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We study the propagation of coherent light pulses in a medium of three-level atoms with degenerate ground- and
excited-state sublevels in an electromagnetically induced transparency (EIT)-type configuration. Both the strong
control field and the weak probe pulse have elliptical polarization, which gives rise to concurrent multipath cou-
plings between the ground-state sublevels and the auxiliary stable state. We derive the probe field susceptibility
and show that in general, the probe field propagates in two separate polarization modes, one of which is attenu-
ated, the other of which displays EIT. This generic result is valid provided the atomic medium is prepared to be in
a pure quantum state over the ground-state sublevels initially. We also investigate the case when the initial state of
the medium is described by an incoherent mixture of ground-state sublevels and show how EIT-like pulse
propagation degrades. The possibility of controlling the probe susceptibility matrix with control field
polarization provides a convenient tool for probing the quantum state of the medium on the degenerate
ground-state sublevels. © 2013 Optical Society of America

OCIS codes: 020.1670, 190.4180, 270.5530.

1. INTRODUCTION
It has been known for nearly two decades that coherence be-
tween atomic states changes dramatically the susceptibility of
a medium: an absorbing medium becomes transparent for a
weak probe field in the process of electromagnetically induced
transparency (EIT) [1–5]. Based on EIT a number of interesting
and important applications have been developed: matched
pulse generation in a lambda system [6–10], enhanced non-
linear frequency conversion and field generation [11–20], crea-
tion and recall of spatial excitation distribution in dielectric
media [21,22], and coherent quantum memory for photons
[23,24]. For recent review on EIT-based applications see [25].

The control over the susceptibility of the medium can be
further enhanced by extending the EIT concept to multistate
systems, such as the double-lambda configuration: two
ground states are coupled to two excited states with four co-
herent laser fields. It has been shown that in a double-lambda
one can implement amplification without inversion [26], EIT
and matched pulse generation [27,28], resonantly enhanced
parametric nonlinear optical processes [29], and phase-
dependent resonant nonlinear optics [30].

Another multistate system, which is still simple enough to
describe as a combination of lambda systems, is the tripod con-
figuration in which two lower states are coupled to a common
excited state with weak probe fields, which is coupled further
to an auxiliary state with a strong control field. The tripod sys-
tem has been analyzed from the point of view of adiabatic state
preparation [31], where dark states [32] emerge naturally. Pulse
propagation in the tripod system has been studied extensively:
the nonlinear coupling between the weak fields has been con-
sidered in [33,34]. The propagation of adiabatically varying
pulsed fields has been discussed in [35], while propagation
of quantized fields under EIT condition has also been studied
[36]. The application of the tripod configuration for quantum
storage of few photon pulses has been proposed as well [37].

EIT has also been investigated in a number of cases when
the states of the lambda atom have Zeeman degenerate sub-
states. A lot of these studies (e.g., [38]) were motivated by the
true level structure of alkali atoms, which are used extensively
in EIT and related experiments. In [39], it was assumed that
the probe and control fields are of identical circular polariza-
tion. In this case, the degenerate multilevel system reduces to
a set of concurrent simple EIT systems because of selection
rules, but the coupling strength of the fields are different
for each one due to the difference in Clebsch–Gordan coeffi-
cients. It was shown that the multilevel system can be trans-
formed into a simple three-level system under adiabatic
conditions. In [40], the effects of Zeeman degeneracy was in-
vestigated on the storage of light pulses that can be achieved
in lambda systems under EIT conditions. In [41,42], the pro-
pagation of adiabatons was investigated for the case of
Zeeman degenerate substates of the lambda system, while
light propagation in degenerate two-level systems showing
EIT and electromagnetically induced absorption phenomena
was investigated in [43,44].

In the previous paragraph we have listed several works
in which EIT and related phenomena have been studied in
systems with degenerate energy levels. However, none of
these works considered the situation in which the populated
ground-state space is degenerate, and its sublevels are
coupled to the auxiliary states(s) through multiple, concur-
rent pathways. Hence, in this paper we study an EIT-like
scheme, in which the ground and excited states are formed
of degenerate atomic Zeeman sublevels, and there is a single
auxiliary state. Initially the ground-state space is populated.
The ground-state and excited-state sublevels are coupled
by an elliptically polarized weak probe field, whereas the ex-
cited-state sublevels are coupled to the auxiliary state by a
strong, elliptically polarized control (dressing) field. We have
studied various coherent population transfer methods in this
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level configuration in some of our previous works [45–48],
however, field propagation effects have not been considered.
The consequence of such a complex scheme is increased con-
trollability: the susceptibility for the probe field is controlled
by not only the strong coupling field, but by the initially pre-
pared ground state of the system as well, which can be a pure
or a mixed quantum state. In Section 2, we define the model
system. We provide a qualitative analysis of the probe field
propagation in Section 3. We derive analytically the probe
field susceptibility matrix in Section 4. We show the behavior
of the susceptibility through specific examples in Section 5.
Finally, the results are summarized in Section 6.

2. MODEL SYSTEM
We consider the coupling configuration shown in Fig. 1: three
sets of angular momentum states are coupled by elliptically
polarized CW light fields in a generalized lambda configura-
tion. A probe light field couples the degenerate angular
momentum states of the g-set (Jg � 2) to those of the e-set
(Je � 1). The states of the e-set are coupled by a strong con-
trol field to a single Ja � 0 auxiliary state. Initially the system
is prepared in the coherent superposition of the states from
the g-set with Mg � −2; 0;�2.

The coupling fields may be decomposed as

~Ek�t� �
1
2
��e−Ek

−�t� � e�Ek��t��e−iωkt � c:c:�; (1)

where k stands for the control (c) or probe (p) fields, respec-
tively. Here, eq is a unit polarization vector, of helicity q � �1
(e� � −�x̂� iŷ�∕

���
2

p
and e− � �x̂ − iŷ�∕

���
2

p
), as is appropriate

for the expression of elliptical polarization as a combination
of circular polarizations σ− and σ� [49,50]. The atomic energy
eigenstates are denoted by jb; Jb;Mbi, where the label b �
a; g; e identifies the atomic energy level and Jb, Mb are the
usual angular momentum quantum numbers. Using the
Wigner–Eckart theorem [50,51], the Rabi frequencies Ωp

MeMg

associated with the electric dipole transitions between the
atomic energy eigenstates jg; Jg;Mgi and je; Je;Mei are de-
fined through the relation

ℏΩp

MeMg
�t� � −Ep

q�t�he; Je;Mejdeqjg; Jg;Mgi;� ℏΩp
q�t�ξMe

Mg
eiφq

(2)

with ξMe

Mg
being a Clebsch–Gordan coefficient ξMe

Mg
�

�JgMg; 1qjJeMe� [51], d is the electronic dipole operator.
For Jg � 2 and Je � 1 we have ξ−1

−2 � ξ�1
�2 ≡ ξ12 �

�����������
6∕10

p
and ξ−10 � ξ�1

0 ≡ ξ10 �
�����������
1∕10

p
. The phase φq is the sum of

the phases associated with the field amplitude Ep
q�t� and

the reduced matrix element d � he; Je‖d‖g; Jgi. The Rabi
frequencies Ωc

MeMa
for the transitions ja; Ja;Mai↔je; Je;Mei

are defined in a similar way:

ℏΩc
MeMa

�t� � −Ec
q�t�he; Je;Mejdeqja; Ja;Mai;� ℏΩc

q�t�ζMe

Ma
eiϑq

(3)

with ζMe

Ma
� �JaMa; 1qjJeMe�. For Ja � 0 and Je � 1 we have

ζ−10 � ζ�1
0 � 1. The definition of ϑq is similar to that of φq.

The system is described by the Master equation

d

dt
ϱ � −

i

ℏ
�H; ϱ� � LR�ϱ� � Lϕ�ϱ�: (4)

In the Hamiltonian only the relevant states are included from
the degenerate angular momentum energy levels. In the
ordered basis fja; 0i; je;−1i; je;�1i; jg;−2i; jg; 0i; jg;�2ig (for
brevity we introduce the notation jb; Jb;Mbi≡ jb;Mbi) the
Hamiltonian is given by

H � ℏ

2
64

0 1
2Ω

c† 0
1
2Ω

c ΔcI2
1
2Ω

p

0 1
2Ω

p† δI3

3
75; (5)

where In are identity matrices of dimension n, the detunings
are defined as Δp � ωeg − ωp, Δc � ωea − ωc, δ � Δc − Δp;
ωab � �εa − εb�∕ℏ, εn being the energy of the level n. The con-
trol field coupling matrix reads

Ωc �
�
Ωc

−ζ
1
0e

iϑ−

Ωc�ζ10e
iϑ�

�
; (6)

whereas the probe field coupling matrix is given by

Ωp �
�
Ωp

�ξ12e
iφ� Ωp

−ξ
1
0e

iφ− 0
0 Ωp

�ξ10e
iφ� Ωp

−ξ
1
2e

iφ−

�
: (7)

The radiative decay term LR�ϱ� in the Master equation (4) is
defined by

LR�ϱ� �
Γeg

2

�
2
X
q�0;�

MqϱM
†
q − jeihejϱ − ϱjeihej

�

� Γea

2

�
2
X
q�0;�

NqϱN
†
q − jeihejϱ − ϱjeihej

�
; (8)

where the matricesMq (Nq) describe spontaneous decay from
the degenerate manifolds e to g (e to the state a). They have
the property

P
qM

†
qMq � jeihej and P

qN
†
qNq � jeihej, where

jeihej≡P
Me
je;Meihe;Mej. We do not need their explicit form

in the rest of the calculations. The quantities Γeg and Γea are
decay rates from the state manifold e to a and g, respectively.
The dephasing term Lϕ�ϱ� of Eq. (4) describes phase decay
between the manifolds a↔g, e↔g, and e↔a. It reads

Fig. 1. (Color online) Scheme of the coupling configuration. The
ground-state manifold g consists of the sublevels of a five-fold degen-
erate Jg � 2 state. The sublevels are coupled by an elliptically polar-
ized weak probe field to the excited-state manifold e, which consists
of the sublevels of a Je � 1 state. The probe field is detuned by Δp

from exact resonance. The excited-state manifold e is coupled further
by an elliptically polarized strong control field to a Ja � 0 auxiliary
state. The control field is detuned by Δc from exact resonance.
The circles on the Mg � −2; 0;�2 sublevels represent the initial
occupations.
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Lϕ�ϱ� �
Γϕ
g

2
�2jgihgjϱjgihgj − jgihgjϱ − ϱjgihgj�

� Γϕ
a

2
�2jaihajϱjaihaj − jaihajϱ − ϱjaihaj�; (9)

where Γϕ
a;g are dephasing rates. The projector jbihbj is defined

as

jbihbj≡
X
Mb

jb;Mbihb;Mbj: (10)

In the following we shall use the notation ϱab, which refers to a
submatrix of ϱ given by ϱab � jaihajϱjbihbj.

3. QUALITATIVE DESCRIPTION IN THE
COUPLED–UNCOUPLED STATE PICTURE
In this section we present a qualitative picture about the ex-
citation process from the atomic point of view. Our approach
is based on the Morris–Shore (MS) transformation [52], which
is applied now to the control field transition. The MS transfor-
mation renders the complex coupling between two degener-
ate state manifolds (ground and excited states) to a set of two
level coupled systems and uncoupled states. This is achieved
by redefining the basis vectors for the ground and excited
states, separately. In our system, for the control field MS trans-
formation, the auxiliary state jai plays the role of the ground
state and the excited states are je;�1i. The structure of the
MS unitary transformation matrix U is rather simple:

U �
2
4 1 0 0
0 A 0
0 0 I3

3
5; (11)

where A is a 2 × 2 unitary matrix, the precise definition is
not needed for the qualitative analysis. In the basis defined
by Eq. (11), the atomic Hamiltonian reads

HMS � U†HU � ℏ

2
64

0 1
2Ω

c†A 0
1
2A

†Ωc ΔcI2
1
2A

†Ωp

0 1
2Ω

p†A δI3

3
75: (12)

The matrix A is chosen such that the control field coupling
matrix takes the simple form

�
Ωc

0

�
� A†Ωc; (13)

i.e., we have a coupled and an uncoupled state in the excited-
state manifold. Simultaneously, the probe field couplingmatrix
gets redefined, ~Ωp � A†Ωp. In general, all six matrix elements
of the 2 × 3matrix ~Ωp are nonzero. The result of the so defined
MS transformation is depicted in Fig. 2: the auxiliary state is
coupled to one of the transformed excited states je01i, which is
coupled further to all three initially populated ground states
with the probe field. The other transformed excited state
je02i is coupled only to the ground states. There are two typical
coupling schemes present simultaneously: (1) an EIT-like
lambda-coupling configuration jai↔je01i↔jg statesi, and
(2) a coupled two-level system jg statesi↔je02i.

In this paper we are going to study the propagation of a
weak probe pulse while the control field is kept constant.

The field components associated with the two-level system
get absorbed in the course of propagation, whereas the field
components contributing to the lambda system display EIT-
type propagation. In the next section we derive explicitly
the susceptibility of the dressed system in the weak probe
field limit.

4. CALCULATION OF THE PROBE FIELD
SUSCEPTIBILITY
The atomic response to the probe field is a microscopic po-
larization. In our case, the polarization induced by the probe
field differs significantly from the polarization of the bare
atoms due to the interaction with the strong control (dressing)
laser. The probe field consists of σ� components; therefore,
the induced atomic polarization also has these two compo-
nents. Starting from the definition

~P � 1
2
�~P��� � ~P

�−�� � N Trfϱdg; (14)

one finds that both components of the atomic polarization
consist of the sum of two terms: for the σ− component, the
sum includes the contributions of the coherences between
the states je;−1i↔jg; 0i and je;�1i↔jg;�2i, whereas for
the σ� component, it includes the coherences between the
states je;−1i↔jg;−2i and je;�1i↔jg; 0i. Therefore, the slowly
varying positive frequency components P���

� �t; z� of the
atomic polarization vector, P

���
� �t; z� � P���

� exp�i�kpz −
ωpt�� and ~P

����t; z� � P
���
� �t; z�e� � P���

− �t; z�e−, are given by
the equations

P���
− �t; z� � 2Nd�ξ10ϱe−1 ;g0 � ξ12ϱe�1 ;g�2

�; (15a)

P���
� �t; z� � 2Nd�ξ12ϱe−1;g−2 � ξ10ϱe�1;g0

�; (15b)

whereN denotes the atomic density, ϱeq1;gq2 are slowly varying
density matrix elements. The CG coefficients in front of the
atomic coherences multiply the reduced dipole moment ma-
trix element d to yield the dipole moment strength associated
with the particular transition. We conclude that in order to
obtain the linear susceptibility matrix for the probe field
we have to calculate four coherences of the atomic system.

As we have said in the introduction, it is assumed that the
probe field is much weaker than the control field. Further-
more, initially only the ground-state manifold ϱgg is populated.
Therefore, in case of CW excitations both for the control and
probe fields, in order to obtain the steady-state solution of the
Master equation (4), it is sufficient to take into account the

Fig. 2. (Color online) MS transformation for the control field
transition results in a pair of coupled–uncoupled excited states to
the auxiliary state.
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effect of the probe field up to first order. The structure of the
equations for the matrix elements of the density matrix imply
that up to first order in the probe field amplitude, the ground-
state manifold ϱgg is preserved, the coherences ϱeg and ϱag de-
pend linearly on the probe field, finally the matrix elements
ϱee, ϱea, ϱaa are all equal to zero. Therefore, we can establish
a linear relation between the atomic coherences and the probe
field strengths. Consequently, we can define a linear suscept-
ibility matrix χ for the probe field through the relation

�
P���

− �t; z;Δp�
P���

� �t; z;Δp�

�
� ε0

�
χ−− χ−�
χ�− χ��

��
Ep
−�t; z;Δp�

Ep
��t; z;Δp�

�
; (16)

where ε0 denotes the vacuum permittivity. Here, the argument
Δp signifies that the quantities are evaluated at a certain fre-
quency ωp, which corresponds to the probe field detuning Δp,
defined under Eq. (5).

It follows from Eq. (4) that the equations for the relevant
density matrix elements are given by

i
∂
∂t

ϱa0;g−2 � 1
2
Ωc�

− ϱe−1 ;g−2 �
1
2
Ωc�� ϱe�1 ;g−2

− �δ � iγϕag�ϱa0;g−2 ;
(17a)

i
∂
∂t
ϱa0;g0 �

1
2
Ωc�

− ϱe−1;g0 �
1
2
Ωc�� ϱe�1 ;g0

− �δ� iγϕag�ϱa0;g0 ; (17b)

i
∂
∂t
ϱa0 ;g�2

� 1
2
Ωc�

− ϱe−1;g�2
� 1

2
Ωc�� ϱe�1;g�2

− �δ � iγϕag�ϱa0 ;g�2
;

(17c)

i
∂
∂t
ϱe−1;g−2 �

1
2
Ωc

−ϱa0 ;g−2 �
1
2
Ωp

−ξ
1
0ϱg0;g−2 �

1
2
Ωp

�ξ12ϱg−2 ;g−2

� �Δp − iγϕeg�ϱe−1;g−2 ; (17d)

i
∂
∂t
ϱe−1 ;g0 �

1
2
Ωc

−ϱa0;g0 �
1
2
Ωp

−ξ
1
0ϱg0 ;g0 �

1
2
Ωp

�ξ12ϱg−2;g0

� �Δp − iγϕeg�ϱe−1;g0 ; (17e)

i
∂
∂t
ϱe�1;g0

� 1
2
Ωc�ϱa0 ;g0 �

1
2
Ωp

−ξ
1
2ϱg�2;g0

� 1
2
Ωp

�ξ10ϱg0;g0

� �Δp − iγϕeg�ϱe�1 ;g0
; (17f)

i
∂
∂t
ϱe�1;g�2

� 1
2
Ωc�ϱa0;g�2

� 1
2
Ωp

−ξ
1
2ϱg�2;g�2

� 1
2
Ωp

�ξ10ϱg0;g�2

� �Δp − iγϕeg�ϱe�1;g�2
; (17g)

where γϕeg � �Γeg � Γϕ
g �∕2, γϕag � �Γϕ

a � Γϕ
g �∕2, and we have ta-

ken into account the vanishing of ϱee, ϱae, and ϱaa to first order
in Ωp

�. We are looking for the steady-state solution of this set

of equations for fixed parameters, hence we set the left-hand
sides to zero. Then one can easily solve Eqs. (17a)–(17c).
Substituting these results to the remaining four equations
for ϱem;gn , we arrive at the steady-state solutions

ϱe−1;g−2 �
1
D
f−Y · �Ωp

−ξ
1
0ϱg0;g−2 � Ωp

�ξ12ϱg−2 ;g−2�
� Z · �Ωp

−ξ
1
2ϱg�2 ;g−2

�Ωp
�ξ10ϱg0;g−2�g; (18a)

ϱe−1 ;g0 �
1
D
f−Y · �Ωp

−ξ
1
0ϱg0 ;g0 �Ωp

�ξ12ϱg−2;g0�
� Z · �Ωp

−ξ
1
2ϱg�2;g0

� Ωp
�ξ10ϱg0;g0�g; (18b)

ϱe�1;g0
� 1

D
f−X · �Ωp

−ξ
1
2ϱg�2;g0

�Ωp
�ξ10ϱg0 ;g0 �

� Z� · �Ωp
−ξ

1
0ϱg0 ;g0 �Ωp

�ξ12ϱg−2;g0�g; (18c)

ϱe�1;g�2
� 1

D
f−X · �Ωp

−ξ
1
2ϱg�2 ;g�2

�Ωp
�ξ10ϱg0;g�2

�
� Z� · �Ωp

−ξ
1
0ϱg0;g�2

� Ωp
�ξ12ϱg−2 ;g�2

�g; (18d)

where D � 2B�AB� jΩcj2∕4�, X � AB� jΩc
−j2∕4, Y � AB�

jΩc�j2∕4, Z � Ωc
−Ωc�� ∕4, with A � δ� iγϕag, B � Δp − iγϕeg, and

jΩcj2 � jΩc
−j2 � jΩc�j2. In the above equations for the density

matrix elements ϱeg, we have a linear dependence for the
probe field and the ground-state populations and coherences
are also included.

We can insert the coherences of Eqs. (18) into (15).
Comparing Eqs. (15) and (16) one finds the following explicit
expressions for the susceptibility matrix elements:

χ−− � Nd2

ℏε0D
fX · �ξ12�2ϱg�2;g�2

� Y · �ξ10�2ϱg0 ;g0
− Zξ10ξ

1
2ϱg�2;g0

− Z�ξ10ξ
1
2ϱg0;g�2

g; (19a)

χ−� � Nd2

ℏε0D
fXξ12ξ10ϱg0;g�2

� Yξ10ξ
1
2ϱg−2;g0

− Z · �ξ10�2ϱg0;g0 − Z� · �ξ12�2ϱg−2 ;g�2
g; (19b)

χ�− � Nd2

ℏε0D
fXξ12ξ10ϱg�2;g0

� Yξ10ξ
1
2ϱg0;g−2

− Z · �ξ12�2ϱg�2;g−2
− Z� · �ξ10�2ϱg0 ;g0g; (19c)

χ�� � Nd2

ℏε0D
fX · �ξ10�2ϱg0 ;g0 � Y · �ξ12�2ϱg−2;g−2

− Zξ10ξ
1
2ϱg0 ;g−2 − Z�ξ10ξ

1
2ϱg−2;g0g: (19d)

For the propagation of electromagnetic waves in a medium
consisting of the multilevel system under consideration, we
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employ the slowly varying envelope approximation and the
emerging equation is transformed to a retarded frame,
τ � t − z∕c. We arrive at the expression

∂
∂z

�
Ep
−�τ; z;Δp�

Ep
��τ; z;Δp�

�
� i

k0

2

�
χ−− χ−�
χ�− χ��

��
Ep
−�τ; z;Δp�

Ep
��τ; z;Δp�

�
: (20)

The solution of this equation is simply

~Ep�τ; z;Δp� � exp
�
i
k0

2
χ · �z − z0�

�
~E
p�τ; z0;Δp�; (21)

where ~Ep�τ; z;Δp� � � Ep
−�τ; z;Δp� Ep

��τ; z;Δp� �T . Using the
eigensystem of the susceptibility matrix χ , the evaluation of
the above equation can always be done in a straightforward
manner. In general, the susceptibility matrix Eq. (19) is
non-Hermitian. Therefore, it has different right and left eigen-
systems, which form an orthonormal basis

χ �Δp�~SR

i �Δp� � χi ~S
R

i �Δp�; (22a)

~S
L

i �Δp�χ �Δp� � χi ~S
L

i �Δp�; (22b)

~S
L

i �Δp� · ~SR

i �Δp� � δij ; (22c)

for i � 0, 1. Expanding the susceptibility matrix in this basis,
the solution Eq. (21) of the propagation equation for a pulsed
initial field reads

~Ep�τ;z��
Z
dΔp

�X1
j�0

exp
�
i
k0

2
χj�Δp� · �z−z0�

�
~S
R

j �Δp�∘~SL

j �Δp�
�

· ~E
p�τ;z0;Δp�; (23)

where ~x∘~y denotes the diadic product of two vectors. The
mode functions ~S

Q

i �Δp� depend on the probe field detuning
Δp; therefore, if a narrow bandwidth pulse is injected into
the medium, the transmitted component of the field will have
a frequency-dependent polarization. In the next section we
shall study some special examples to field propagation in
our system.

5. FIELD PROPAGATION
The susceptibility matrix of Eq. (19) can be controlled in two
ways: (1) changing the polarization state of the control field,
(2) changing the initial quantum state on the ground-state
manifold. There are a number of proposals and some experi-
mental works for preparing pure states in Zeeman sublevel
manifolds [45–48,53–58]. Hence, first we study some special
cases of the susceptibility matrix for pure initial ground state,
then we turn to the case of general, nonpure initial state.

A. Pure Initial Ground State
For pure superposition initial ground state ϱgg � jψgihψgj,
where ψg � �cg−2cg0cg�2

�T and the state is normalizedP
mjcgm j2 � 1, the susceptibility matrix Eq. (19) can be written

in the form

χ � Nd2

ℏε0D

�
ABv1 � jaj2 ABv2 − a�b
ABv�2 − ab� ABv3 � jbj2

�
(24)

with v1��ξ12�2jcg�2
j2��ξ10�2jcg0 j2, v3��ξ12�2jcg−2 j2��ξ10�2jcg0 j2,

v2� ξ10ξ
1
2�cg0c�g�2

�cg−2c
�
g0
�, a � �Ωc�ξ10cg0 − Ωc

−ξ
1
2cg�2

�∕2, b�
�Ωc

−ξ
1
0cg0 −Ω

c�ξ12cg−2 �∕2. The characteristic polynomial of the
susceptibility matrix in Eq. (24) determines the main features
of the propagating modes

χ2 − χ · �AB · �v1 � v3� � jaj2 � jbj2� � �AB�2�v1v3 − jv2j2�
� AB · �v3jaj2 � v1jbj2 � v2ab

� � v�2a
�b� � 0; (25)

where the prefactor Nd2∕ℏε0D is omitted. In many experi-

mental cases it is a good approximation to set γϕag � 0. In this
limit, the parameter A is equal to the two-photon detuning,
A � δ. Hence, at two-photon resonance A � 0, the character-
istic polynomial of Eq. (25) takes the simple form

χ2 − χ · �jaj2 � jbj2� � 0: (26)

It follows that the eigensystem for the susceptibility matrix
of Eq. (24) at two-photon resonance reads

χ0 � 0; ~S0 �
1����������������������

jaj2 � jbj2
p

�
b

a

�
; (27a)

and

χ1 �
Nd2

ℏε0D
�jaj2 � jbj2�; ~S1 �

1����������������������
jaj2 � jbj2

p
�
a�

−b�

�
; (27b)

provided that a and b do not vanish simultaneously. Since in
this special case the susceptibility matrix is symmetric, the
left- and right-hand-side eigenvectors coincide. The eigenvec-
tors define the polarization state of the propagating modes. In
accordance with the qualitative analysis in Section 3, we find a
zero and a nonzero eigenvalue. The field mode assigned to the
eigenvalue zero is characterized by the associated eigenvector
~S0. This field mode propagates without attenuation. The other
field mode is assigned with a nonzero, complex eigenvalue χ1.
The real part of χ1 describes a phase shift, whereas the ima-
ginary part an attenuation, such as in a two-level system.

The two field modes are orthogonal to each other; hence, in
principle they can be distinguished with measurements. The
upper/lower components of the eigenvectors in Eqs. (27a) and
(27b) define the left-/right-circular-polarization components of
the modes, respectively. In Table 1 we show the Stokes para-
meters associated with the modes in Eqs. (27a) and (27b) for
unit field intensity. We use the definitions Q � −2R
fEp;�

− Ep
�g∕Ip, U�2IfEp;�

− Ep
�g∕Ip, and V � �jEp

−j2 − jEp
�j2�∕Ip,

with Ip � jEp
−j2 � jEp

�j2. We conclude that the two modes
are clearly distinguishable.

If both a and b vanish simultaneously, the characteristic
polynomial Eq. (25) takes the form

χ2 − χ · �AB · �v1 � v3�� � �AB�2�v1v3 − jv2j2� � 0: (28)

The condition for this situation can be summarized in the
relation
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Ωc�
Ωc

−

� ξ10cg0
ξ12cg−2

� ξ12cg�2

ξ10cg0
: (29)

The second equation implies 6cg−2cg�2
� c2g05. At two-photon

resonance A � 0, Eq. (28) simplifies to χ2 � 0, i.e., we have
full transparency: the probe field propagates without attenua-
tion irrespective to its polarization state.

An interesting special case occurs when ξ12cg−2 � ξ12cg�2
�

�ξ10cg0 , i.e., cg−2 � cg�2
�

��������
1∕8

p
and cg0 � �

��������
6∕8

p
. Then a �

��Ωc�∓Ωc
−�

�������������
3∕160

p
� ∓b, v1 � v3 � �v2 ≡ v � 3∕20, and the

characteristic polynomial in Eq. (25) simplifies to

χ2 − χ · �AB · 3∕10� �Ωc�∓Ωc
−�2 · 3∕80� � 0: (30)

This equation is valid for anyvalueofA (δ); therefore, oneof the
modes propagates without attenuation and phase shift (χ0 � 0
for any δ), i.e., the group velocity is equal to the speed of light.
The polarization state of the χ0 � 0 mode reads

~S0 �
1�������������������������������������������������

2�1∓ sin�2φc� cos�ϑc��
p

�
sin φc

∓ cos φceiϑ
c

∓�sin φc
∓ cos φceiϑ

c�
�

≡
1���
2

p
�

1
∓1

�
; (31)

where ϑc � ϑc� − ϑc−. The Stokes vector associated to this
polarization state is given by �Q;U; V � � ��1; 0; 0�, i.e., we have
a linearly polarized field, parallel to the ŷ (Q � −1) or x̂

(Q � �1) axis, respectively. This result is valid for
Ωc

− ≠ �Ωc�. The situation Ωc
− � �Ωc� is the special case of

vanishing a and b, which was studied in the previous para-
graph. In this latter case, one of the eigenvalues is equal to
zero χ0 � 0 for anyΔp, this mode is decoupled from the atomic
system. The other one for Δc � 0 reads

χ1 �
Nd2AB

ℏε0D
� 3Nd2

20ℏε0
×
Δp

�
Δ2

p −
jΩcj2
4

�
� iΔ2

pγ
ϕ
eg

Δ2
p�γϕeg�2 �

�
jΩcj2
4 − Δ2

p

�
2 ; (32)

which, apart from a constant multiplier, is precisely the same
as the susceptibility for the three-level nondegenerate EIT.

In summary, for the special atomic superposition cg−2 � cg�2
���������

1∕8
p

and cg0 � �
��������
6∕8

p
, and specific control fieldΩc

− � �Ωc�,
there is a fast and a slow mode in the medium. The group
velocity for the fast mode is the speed of light, whereas for
the slow mode it can be significantly less than the speed of
light, determined by Eq. (32). This behavior is very similar
to the pulse propagation in a tripod system under EIT
conditions [35,36].

In order to illustrate the behavior of the susceptibility we
made a series of plots shown in Fig. 3. For the simulations
we chose the parameters Γeg � 0.4Γe, Γea � 0.6Γe, Ωc � 2Γe,
γϕag � 0, and Δc � 0. First we have checked the validity of
the approximate analytical solutions for the density matrix
elements in Eqs. (18a)–(18d): to this end, we solved numeri-
cally the full Master equation (4), and compared the obtained
density matrix elements with the analytical ones Eqs. (18a)–
(18d). In the test runs we have varied the polarization state of
both the control and probe fields. The polarization state of the
control field is defined through the relations Ec

− �
Ec cos�φc�eiϑc− and Ec� � Ec sin�ϕc�eiϑc� . We chose φc in the
range �0.05π 	 	 	 0.45π�, so between a nearly circularly polar-
ized and linearly polarized fields, and we set ϑc� � 0. In these
runs we have set Ωp � 0.05Γe. We have performed several
dozen of runs and found agreement between the analytical
and numerical solutions within a few percents. Then we
turned to the computation of the susceptibility of the system.
In the ground state we chose the maximal coherence super-
position state ψg � � 1∕

���
3

p
1∕

���
3

p
1∕

���
3

p �T . In Fig. 3(a) the
control field is nearly circularly polarized φc � 0.05π, whereas
in Fig. 3(b) the control field is linearly polarized φc � 0.25π.
In both cases there is a mode which gets absorbed and an-
other mode which exhibits the typical EIT characteristics.
In the first part of this section we have derived an analytical
expression for the susceptibility at two-photon resonance
(δ � 0): these results fully support those findings. In Fig. 3(c)
we have set ψg � � 1∕

���
8

p ��������
6∕8

p
1∕

���
8

p �T and φc � 0.25π. As
we have described earlier in this section, for this special
choice of the ground-state superposition state, one of the
probe field modes is decoupled from the atomic system for
any value of the probe field detuning Δp. The susceptibility
for the other mode exhibits the EIT characteristic behavior.

We also show the dependence of the eigenmode vectors
~Si�Δp� on the probe field detuning in Fig. 4. We made these
plots for φc � π∕8, the initial ground-state superposition is
ψg � � 1∕

���
3

p
1∕

���
3

p
1∕

���
3

p �T , the rest of the parameters
are defined as in Fig. 3(a). In column (a), the absorption and
phase shift curves are shown, respectively. In column (b), we
depict the V component (ellipticity) of the Stokes vectors
associated with the polarization vectors of the two modes,
the Q and U components (relative phase) do not represent
relevant information now. Around two-photon resonance,
the change of the ellipticity is quadratic, hence its dependence
is weak on field detuning.

B. General Case
If the ground state of the atomic system is not in a pure state,
then the susceptibility matrix Eq. (19) cannot be decomposed
to the product form of Eq. (24). Instead, one has to keep the
density matrix elements ϱma;mb

, and the susceptibility matrix
reads

χ � Nd2

ℏε0D

�
ABv1 � Raa� ABv2 − Ra�b
ABv�2 − Rab� ABv3 � Rbb�

�
; (33)

where we made the replacements

v1 � �ξ12�2ϱg�2 ;g�2
� �ξ10�2ϱg0;g0 ; (34a)

v3 � �ξ12�2ϱg−2 ;g−2 � �ξ10�2ϱg0;g0 ; (34b)

Table 1. Stokes Parameters Associated
with the Polarization States in Eqs. (27a)

and (27b)

mode0 mode1

Q −�2∕�jaj2 � jbj2��Rfb�ag −Q0

U �2∕�jaj2 � jbj2��Ifb�ag −U0

V �jbj2 − jaj2�∕�jaj2 � jbj2� −V0
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v2 � ξ10ξ
1
2�ϱg0;g�2

� ϱg−2 ;g0�; (34c)

Raa � �jΩc�j2�ξ10�2ϱg0 ;g0 � jΩc
−j2�ξ12�2ϱg�2;g�2

− �Zξ10ξ12ϱg�2 ;g0
� c:c:��∕4; (34d)

Rbb � �jΩc
−j2�ξ10�2ϱg0;g0 � jΩc�j2�ξ12�2ϱg−2;g−2

− �Zξ10ξ12ϱg0;g−2 � c:c:��∕4; (34e)

Rab� � �−jΩc
−j2ξ10ξ12ϱg�2;g0

− jΩc�j2ξ10ξ12ϱg0;g−2
� Z�ξ12�2ϱg�2;g−2

� Z��ξ10�2ϱg0 ;g0 �∕4; (34f)

and Ra�b � R�
ab� . The characteristic polynomial of the suscept-

ibility matrix in Eq. (33) is given by

χ2 − χ · �AB · �v1 � v3� � Raa� � Rbb� � � �AB�2�v1v3 − jv2j2�
� AB · �v3Raa� � v1Rbb� � v2Rab� � v�2Ra�b� � Raa�Rbb�

− Ra�bRab� � 0; (35)

where the prefactorNd2∕ℏε0D is omitted, as before. In case of
the pure initial state, the last term Raa�Rbb� − Ra�bRab� was
missing. At two-photon resonance A � 0, the characteristic
polynomial Eq. (35) simplifies to

χ2 − χ · �Raa� � Rbb� � � Raa�Rbb� − Ra�bRab� � 0: (36)

The two roots of this equation is given by

χ� � Raa� � Rbb�

2
� 1

2

���������������������������������������������������������
�Raa� − Rbb� �2 � 4Rab�Ra�b

q
: (37)

The discriminator cannot reach the value of the sum
Raa� � Rbb� ; hence, none of the roots is equal to zero. There-
fore, both two modes undergo absorption in the medium. It is
also not possible that both Raa� , Rbb� , and Rab� get zero simul-
taneously. Therefore, there is no way to obtain a zero eigen-
value of the susceptibility matrix. We conclude that there is no
“perfect” transparency if the ground state of the system is not
a pure state.

In order to show the impact of the decrease of atomic
coherences on the susceptibility of the medium, we have
replotted Figs. (3) in (5), in which the only change is that
we reduced the values of the ground-state coherences to half
of the pure-state values. As one expects, features related to
atomic coherence start to diminish: there is no longer a mode
exhibiting “perfect” transparency. The high slope of the cor-
responding phase shift curves also get reduced, which implies
higher group velocity.

6. SUMMARY
We have studied the propagation of a coherent probe light
pulse in a medium consisting of effective three-level atoms.
The degenerate ground- and excited-state sublevels are
coupled by the nearly resonant probe pulse, while the excited-
state sublevels are coupled further to an auxiliary state by a
strong control (dressing) CW field. The linkage scheme resem-
bles the EIT configuration; however, now the ground and ex-
cited levels are degenerate. Both the probe and control fields
are elliptically polarized. We have determined the susceptibil-
ity matrix of the system for the probe field. We have shown
that an incoming field was split to two components with
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Fig. 3. (Color online) Linear susceptibility of the six-level system for the probe field. In the horizontal axis the probe field detuningΔp is measured
in Γe units. The absorption (upper panels) and phase shift (lower panels) associated with the modes are shown in arbitrary units. The susceptibility
curves for one of the modes are drawn with solid green lines, whereas that for the other modes are drawnwith dashed red lines. The parameters for
the plots are given in the text.
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Fig. 4. (Color online) In column (a) the absorption and phase shift
curves are shown for the two modes in a system with φc � π∕8. The
rest of the parameters are the same as in Fig. 3(a). In column (b) the
ellipticity parameter V is depicted for the modes.
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different propagation properties: the components are defined
by the eigenmodes (eigenstates) of the susceptibility matrix.
We have shown that under rather general conditions, for a
pure ground-state superposition, there was one mode exhibit-
ing EIT characteristic behavior. In general, the other mode
gets absorbed, or for a special combination of the control field
polarization state and the ground-state superposition ampli-
tudes, the mode propagates without attenuation and phase
shift for any value of the detuning from resonance. We have
also studied the propagation of the probe pulse in the system
with nonpure initial atomic state. We have shown that the
conditions for “perfect” EIT could not be fulfilled; hence, both
components of the probe pulse suffered attenuation.

The transmission properties of the system are sensitive
to the initial ground-state superposition state. Hence, the
proposed setup can be a useful tool to test the accuracy and
reliability of state preparation methods.
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