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We demonstrate the existence of velocity-tur@bppleron resonances in twar - and o~ -polarized
standing waves, between the two ground-state sublevelsAofygpe system. We derive the resonance condi-
tions, and the properties of these resonances. We show that fast population transfer between these states may
take place, while excited atomic states are only marginally populated. We derive an interesting dependence of
the transfer time on the relative spatial phase of the two standing We&E350-294717)05108-1]

PACS numbsgs): 42.50.Vk, 32.80-t

I. INTRODUCTION tion and splitting of atomic beams over using Bragg reso-
nances is the possibility of achieving much shorter transfer
The diffraction of atomic beams on the gratings formedtimes[13,15, and that a wider range of transitions is pos-
by near-resonant electromagnetic standing-wave radiatiogible at different values of the detuning. The main disadvan-
has been investigated extensively both theoretically and exage is the sensitivity of Doppleron resonances to the inco-
perimentally[1—9]. In particular, resonance effects betweenherent effects introduced by spontaneous emis$ibf.
electrotranslational states of atoms moving in standing-wav&Vhile numerous other methods for splitting and deflection of
light have been discussdd0—15 and demonstratefll6— atomic beams have been recently prop.osed and demonstrated
19] for atom-optical applications. There are two different [20—-29, Doppleron resonances may still prove to be a useful

types of resonances between electrotranslational states II o:‘hz_;\tom optics, g.th's ha}[r;]dmap E{:ould be(;)verclt_)m? f
moving, two-level atoms in standing-wave laser fields. Thevelc?cit Iiu%?a%err;v:on:rfg:; beetv?/zgneizjcifieigntaprPOISr?dl—osr:act)e
process when an atom is deflected by the laser béagnsits y . , 9 .

. : A sublevels of aA-type system, in the field of two standing
velocity along the beams changesithout a change in its

internal state is called a Bragg resonance. Momentum co yraves, ones™ polarized, the othewr™ polarized. These
. . -0 a bragg ' : r}esonances, just like ordinary Doppleron resonances, have
servation obviously implies that the momentum gained b

h b ber ti he bh Yhe potential for small transfer times in clean, two-beam in-
the atom must be an even number times the photon MOMeRys 5 -tions, and the range of possible transitions that may be

tum. Energy conservation restricts the possible change of.nieved by changing the detuning is equally wide. At the
momentum to that corresponding to the reversal of the speeghme time, because excited levels are not populated, these
of the atom. The two together imply that the position of yransitions are much less sensitive to the ill effects of spon-
Bragg resonances in velocity space is fixed to translationabneous emission. The paper is divided as follows. We first
states corresponding to an integer number times the photgsresent the mathematical formalism and the basic assump-
momentum. This position is unaffected by the detuning oftions made. We then present a slight generalization of the
the frequency of the radiation from resonance. Doppleromband-theoretical approach introduced in R@#], and dis-
resonances, on the other hand, describe a process when #&ss velocity-tuned resonances based on this picture. The
change in translational state of the atom is accompanied by grecise derivation of the resonance conditions is contained in
change in the internal electronic state. The momentum aahe Appendix.
quired by the atom is thus an odd number times the photon
momentum. Energy conversation again restricts the possible Il. MATHEMATICAL FORMALISM
velocities where an atom may be resonantly scattered, but
this position in velocity space is not fixed, but is dependent We are considering A -type systeni.e., a system with
on the value of the detuning. These resonances are termeah excited internal state having=0 and two Zeeman-
velocity-tuned resonances, because atoms with a certaifegenerate ground states witke1 and magnetic quantum
speed always satisfy the resonance conditions whatever thimbersm= =1), that is, moving in the field of two stand-
value of the detuning. A clear picture of these resonances hasg waves with opposite circular polarizations. The motion
been set forth using a band-theoretical approach in Refsf the atom along the laser beaifaong thez axis) is con-
[14,15. It has also been shown that, in the weak-interactiorsidered quantum mechanically, while the motion perpendicu-
limit, two-beam resonances are possible. lar to the beams is treated classically. For the sake of sim-
The advantage of using Doppleron resonances for defleglicity, the amplitudes of the laser beams are considered to
be constant across the beams. This means that the problem is
essentially one dimensional; the perpendicular motion affects
*On leave from Research Institute “Lazerayin Technika,” Yer- only the transit time, and hence the interaction time with the
evan State University, Yerevan, Armenia. laser beams. The Hamiltonian for the problem is
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- S da_(kt) A%
H=Ho+V=gr+H,+V. @1y th———= a_(xt)
. . o . . 1 .
H, is the atomic Hamiltonian describing the internal degrees —dg_ e—=€+A*[¢ ?B(k—k,t)
of freedom, and obeying the equatiol%lg|gi):hwg|gi> V2
and H,le)=%we|e). Note that, while the different ground- +e ?B(k+k,1)], (2.5

state sublevels were assumed to be degenerate for simplicity,
this assumption may easily be relaxed, and the results remam dB(k, t) h2i?
valid if this is not the case. The interaction Hamiltonian may' at oM (x.1)

be written as/= —d- E in the electric dipole approximation.

The electrical field vector associated with two standing it

waves having opposite circular polarizations may be written \/— TA_[a(k—Kt)
as

_A* 1 —ie t
+a, (ktk,t)] d AL

o2

E=e A,exp—iw, t)cogk,z+ ¢)+c.cC.

+e_A_exp(—iw_t)cogk_z)+c.c. (2.2 x[e®a_(k—kt)+e Pa_(k+k,)].
Here we have denoted the amplitudes of the and o~  In these equationsk is the wave number of the two
standing waves by, andA_ , respectively, and standing wavesgconsidered to be identigalM is the mass

of the atom; dg, =(g.|de)=i(g.|dyle) and dg .

1 1 =(g_|d,|ey=—i(g_|d,|e) are the matrix elements of the
e,=—=(g+ig) and e =—=(g—ig) (2.3  dipole moment operator between the internal states and
V2 2 €. =w.—(we— wg) is the detuning of the two waves from
the atomic resonance. Note that, whide# e_ strictly im-

are the polarization vectors of the standing waves. The phaddies k. #k_, the rotating-wave approximation justifies
¢ describes the possible spatial shift of the nodes of the twdriting k for both wave numbers.

Stand|ng waves Compared to each Other while a”omg As a S“ght generalization of the band-theoretical ap-
andA_ to be complex accounts for a possible difference inProach of Refs[14,15, we may introduce the notations
temporal phase. We may choose a complete set of orthogo-
nal states consisting of the electrotranslational states
|x,04), |x,9_), and| k,e), which are eigenstates of the total
energz/ of the>free atom.> Heredenotes the wave number of ca(a)=A([n+alk)
the atomic matter wavep=~r«. Using this base we may
describe the physical state of the system by three wave func
tions e («,t), a_(«,t), and B(«,t), which give the prob-
ability amplitude for the system to be at positigrin veloc-

ity space and at the same time to be in internal sgte),

|e), respectively. Using these wave functions, the physica
state of the system may be expressed as

¢, (Q)=a-([n+qlk)exp—ie<t) if n iseven,
if n isodd. (2.6)

This means that we are changing the momentum variable
Bf the wave functions to an indere{...,—2%,-27,
0",0°,2"274"4,...} U/{ - - —5-3- 11,3,5,...},
and a quasimomentum parametge [ —1,1). While there
pre two different indices for each even namely,n* and
, we shall use the phrase parity of the index to distinguish

between the three types of indices: odd, evemand even

~. The value ofg is restricted(to the first Brillouin zongto

[ ot ot avoid redundancy.
)= . [a(kD]x,g.)e o+ a(k)]x,g-)e With this notation, and using the definitions
+B(k,t)|k,e)e @ dk. (2.4 A*d e A*dg e
Q and Q_ =——+ 2.

Substitution of this expansion in Scladinger’s equation, and

using Eq.(2.2) for the electric field yields the following set for the Rabi frequencies of the two standing waves, we may
of equations for the wave functions in the rotating-wave ap-write Egs.(2.5 as

proximation:

. Ak?(n+q)?
ic, (a)= % €~ |G = Q- [en-a(@) +cnia(a)],
&a+(K,t) 12k?
h ot 2M a+(K t) L th(n+q)2 - -
ICh (q): 2M Teq|Cy _Q+[el¢cn71(q)
1 ie_tp*
~0g. o5 ATk AR, re e ()], 2.9
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hk?(n+q)?
2M

—Q*[cy (@) +cpy ()]

We therefore have an infinite set of coupled, ordinary differ-
ential equations enumerated by the indexor every value

of the continuous parametey. The fact that the variables
c,(q) are only coupled tae,+(q) reflects the law of mo-
mentum conservation. An act of absorption or stimulatec
emission of a photon changes the momentum of the atom b
fik (hencen—n=1), and the quasimomentumis a con-
stant of the motion. Note that the fact that the sigtein-
teracts withe only througho~, andg_ only througho™,
makes it possible to incorporate the detunings into the energ
of these states. The unperturbed energies of the electrotrar
lational states are thus given by

ico(q)= cd-Qx[elc, (q)+e e, 1(a)]

n+q)%h%k?
(n+q)%h2k?
B Q)= — (2.9

in terms of the indexn and the quasimomentum parameter FIG. 1. The first few branches of the dispersion relation of the

a. free atom as a function of the quasimomentum parangtérhe
corresponding indices are written beside the branches. The solid
lines with odd indices refer to an atom in internal st The

The solutions of Eq2.8) may be expressed as solutions dashed I{nes with indices ev.énrefer.to an .atom in internal state
) h . +), while the dot-dashed lines with indices evemefer to an

of an eigenvalue problem. We must find the eigenstates cJ]g I : E o i uni
the perturbed Hamiltoniaf®.1), expressing them as a linear atom In interna state_\g,). nergy is in recoil units o

binati f the el e \ational h "% =£2k2/2M). The detunings are, =0.5w, ande_=—0.50, . In-
combination of the e ectrotran§ atlo.rAla st.ates t at. are €19€Ng sections between branches of the same index parity give rise to
states of the unperturbed Hamiltonibig. Since the interac-  Bragg resonances, while those between branches of different index
tion only couples electrotranslational states with the samearity give rise to Doppleron resonances. These include resonances
guasimomentum paramet@Eqgs. (2.8)], the eigenstates of between electrotranslational states containing different ground-state
the full Hamiltonian will be given by sublevels.

IIl. DOPPLERON RESONANCES

|<I>V<q)>=§ Pon(@|(n+a)k,j), (3.1

where the inde)§ may beg.., e depending on the parity of
the indexn. v is the band index that enumerates {hdinite
number of solutions of the eigenvalue equation
H|®,(q))=E(q)|®,(q)). In the limit of zero field(i.e., no
interactior), the coefficients will be given by
P,n(A)=6,,, and the states®,(q)) will simply be
|(n+q)k,j), the band index coinciding with the level in-
dexn.

Branches of the same parity are fixed with respect to each
other, and intersections only occur in the center and at the
boundary of the Brillouin zone. These are the Bragg reso-
nances that are familiar from two-level atoms. They appear
between the branchesand —n in the center of the Brillouin
zone, andn and —n*=2 atq==1. As the position of the
branches with a parity evén (even ) may be tuned by
changing the detuninge_ (e.), intersections between
branches of different parity may appear at any value of the
guasimomentung. These are the intersections that give rise
to Doppleron resonances. It is obvious that these resonances

The first few branches of the dispersion relation of theappear not only between ground and excited electronic levels
free atom in the band-theoretical picture are shown in Fig. bf the atom, but also between the different ground-state sub-
(see EQ.(2.9]. There are three types of branches, corredevels. Note that in this case the difference in momentum

sponding to the three possible parities for the indeXDe-

between the two states is an even multipldi &f as opposed

generacies appear wherever two states belonging to differef an odd multiple in ordinary Doppleron resonances.
branches have equal unperturbed energies for some value of The effect of a weak interaction with the standing-wave

q, i.e.,

En (@) =Ex%a). (3.2

Relation (3.2 is termed the zeroth-order resonance condi-
tion, as it is exact only in the limit of zero-field strengths.

radiation changes the appearance of the dispersion relation,
as shown in Fig. 2. The interaction is considered weak if
e=hQ./(E,—E,)<1 wherem denotes the nearest non-
resonant level ta.

Far from the intersections, the branches of the dispersion
relation change little. The levels are Stark shifted due to a
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3 dependance of the energies @rihas been supressed for no-
tational simplicity; see(Eq. 2.9.] It is now clear that the
simplification introduced by considering beams with con-
2.5 stant field strengths across is important. Since the resonance
conditions change with the field strengths, maintaining these
conditions throughout the interaction in beams with other
than a constant field strength along the cross section is much
more complicated.

The eigenstates of the Hamiltonian at a resonance will be
to a good approximation given kgee the Appendijx

1 .
|<1>1,z<q)>~E[I(no+q)k,g+>te"I(n1+q)k,9->].
(3.4)

where y is an unimportant phase arising from the complex
nature of the eigenvalue problem. This means that, if the
atom is in one of the electrotranslational stateg.,ng) at
t=0, we may expect Pendeflong-type oscillations between
ng andn,; whose frequency is proportional 10E. AE can be
seen from Eq(3.3) to be O(AQe™ "0~ 1). Noting that the
energy difference between the resonant levels and the nearest
FIG. 2. The same as Fig. 1 but with the field Strengthsnonresonant Ieveli)?*«ij.noﬁsz/ZM, if n0>?’, we may
Q.=0 =0.15, and spatial phases=0. The diagram shows conclude that, for sufﬂuently2 Igrgao, the splitting of the
splitting and level repulsion near the degeneracies of the nonintef€S0nant levels may b&E>7k/2M. Therefore the trans-
acting dispersion relation. Horizontal arrows pinpoint Bragg resofer times in these resonances may be much smaller than the
nances, while vertical arrows point to Doppleron resonances belnverse recoil frequency. At the same time, becatsel, a
tween different ground-state sublevels. The indices oftwo-beam resonance may be preserved. The significance of
electrotranslational states that are written beside some parts of twifis is that in Bragg resonances the transfer time is always
different branches indicate the state that dominates that particulanuch larger than the inverse recoil frequency in the case of a
part of the branch. Note that different electrotranslational state$wo-beam resonance. This property has already been shown
dominate in different parts of a single branch. These parts are sepfor ordinary Doppleron resonancgs4,15. While in a two-
rated by resonances where the electrotranslational states alevel atom these processes necessarily involve the excited
strongly mixed. state of the atom, and are therefore sensitive to incoherence
introduced by spontaneous emission, withh eype system
mixing of neighboring levels by the laser fields. They still, we may have such resonances between different ground
however, consist of predominantly one electrotranslationastates of the atom. Since the levels containing the excited
state in the weak-interaction limfii4]. electronic states of the atom are only marginally populated
In the vicinity of intersections, however, the crossings be-during these resonances, they are much less sensitive to
tween the different branches are lifted into anticrossings, angpontaneous emission.
a band gap appears between the levédge the Appendix From Eq.(3.3 one can easily see an interesting depen-
for the derivation of these resultdhe splitting between two  dence of the energy splittingnd hence the oscillation fre-
degenerate levels involving different ground-state sublevelguency on the relative spatial phasg of the two standing

ng andn; is approximately given bAE=2|G|, where waves. The various terms in this product are associated with
the intermediate states that lie between the two resonant
Comtl g states. Since there are two different ways an atom can go
G=-#0 i0%e '’ =0 from an intermediate excited statd to n?, ,, (through the
'jgggl ' staten;’, ; by the emission and the absorption otra pho-
ny-2 Q2 0|72 :itz)r;l, (?P: thrOL;]gh the r?ta'ﬂﬂllibydthefemiﬁsion and abspbr.?-
_ 33 _ o, photon), the amplitudes for these two possibili-
j=ng+2 E—EJ-+ E—E; ties must be coherently summed. The energy splitting is
jeven proportional to the product of the norms of terms containing

such coherent sums. Since the relative phase of the terms in
[see Eqs(A13b and Al4¢]. E is the energy of the resonant these sums can be seen from E8.3) to be dependent on
levels, that may be approximated By,_in this expression. ¢, it is obvious that, at particular values 8 and ¢, there
(See the Appendix.There is also a renormalization of the may be destructive interference between the two possibilities
resonance condition E@3.2) [see Eqs(A13a), (Al4a), and in one of these sums, and the energy splitting given by Eq.
(A14b)]. What this means is that the values of the detuning$3.3) may be zero. More precisely, assuming 0y,n;, the
at which the statesg andn; at a givenq are exactly reso- energiesE, (q) are monotonically increasing functions of
nant depend on the values of the field strendthke explicit  n, and becausE~E§O~ E,, for a resonance, for a pair of



1476 G. DEMETER, G. P. DJOTYAN, J. S. BAKOS, AND Zs. SQEI 56

1 of the detunings where the resonance appears, is in good
666 60 agreement with the values calculated from E&L3).
0.8 Resonances that are very similar in nature to the ones
decribed above were mentioned in RE26]. The authors
0.6 considered a three-level system with a Zeeman-degenerate
a excited state, and, in the presence of a magnetic field and a
0.4 standing light wave with a polarization gradient, identified
velocity-tuned resonances between different excited-state
0.2 sublevels. They termed these Raman-type resonances. Con-
sidering a three-level system with two Zeeman-degenerate
0 ground-state sublevels in this latter field configuration brings
0 0.2 0.4 0.6 0.8 1 even closer the similarity between these resonances, and the
t ones considered in this paper.

Another work discussing similar resonances is R27).

FIG. 3. Time evolution of the state probabilities in velocity |n this paper, multiphoton resonances between the ground-
space of a system initially in state,=660", showing oscillatory  state sublevels of A-type system in two bichromatic waves
behavior between levels 660and 666 . Time on the horizontal g discussed. While only the internal states of the atom are
axis is measured in units of inverse recoil frequency. The figure wagnsidered in the treatment, it is stressed that an atom mov-
obtaineg by2n2u0n&le)ricallfy) SO"{?SQEQQB)' Thelsg;e;mliters used jng along a standing wave will “see” a bichromatic wave
were = I _= ry €.=— do, e . . .
=—1000Qv, , and¢= 7/2. Both the frequency of the oscillations, ,?ngasutzi c(i)ifntgh?/vg\(l)gs Iﬁ: esf:gts, Ohneanncceegt Cg;\éeg ed er;ugr;?gsdoghg e

and the place of the resonance are in good agreement with the - . .
values calculated from EGA13). It can be seen from the figure that Velocity-tuned resonances. The resonances described in that

around 90% of the population is transferred in a six-photon transiaPEr anq thos? in the present paper are only equalgnt,

tion to the state 666, while 10% is scattered into neighboring however, if recoil effect52 may be comple_tely neglec_ted. This

nonresonant levels. The state probability of one of these levels i§'€aNS that unlesaE>1"%w, (where w, is the recoil fre-

also illustrated at the bottom of the figure for comparison. Theduency and =n;—nq the number of photons absorbed and

maximum probability of this level is around 6%. Note that the €Mitted, the full electrotranslational description must be

frequency of the oscillations in the situation above with=0 used for the discussion of the resonances. With the additional

would be less than one-tenth of the frequency of oscillation on thd€quirement of clean, two-beam resonances, the simplified

figure. treatment of that paper is valid only in the limit of strong
fields and very large velocities.

intermediate ground-state Ieve1$ andn; the two denomi-

natorsE— EJ-Jr andE—E; will be of opposite sign. For this IV. SUMMARY

reason, the norm of the sum of these terms will be largest if

e 2¢=—1, ie., if ==+ /2, and smallest iip=0,7. Be-

tween the maximum and the minimum, the energy splittin

given by Eq.(3.3 is a monotonic function ofs. Thus we

have the important result that the resonant coupling betwe

the two ground-state sublevels is always strongest when t

We have investigated the properties of velocity-tuned
esonances between ground-state sublevels/oftgpe sys-
em. We have shown that these resonances, just like ordinary
Roppleron resonances, have the potential for small transfer
er o . : ;
r1témes for beam splitting or deflection, while being largely

nodes of one standing wave coincide with the maxima of th mmune to the incoherent effects of spontaneous emission.
other. If the nodes of the two standing waves coincide, theohigact may make such resonances a useful tool of atom
energy splitting given by Eq:3.3) may disappear altogether pucs.

at specific values of the field intensities. This does not mean

that the resonances will be completely suppressed, as there ACKNOWLEDGMENT

may still be a significant splitting in a more precise approxi-  This research was supported by the Research Fund

mation (see the Appendix for the detailsout the coupling  (OTKA) of the Hungarian Academy of Sciences under Con-
can be orders of magnitude larger ét=+x/2 than at i 5ct No. T-019683.

¢=0,7. Note that the exact value of the resonant energies

and detunings also varies slightly with APPENDIX
Figure 3 depicts the time evolution of the velocity space
state probabilities of a system initially in statg =660". We now set out to derive the resonant solutions of Egs.

The figure shows Pendédiung-type oscillations between the (2.8). We first introduce the dimensionless quantities
states 660 and 666 . These values were chosen to corre-0-=Q./w, and 6.=€./w,, where we have used
spond with those in Ref.15] for a good comparison. The o,=7%k?2M, the recoil frequency, as a unit. The dimension-
transfer time is around 0.4 in recoil units in a six-photonless equations to be solved are thus

resonance. The transfer efficiency is almost 90%, with the N . o o

remaining 10% of the population being scattered into variousiCn (q)=[(n+a)*+8_]c, (q) —g-[ca_1(q) +cpy1(q)],
neighboring nonresonant levels. The maximum probabilities _

of neighboring excited states are approximately 6%. The data  ic,, (q)=[(n+q)?+ 5+]cg(q)—g+[e‘¢cg,1(q)

for the figure were obtained by numerically solving Egs. -

(2.8). The frequency of the oscillations, as well as the value +e'%cp.1(a)], (A1)
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(200 2.0/ 4\ _ k[t + difference between the two detunings. For any gigen for
icy(a)=(n+a)cy(aq)—gZ[c, 1(aq)+Cqi1(a)] example, we may finds,, so that fotq)’+s.
—g*[e'?%c,_(q)+e e, 1(q)]. =(n,+Qq)2+ &, is satisfied, and there may exist an odd in-
dex m for which ES=(m+q)?~(ny+0q)?+6_; i.e., even
For the sake of simplicity, we shall suppress the dependengg the absence of Bragg resonances, we may have a threefold
on the parametey in what follows, with the exception of the degeneracy appearing at an infinite number of values of
kinetic energy. As the dimensionless counterpart of Egss_ . |n what follows, we assume that this is not the case, i.e.,
(2.9, we introduce the notation&; =(n+q)*+48- and  that we have chosen the detunings so that there is no further
E9=(n+q)? for the unperturbed energies of the levels with degeneracy apart from the leveld andn; . This assump-
even and odah, respectively. Writing the variables in vector tion, however, needs to be verified for every actual value of
form, 6+ used. Pursuing a slight generalization of ordinary contin-
ued fractions, we now write

¢ Cor1=tnr1(g¥cy +a%he%cy),
Cn_ 0o _ * A+ * q—ipa—
0 Cn—l_sn—l(g—cn +g+e Cn)
Cnt1
P I (A2)  if nis even, and
Ch+2
0
Ch+3 ch_1=Si .g9.¢?,
: (A5)
the set of Eqs(Al) may be tackled by solving the eigen- Cri1=T 19.€%cC,
value problem - - -
Ch-1=S,-19+€ '’y
is n is odd.
g. D/ 0 - 0 Substitution of these equations into E¢A3) yields the
g.e* 0 D- g.e ' 0 following reccurence relations:
gt g¢ie’ Dpa g gle - 1
: : " D2+|g_|2T:+1+|g+|2T;+1’
] -1
: Sh= =
o " Datlg-1*Sy- 1194178,
n
«| < | =o, (A3) if n is odd, and
.y . —D,, +[g4[*ths1(€'%P—1)
: " D,Dy+D. g [*thi 1+ Dy |04 [Pths]
where we used the notatioiis, (E)=E—E, for even val- - —D; +]g_|?th 1 (e712%—1)
ues ofn, andl?ﬂ(E)=E—_ E? for odd values ofi. We must "D DI +D.]g |Ptns1+ D1 19: Ptnss’
find the energie& for which nontrivial solutions of EqA3) (AB)
exist, and the corresponding eigenvectors. While this is not a .
tridiagonal recurrence relation as in the case of the two-level o= —D, +]9.|%s,_1(e712¢—1)
atom, one may still proceed either by using matrix-continued D.D; +D;|g_|%,_1+D;[g.|%Sn_1’
fractions[28], or by using a slight generalization of the con-
tinued fraction method adopted in Refd.4,15. We first —D; +|g_|3%s,_1(€2¢—1)
. . . . . — n - n—1
single out the two potentially degenerate states with indices S, ==——= = 5 - 5
ng andn; for which Dy, Dn+Dn|gfl Snfl+Dn|g+| Sn-1
if nis even.
Ef{ow En, - (A4) Using these relations to eliminate the levétsng and

I>n,, the equations for the potentionally resonant levels,
We assume for now tham;—ng<<n,, so in the case of and the nonresonant levels in between then, become
q=0,£1, if any of these two states also possesses a Bragg , -_ % aid _ 0
resonant state of the same parity, it is sufficiently far away t nOCnO+Snofl|gf| CnpT9-9%€ 7Sn—1Cp T g,cnOH:O,
be neglected. ConditiotA4), however, only determines the (A7)
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Dy Cn, Ftn, +1/9+ % +9% 907", 1acy +9.€'%ch 1=0, (A7b)
— 2 s
Dy, t19+1%80-1 g.e7'® 0 o
Mo
_ 0 B

gie'? Dny+1 g* gie™ 0 o0
no+1

.
Cny+2

. o
i -1

0 gt gie? Dp o, g* ”1+

c
0 g- D;1+|9 |2tnl+1 M

* i +
—9*g.€'?%s, _1cq

-g*en,
0
= : . (A7c)
0
—gte %,
-g-ghe’t, 11c,
|
Denoting the matrix in the equation above by we may . —|¢A $2i20 Aim-1
eliminate the variables, , cp .y, ¢, andcy _; from Egs. 1=—9-0% —g-gie sy 1 —
ng+1 “ny n—1 Anovnl A”Ovni
(A7a) and (A7b) by mvertmg N and expressing them as a
linear combination of:,T0 and c;l. We thus receive the fol- —g2 g* el Ao —92 g*zs t Aim
lowing equations for the two potentially resonant levels: TURT AL HR L R VIR
A(E)  Gy(E)\[ Cn Am Am-11
( (E) 1( )) 70 —0 (A8) =—g 9. elqﬁA g g+ |2<f>sno_lA
G,(E) B(E)/\c Ng.Ny Ng.Ny
. A
%2 —i¢ m2 %2 .2 m1
whereA andB are given byA=D§o+A’ andB=D, +B’, 9-9.€ t“1+1AnO n, 9-"9+Sn,- 1t”1+1Ano n,

and the auxillary quantitied’, B’, G4, andG, are by

Here we have denoted the determinant of maftxixby
A n, Aijis thej,ith element of the adjunct &, andm is

2
|g %9417 no—l the dlmensmn ofN. A nontrivial solution of the two-by-two

A’ :Sn0—1|g—|2_

Ano nl . .
problem(A8) exists, if
~Spo-1 =t lg_|?g* e "?+c.c|—|g- |2 2
n Ano'nl + no n1 AB—|G|*=0. (A10)
Furthermore, we would like to enforce the resonance condi-
r_ 2 242 tion
B —tnl+1|g+| Ano ”1|g | |9+] tn1+1
N A=B. (A11)
1
—tn1+1( S 0lg. e e,
Ng.Ny Turning to the weak interaction limit, we define the small
An 1oy parameter
m—1m—
~lg. 2=
oMy |g-|
e=max —, (A12)
(A9) D;
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where the index runs through all the nonresonant levels The splitting between the two resonant levelg, from
between, and in the vicinity of the resonant levels. From theEq. (A13b) is AE=2|G|. While for §, we actually obtain
reccurence relationgA6) we may see that the imaginary two different solutions withE, ,, in the weak-interaction
parts of the quantities, —; andt, ., are at leasO(s*)  limit this difference is negligible. From EqA13b) and the
times smaller than the real parts, and can thus be taken to lBxpansiongA14) it can be seen that the leading-order cor-
real to an excellent approximation in the weak interactionrection to E; , comes from the interaction of the resonant
limit. We may then writeG=G;=G} and Egs.(A10) and levels with the nearest nonresonant ones. This shifts the reso-
(A11) may easily be rewritten as nant levels, and brings about a renormalization of the reso-
B ) s , nance conditiorfA13a). The leading-order term in the cou-
8, =06_—(n+q)*+(no+q)°~A"+B’, (Al38  pjing G is easily seen to b®(ge™ ™). Since, to be
consistent, we must keep all terms at least as large as this in
A andB, in all cases of practical interesh{—ny=4) we
shall have to use a longer expansiorAoAndB that includes

E1,=6_+(ng+q)°>—A’' =[G, (A13b)

as the conditions for nontrivial resonant solutions of Eq. X e )
(A8). corrections arising from the coupling of the resonant levels
It is instructive to expand the quantitiés B, andG in O levels such as, ., andn, .. In practice, while the

powers ofg, and see the leading order terms. They turn oudifferent terms in this expansion have clear physical mean-
to be ings, it is difficult to pursue. Fortunately, calculating the ma-

trix N and inverting it numerically to find\, B, and G in
each step of the iteration is easily done by computer. We
must not forget, however, that the continued fraction expan-
(A14a) sion to the quantitiesno,l and th+1 should also be fol-
lowed through to include all terms whose orders of magni-
_ 2 lg.1>  lg. 3 tude ine is larger than, or equal to that &f. With E; , and
B=E—(n+q)"= 45, — DY, DY +0(ge”), 5. fulfilling Egs. (A13a) and (A13b), the eigenvectors cor-
M~ responding to energieg; , will be given by |1,2)~(1/

B ) lg-1> lg-I? .
A=E—-(ng+Q)°—6_-——5—— =5 — 1+0(ge”),
Dp-1 Dng+1

(Al4b) V2)(Ing)*+€"|n;)) to corrections the order of. [ is a
oMl m—2 lg_|2 |g.|2e12¢ phase factor that may arise from the complex nature of the
G=-g.gte ¢ [] = < - . eigenvalue problentA10).]
‘:igggl Di J'j::UO;Z D; D, The problem of solving Eqg2.8) in a region where mul-

(Al40) tiple degeneracies_ appear due to Bragg re_sona(ioes
when q=0 andng is small, so that the coupling between

It is evident from Eqs(A14) that the quantitied\’, B’, and  Bragg-resonant states is not negligible compared to that be-

G are only weakly dependent af, andE (i.e., the depen- tween Doppleron-resonant stagtesay be simplified by in-

dence is only through terms that are higher order than zero itroducing symmetric and antisymmetric solutions in the form

the parametee<1). Givens_, Egs.(A13) are best solved x2*==c%=+c%> and z2%*=c2*—c%, and noting that the

by a simple iteration, noting that they are of the formsequations for these variables are separate. By using these

6.=1,(E1,,0,) andE; ,=f,(E;,,6,), and using the ini- variables, one may truncate the redundant equations for

tial values 8=5_—(n;+q)2+(ny+q)? and E@=(n, n<0, and thus formally get rid of the problem of having

+q)%2+6_. Bragg resonant states atn,,.
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