shows that the population of the ex-
cited state never reaches unity during the interaction. On
the other hand, the time interval, during which there is a
considerable population in the excited state, can be some-
what longer than T'; assumed by the simple model. Over-
all, the effect of the two laser pulses and spontaneous
emission cannot be separated in time as for nonoverlap-
ping pulses, calculating the probability of spontaneous
emission as before is rather an order of magnitude esti-
mate. Moreover, nonadiabatic transitions that can have
considerable cumulative effect are neglected by the model
altogether.

To evaluate the usefulness of the simple formulas for
the steady-state MAP force Eqs. (19) and (21), we have
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calculated the evolution of the atomic momentum-space
distribution for numerous different values of T',, 7'y, and
using Egs. (5). From the solutions, we have extracted the
relevant constants Ap®’ and Aof, and compared them with
the predictions of the simple model. Figure 5 shows an ex-
ample of the comparison for a pulse length of 7=2 ns and
two different cycle lengths 7,=80 and 40 ns (other param-
eters are the same as those used to produce Fig. 4). The
figures show the values of Ap® and Aoﬁ as a function of
the plateau order NN calculated from the simulation
(squares) and the simple model (stars). Note that the de-
lay T is different for each N. The figures show that the
value of the momentum transfer per cycle is predicted
very well by the model—the exact result is just slightly
above the value obtained from the model. The increase of
the momentum distribution width shows a much larger
discrepancy between model and simulation. However, one
can see from the figures that the estimate of the model is
conservative in all cases, i.e., the force is (slightly) under-
estimated, while the heating is overestimated. Therefore
the model can be very useful for estimating the force and
the heating in a given situation.

Equation (19) readily shows us that in case of pro-
longed interaction, the momentum transferred per cycle
is less than the ideal 2N#%k value. In case of a symmetric
time sequence of the pulses 71=T,/2 the steady-state
force is zero [g;=¢q5 in Eq. (19)] and as the asymmetry
(the ratio T,./T,) increases it gets closer and closer to the
ideal value. The reason for this is intuitively clear: the de-
crease of the force is due to atoms that emit spontaneous
photons and thus “get out of phase” with the rest of the
ensemble, being accelerated in the opposite direction. The
shorter 7'y is compared to T,—T; the bigger the chance
that an atom already “out of phase” with the majority will
return via another spontaneous transition before the
start of the next cycle. The use of MAP on higher-order

Tc:80 ns TC=40 ns
10 F 10
(a) (c) !
a c
* =
g5 ¥ g5 9
* g
* ®
0 1 2 3 4 5 0 1 2 3 4 5
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20 u} o~ a o
~ o * g 9;
a
10 * 50 *
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Fig. 5. (a) Comparison of the simulation results (squares) and
the simple model (stars): (a) and (c) depict the steady state mo-
mentum transfer per cycle Ap®! for T,,=80 and 40 ns, respectively.
(b) and (d) depict the heating per cycle Aaﬁ for 7,=80 and 40 ns,
respectively. All quantities are plotted as a function of N, so the
delay T is different in each case. Other parameters are the same
as for Fig. 4: ['=1/97 ns, 7=2 ns, Q,=100/7, 8=20/7.
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plateaus is thus not only advantageous because the mo-
mentum transfered per cycle is proportional to N, but be-
cause Ap also increases as T is decreased. Indeed, the
avoidance of pulse overlap was a fundamental limit in the
previous experimental realizations of the usual ARP
force. The asymmetry realized in the studies of [9,11] was
about T,/T1=4, which yields an average force of about
fik/T, instead of the ideal 2:%/T,.

The formula that describes the heating of the atomic
ensemble Eq. (21) can also be investigated easily to show
that the heating is largest in the case T1=T,/2 and de-
creases rapidly with increasing ratio of 7,./T;. On the
other hand, the stationary value of Aoﬁ is proportional to
N2, so using a higher-order plateau to increase the force
has its price. It may be more favorable to take two 4#hk
cycle steps instead of one 8%k step if experimental possi-
bilities and interaction times permit, because the overall
heating will be smaller in the former case. Another disad-
vantage of higher-order peaks is that they are narrower
in the space of parameters, so the interaction is less ro-
bust. This may have the consequence, for example that
the Doppler shift the atoms acquire during acceleration
will drive them out of the parameter range of the peak
sooner.

From the behavior shown in Fig. 4 it can also be seen
that if the atoms start from the ground state, the force
converges to the stationary-state value from above, and
the diffusion constant converges from below—which
means that for practical purposes, the longer the tran-
sient behavior the better.

The simple formulas Egs. (19) and (21) contain only the
delay and cycle times T; and T, as parameters. But the
question of what values could be used for T; with any
given physical pulse parameters 7, () and B can only be
calculated from numerical solutions of Egs. (4). Thus the
simple model can be thought of as a substitute for solving
Eq. (5) for all parameters only in conjunction with Eqgs.
(4). Nevertheless, solving the former is much more time
consuming than the latter—not only are the number of
variables necessary to consider in the density-matrix de-
scription much larger, the equations also have to be
solved for a time much longer than 1/T" to find the steady-
state evolution. Conversely, Egs. (4) have to be solved only
for one cycle with any given set of parameters to find out
if they are suitable for realizing a full multiphoton adia-
batic passage with some N, and then the simple model
can be used to estimate the steady-state behavior for
large interaction times. For the most promising param-
eter values, the full density-matrix simulation can also be
performed to confirm the estimates, but the simple model
makes it unnecessary to do the most time-consuming cal-
culations for every set of parameters.

4. SUMMARY

In this paper, we have investigated the effect of short
counterpropagating laser pulses on the mechanical state
of two-level atoms. In particular, we have considered the
situation when the laser pulses overlap each other par-
tially and induce multiphoton adiabatic passage (MAP).
We have investigated pairs of constant frequency, oppo-
sitely detuned pulses as well as pairs of frequency-chirped
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pulses. MAP in these cases can be understood with the
use of adiabatic Floquet theory, and this also shows why
inducing MAP with chirped pulses requires much smaller
intensities than with oppositely detuned pulses.

We have examined the behavior of the momentum-
state distribution of the atoms when they interact with a
sequence of pulse pairs for a prolonged time, such that
spontaneous emission cannot be neglected. It was shown
that the long-term effect of such a pulse sequence tends to
be a constant force and a momentum-space diffusion
(heating). The force acting on the atoms is identical in na-
ture to the usual adiabatic passage force that is exerted
by separated, counterpropagating chirped laser pulses,
but its magnitude is amplified several times. There are
two reasons for the amplification of the force: on the one
hand, the atoms receive 2N#Ak momentum from each
pulse pair where N may be a small integer that is larger
than one. On the other hand, allowing the two pulses of
the cycle to overlap increases the asymmetry of timing be-
tween the two pulses of a cycle and the start of the next
cycle, and this too increases the overall force acting on the
atoms for long interaction times.

We have also derived a simple model that, in conjunc-
tion with the numerical solution of the momentum-space
Schrodinger equation for a single pair of pulses, can be
used to estimate the long-term effect of the sequence of la-
ser pulses. The model correctly accounts for the depen-
dence of the force on the timing parameters (the delay 7',
between pulses in the pulse pairs and the cycle time T,).
Using the model, one can avoid time consuming numeri-
cal solutions for the density-matrix equations for a large
number of parameter sets.

ACKNOWLEDGMENTS

The financial support of the Janos Bolyai Research fellow-
ship of the Hungarian Academy of Sciences is gratefully
acknowledged. The work has been funded by the Re-
search Fund of the Hungarian Academy of Sciences
(OTKA) under contracts F 67922 and K 68240.

REFERENCES

1. H. Metcalf and P. van der Straten, Laser Cooling and
Trapping (Springer, 1999).

2. B. Nélle, H. Nolle, J. Schmand, and H. J. André, “Atomic-
beam deflection by double-Pi-pulse laser technique,”
Europhys. Lett. 33, 261-266 (1996).

3. T. G. M. Freegarde, J. Walz, and T. W. Hansch,
“Confinement and manipulation of atoms using short laser
pulses,” Opt. Commun. 117, 262267 (1995).

4. A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Schiitze, R.
Wynands, and D. Meschede, “Stimulated focusing and
deflection of an atomic beam using picosecond laser pulses,”
Phys. Rev. A 56, R3354-R3357 (1997).

5. 1. Nebenzahl and A. Szioke, “Deflection of atomic beams by
resonance radiation using stimulated emission,” Appl.
Phys. Lett. 25, 327-329 (1974).

6. J. S. Bakos, G. P. Djotyan, G. Demeter, and Zs. Sorlei,
“Transient laser cooling of two-level quantum systems with
narrow natural linewidths,” Phys. Rev. A 53, 2885-2888
(1996).

7. G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sorlei,
“Manipulation of two-level quantum systems with narrow
transition lines by short linearly polarized frequency-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Vol. 26, No. 4/April 2009/J. Opt. Soc. Am. B 875

chirped laser pulses,” J. Opt. Soc. Am. B 13, 1697-1705
(1996).

T. Freegarde, G. Daniell, and D. Segal, “Coherent
amplification in laser cooling and trapping,” Phys. Rev. A
73, 033409 (2006).

M. Cashen, O. Rivoire, L. Yatsenko, and H. Metcalf,
“Coherent exchange of momentum between atoms and
light,” J. Opt. B: Quantum Semiclassical Opt. 4, 75-79
(2002).

J. S. Bakos, G. P. Djotyan, P. N. Ignacz, M. A. Kedves, M.
Serenyi, Z. Sorlei, J. Szigeti, and Z. Toth, “Interaction of
frequency modulated light pulses with rubidium atoms in a
magneto-optical trap,” Eur. Phys. J. D 39, 59-66 (2006).
X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, “Strong
optical forces from adiabatic rapid passage,” Phys. Rev. A
75, 011402(R) (2007).

J. S. Bakos, G. P. Djotyan, P. Ignacz, M. A. Kedves, M.
Serenyi, Z. Sorlei, J. Szigeti, and Z. Toth, “Acceleration of
cold Rb atoms by frequency modulated light pulses,” Eur.
Phys. J. D 44, 141-149 (2007).

G. Demeter, G. P. Djotyan, and J. S. Bakos, “Deflection and
splitting of atomic beams using counter-propagating, short,
chirped laser pulses,” J. Opt. Soc. Am. B 15, 16—24 (1998).
V. S. Voitsekhovich, M. V. Danileiko, A. M. Negrijko, V. 1.
Romanenko, and L. P. Yatsenko, “Observation of a
stimulated radiation pressure of amplitude-modulated
light on atoms,” JETP Lett. 49, 161-164 (1989).

J. Soding, R. Grimm, Y. B. Ovchinnikov, P. Bouyer, and C.
Salomon, “Short-distance atomic beam deceleration with a
stimulated light force,” Phys. Rev. Lett. 78, 1420-1423
(1997).

M. R. Williams, F. Chi, M. T. Cashen, and H. Metcalf,
“Measurement of the bichromatic optical force on Rb
atoms,” Phys. Rev. A 60, R1763-R1766 (1999).

M. R. Williams, F. Chi, M. T. Cashen, and H. Metcalf,
“Bichromatic force measurements using atomic beam
deflections,” Phys. Rev. A 61, 023408 (2000).

V. I. Romanenko and L. P. Yatsenko, “Scattering of atoms in
a bichromatic field of oppositely propagating light pulses,”
JETP 90, 407-414 (2000).

G. Demeter, G. P. Djotyan, Zs. Sorlei, and J. S. Bakos,
“Mechanical effect of retroreflected frequency-chirped laser
pulses on two-level atoms,” Phys. Rev. A 74, 013401 (2006).
J. F. Shirley, “Solution of the Schrodinger equation with a
Hamiltonian periodic in time,” Phys. Rev. 138, B979-B987
(1965).

S. Guérin, L. P. Yatsenko, and H. R. Jauslin, “Dynamical
resonances and the topology of the multiphoton adiabatic
passage,” Phys. Rev. A 63, 031403(R) (2001).

B. W. Shore, The Theory of Coherent Atomic Excitation
(Wiley, 1990).

S. Guérin, F. Monti, J.-M. Dupont, and H. R. Jauslin, “On
the relation between cavity-dressed states, Floquet states,
RWA and semiclassical models,” J. Phys. A 30, 7193-7215
(1997).

C. W. S. Conover, M. C. Doogue, and F. J. Struwe, “Chirped-
pulse multiphoton transition between Rydberg states,”
Phys. Rev. A 65, 033414 (2002).

H. Maeda, J. H. Gurian, D. V. L. Norum, and T. F.
Gallagher, “Coherent population transfer in an atom by
multiphoton adiabatic rapid passage,” Phys. Rev. Lett. 96,
073002 (2006).

G. N. Gibson, “Adiabatic passage on high-order
multiphoton transitions,” Phys. Rev. A 72, 041404(R)
(2005).

G. P. Djotyan, J. S. Bakos, G. Demeter, and Zs. Sorlei,
“Population transfer in three-level A-atoms with Doppler-
broadened transition lines by a single frequency-chirped
short laser pulse,” J. Opt. Soc. Am. B 17, 107-113 (2000).
G. P. Djotyan, J. S. Bakos, G. Demeter, Zs. Sorlei, J.
Szigeti, and D. Dzsotjan, “Creation of a coherent
superposition of quantum states by a single frequency-
chirped short laser pulse,” J. Opt. Soc. Am. B 25, 166-174
(2008).



