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Velocity-tuned resonances between different ground-state sublevels
in two „s1 and s2 polarized… standing waves

G. Demeter, G. P. Djotyan,* J. S. Bakos, and Zs. So¨rlei
Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Department of Plasma Physic

XII. Konkoly Thege u´t 29-33, P.O. Box 49, H-1525, Budapest, Hungary
~Received 6 January 1997; revised manuscript received 22 April 1997!

We demonstrate the existence of velocity-tuned~Doppleron! resonances in twos1- and s2-polarized
standing waves, between the two ground-state sublevels of aL-type system. We derive the resonance condi-
tions, and the properties of these resonances. We show that fast population transfer between these states may
take place, while excited atomic states are only marginally populated. We derive an interesting dependence of
the transfer time on the relative spatial phase of the two standing waves.@S1050-2947~97!05108-1#

PACS number~s!: 42.50.Vk, 32.80.2t
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I. INTRODUCTION

The diffraction of atomic beams on the gratings form
by near-resonant electromagnetic standing-wave radia
has been investigated extensively both theoretically and
perimentally@1–9#. In particular, resonance effects betwe
electrotranslational states of atoms moving in standing-w
light have been discussed@10–15# and demonstrated@16–
19# for atom-optical applications. There are two differe
types of resonances between electrotranslational state
moving, two-level atoms in standing-wave laser fields. T
process when an atom is deflected by the laser beams~i.e., its
velocity along the beams changes! without a change in its
internal state is called a Bragg resonance. Momentum c
servation obviously implies that the momentum gained
the atom must be an even number times the photon mom
tum. Energy conservation restricts the possible change
momentum to that corresponding to the reversal of the sp
of the atom. The two together imply that the position
Bragg resonances in velocity space is fixed to translatio
states corresponding to an integer number times the ph
momentum. This position is unaffected by the detuning
the frequency of the radiation from resonance. Dopple
resonances, on the other hand, describe a process whe
change in translational state of the atom is accompanied
change in the internal electronic state. The momentum
quired by the atom is thus an odd number times the pho
momentum. Energy conversation again restricts the poss
velocities where an atom may be resonantly scattered,
this position in velocity space is not fixed, but is depend
on the value of the detuning. These resonances are ter
velocity-tuned resonances, because atoms with a ce
speed always satisfy the resonance conditions whateve
value of the detuning. A clear picture of these resonances
been set forth using a band-theoretical approach in R
@14,15#. It has also been shown that, in the weak-interact
limit, two-beam resonances are possible.

The advantage of using Doppleron resonances for de
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tion and splitting of atomic beams over using Bragg re
nances is the possibility of achieving much shorter trans
times @13,15#, and that a wider range of transitions is po
sible at different values of the detuning. The main disadv
tage is the sensitivity of Doppleron resonances to the in
herent effects introduced by spontaneous emission@15#.
While numerous other methods for splitting and deflection
atomic beams have been recently proposed and demonst
@20–25#, Doppleron resonances may still prove to be a use
tool of atom optics, if this handicap could be overcome.

In this paper we discuss the existence and application
velocity-tuned resonances between different ground-s
sublevels of aL-type system, in the field of two standin
waves, ones1 polarized, the others2 polarized. These
resonances, just like ordinary Doppleron resonances, h
the potential for small transfer times in clean, two-beam
teractions, and the range of possible transitions that may
achieved by changing the detuning is equally wide. At t
same time, because excited levels are not populated, t
transitions are much less sensitive to the ill effects of sp
taneous emission. The paper is divided as follows. We fi
present the mathematical formalism and the basic assu
tions made. We then present a slight generalization of
band-theoretical approach introduced in Ref.@14#, and dis-
cuss velocity-tuned resonances based on this picture.
precise derivation of the resonance conditions is containe
the Appendix.

II. MATHEMATICAL FORMALISM

We are considering aL-type system~i.e., a system with
an excited internal state havingJ50 and two Zeeman-
degenerate ground states withJ51 and magnetic quantum
numbersm561), that is, moving in the field of two stand
ing waves with opposite circular polarizations. The moti
of the atom along the laser beams~along thez axis! is con-
sidered quantum mechanically, while the motion perpendi
lar to the beams is treated classically. For the sake of s
plicity, the amplitudes of the laser beams are considere
be constant across the beams. This means that the proble
essentially one dimensional; the perpendicular motion affe
only the transit time, and hence the interaction time with
laser beams. The Hamiltonian for the problem is
1472 © 1997 The American Physical Society
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Ĥ5Ĥ01V̂5
p̂2

2M
1Ĥa1V̂. ~2.1!

Ĥa is the atomic Hamiltonian describing the internal degre
of freedom, and obeying the equationsĤaug6&5\vgug6&
and Ĥaue&5\veue&. Note that, while the different ground
state sublevels were assumed to be degenerate for simpl
this assumption may easily be relaxed, and the results rem
valid if this is not the case. The interaction Hamiltonian m
be written asV̂52d̂•E in the electric dipole approximation
The electrical field vector associated with two stand
waves having opposite circular polarizations may be writ
as

E5e1A1exp~2 iv1t !cos~k1z1f!1c.c.

1e2A2exp~2 iv2t !cos~k2z!1c.c. ~2.2!

Here we have denoted the amplitudes of thes1 and s2

standing waves byA1 andA2 , respectively, and

e15
1

A2
~ex1 iey! and e25

1

A2
~ex2 iey! ~2.3!

are the polarization vectors of the standing waves. The ph
f describes the possible spatial shift of the nodes of the
standing waves compared to each other, while allowingA1

andA2 to be complex accounts for a possible difference
temporal phase. We may choose a complete set of orth
nal states consisting of the electrotranslational sta
uk,g1&, uk,g2&, anduk,e&, which are eigenstates of the tot
energy of the free atom. Herek denotes the wave number o
the atomic matter wave,p5\k. Using this base we may
describe the physical state of the system by three wave f
tions a1(k,t), a2(k,t), andb(k,t), which give the prob-
ability amplitude for the system to be at positionk in veloc-
ity space and at the same time to be in internal stateug6&,
ue&, respectively. Using these wave functions, the phys
state of the system may be expressed as

u&5E
2`

1`

@a1~k,t !uk,g1&e2 ivgt1a2~k,t !uk,g2&e2 ivgt

1b~k,t !uk,e&e2 ivet]dk. ~2.4!

Substitution of this expansion in Schro¨dinger’s equation, and
using Eq.~2.2! for the electric field yields the following se
of equations for the wave functions in the rotating-wave
proximation:

i\
]a1~k,t !

]t
5

\2k2

2M
a1~k,t !

2dg1 ,e

1

A2
ei e2tA2* @b~k2k,t !1b~k1k,t !#,
s

ity,
in

n

se
o

o-
s

c-

l

-

i\
]a2~k,t !

]t
5

\2k2

2M
a2~k,t !

2dg2 ,e

1

A2
ei e1tA1* @eifb~k2k,t !

1e2 ifb~k1k,t !#, ~2.5!

i\
]b~k,t !

]t
5

\2k2

2M
b~k,t !

2dg1 ,e*
1

A2
e2 i e2tA2@a1~k2k,t !

1a1~k1k,t !#2dg2 ,e*
1

A2
e2 i e1tA1

3@eifa2~k2k,t !1e2 ifa2~k1k,t !#.

In these equationsk is the wave number of the two
standing waves~considered to be identical!, M is the mass
of the atom; dg1 ,e5^g1ud̂xue&5 i ^g1ud̂yue& and dg2 ,e

5^g2ud̂xue&52 i ^g2ud̂yue& are the matrix elements of th
dipole moment operator between the internal states
e65v62(ve2vg) is the detuning of the two waves from
the atomic resonance. Note that, whilee1Þe2 strictly im-
plies k1Þk2 , the rotating-wave approximation justifie
writing k for both wave numbers.

As a slight generalization of the band-theoretical a
proach of Refs.@14,15#, we may introduce the notations

cn
6~q!5a6~@n1q#k!exp~2 i e7t ! if n is even,

cn
0~q!5b~@n1q#k! if n is odd. ~2.6!

This means that we are changing the momentum variabk
of the wave functions to an indexnP$ . . . ,221,222,
01,02,21,22,41,42, . . . % ø $•••25,23,21,1,3,5, . . .%,
and a quasimomentum parameterqP@21,1). While there
are two different indices for each evenn, namely,n1 and
n2, we shall use the phrase parity of the index to distingu
between the three types of indices: odd, even1, and even
2. The value ofq is restricted~to the first Brillouin zone! to
avoid redundancy.

With this notation, and using the definitions

V15
A1* dg2 ,e

\A2
and V25

A2* dg1 ,e

\A2
~2.7!

for the Rabi frequencies of the two standing waves, we m
write Eqs.~2.5! as

i ċn
1~q!5F\k2~n1q!2

2M
1e2Gcn

12V2@cn21
0 ~q!1cn11

0 ~q!#,

i ċn
2~q!5F\k2~n1q!2

2M
1e1Gcn

22V1@eifcn21
0 ~q!

1e2 ifcn11
0 ~q!#, ~2.8!
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i ċn
0~q!5

\k2~n1q!2

2M
cn

02V1* @eifcn21
2 ~q!1e2 ifcn11

2 ~q!#

2V2* @cn21
1 ~q!1cn11

1 ~q!#.

We therefore have an infinite set of coupled, ordinary diff
ential equations enumerated by the indexn for every value
of the continuous parameterq. The fact that the variable
cn(q) are only coupled tocn61(q) reflects the law of mo-
mentum conservation. An act of absorption or stimula
emission of a photon changes the momentum of the atom
\k ~hencen→n61), and the quasimomentumq is a con-
stant of the motion. Note that the fact that the stateg1 in-
teracts withe only throughs2, and g2 only throughs1,
makes it possible to incorporate the detunings into the ene
of these states. The unperturbed energies of the electrot
lational states are thus given by

En
6~q!5

~n1q!2\2k2

2M
1\e7 ,

En
0~q!5

~n1q!2\2k2

2M
~2.9!

in terms of the indexn and the quasimomentum parame
q.

III. DOPPLERON RESONANCES

The solutions of Eqs.~2.8! may be expressed as solutio
of an eigenvalue problem. We must find the eigenstate
the perturbed Hamiltonian~2.1!, expressing them as a linea
combination of the electrotranslational states that are eig
states of the unperturbed HamiltonianĤ0. Since the interac-
tion only couples electrotranslational states with the sa
quasimomentum parameter@Eqs. ~2.8!#, the eigenstates o
the full Hamiltonian will be given by

uFn~q!&5(
n

pn,n~q!u~n1q!k, j &, ~3.1!

where the indexj may beg6 , e depending on the parity o
the indexn. n is the band index that enumerates the~infinite
number of! solutions of the eigenvalue equatio
ĤuFn(q)&5En(q)uFn(q)&. In the limit of zero field~i.e., no
interaction!, the coefficients will be given by
pn,n(q)5dn,n , and the statesuFn(q)& will simply be
u(n1q)k, j &, the band indexn coinciding with the level in-
dex n.

The first few branches of the dispersion relation of t
free atom in the band-theoretical picture are shown in Fig
~see Eq.~2.9!#. There are three types of branches, cor
sponding to the three possible parities for the indexn. De-
generacies appear wherever two states belonging to diffe
branches have equal unperturbed energies for some valu
q, i.e.,

En0

6,0~q!5En1

6,0~q!. ~3.2!

Relation ~3.2! is termed the zeroth-order resonance con
tion, as it is exact only in the limit of zero-field strength
-
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Branches of the same parity are fixed with respect to e
other, and intersections only occur in the center and at
boundary of the Brillouin zone. These are the Bragg re
nances that are familiar from two-level atoms. They app
between the branchesn and2n in the center of the Brillouin
zone, andn and 2n62 at q571. As the position of the
branches with a parity even1 ~even2! may be tuned by
changing the detuninge2 (e1), intersections between
branches of different parity may appear at any value of
quasimomentumq. These are the intersections that give ri
to Doppleron resonances. It is obvious that these resona
appear not only between ground and excited electronic le
of the atom, but also between the different ground-state s
levels. Note that in this case the difference in moment
between the two states is an even multiple of\k, as opposed
to an odd multiple in ordinary Doppleron resonances.

The effect of a weak interaction with the standing-wa
radiation changes the appearance of the dispersion rela
as shown in Fig. 2. The interaction is considered weak
«5\V6 /(En2Em),1 wherem denotes the nearest non
resonant level ton.

Far from the intersections, the branches of the dispers
relation change little. The levels are Stark shifted due t

FIG. 1. The first few branches of the dispersion relation of
free atom as a function of the quasimomentum parameterq. The
corresponding indices are written beside the branches. The s
lines with odd indices refer to an atom in internal stateue&. The
dashed lines with indices even1 refer to an atom in internal stat
ug1&, while the dot-dashed lines with indices even2 refer to an
atom in internal stateug2&. Energy is in recoil units (\v r

5\2k2/2M ). The detunings aree150.5v r and e2520.5v r . In-
tersections between branches of the same index parity give ris
Bragg resonances, while those between branches of different in
parity give rise to Doppleron resonances. These include resona
between electrotranslational states containing different ground-s
sublevels.
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mixing of neighboring levels by the laser fields. They st
however, consist of predominantly one electrotranslatio
state in the weak-interaction limit@14#.

In the vicinity of intersections, however, the crossings b
tween the different branches are lifted into anticrossings,
a band gap appears between the levels.~See the Appendix
for the derivation of these results.! The splitting between two
degenerate levels involving different ground-state sublev
n0

1 andn1
2 is approximately given byDE52uGu, where

G52\V2\V1* e2 if )
i 5n011

i odd

n121
1

E2Ei
0

3 )
j 5n012
j even

n122 S u\V2u2

E2Ej
1 1

u\V1u2e2 i2f

E2Ej
2 D ~3.3!

@see Eqs.~A13b and A14c!#. E is the energy of the resonan
levels, that may be approximated byEn0

1 in this expression.

~See the Appendix.! There is also a renormalization of th
resonance condition Eq.~3.2! @see Eqs.~A13a!, ~A14a!, and
~A14b!#. What this means is that the values of the detunin
at which the statesn0

1 andn1
2 at a givenq are exactly reso-

nant depend on the values of the field strengths.@The explicit

FIG. 2. The same as Fig. 1 but with the field streng
V15V250.15v r and spatial phasef50. The diagram shows
splitting and level repulsion near the degeneracies of the nonin
acting dispersion relation. Horizontal arrows pinpoint Bragg re
nances, while vertical arrows point to Doppleron resonances
tween different ground-state sublevels. The indices
electrotranslational states that are written beside some parts o
different branches indicate the state that dominates that partic
part of the branch. Note that different electrotranslational sta
dominate in different parts of a single branch. These parts are s
rated by resonances where the electrotranslational states
strongly mixed.
al

-
d

ls

s

dependance of the energies onq has been supressed for n
tational simplicity; see~Eq. 2.9!.# It is now clear that the
simplification introduced by considering beams with co
stant field strengths across is important. Since the reson
conditions change with the field strengths, maintaining th
conditions throughout the interaction in beams with oth
than a constant field strength along the cross section is m
more complicated.

The eigenstates of the Hamiltonian at a resonance wil
to a good approximation given by~see the Appendix!

uF1,2~q!&'
1

A2
@ u~n01q!k,g1&6eigu~n11q!k,g2&],

~3.4!

whereg is an unimportant phase arising from the compl
nature of the eigenvalue problem. This means that, if
atom is in one of the electrotranslational states~e.g.,n0) at
t50, we may expect Pendello¨sung-type oscillations betwee
n0 andn1 whose frequency is proportional toDE. DE can be
seen from Eq.~3.3! to beO(\V«n12n021). Noting that the
energy difference between the resonant levels and the ne
nonresonant levelsDi

0'2n0\2k2/2M , if n0@1, we may
conclude that, for sufficiently largen0, the splitting of the
resonant levels may beDE.\2k2/2M . Therefore the trans-
fer times in these resonances may be much smaller than
inverse recoil frequency. At the same time, because«,1, a
two-beam resonance may be preserved. The significanc
this is that in Bragg resonances the transfer time is alw
much larger than the inverse recoil frequency in the case
two-beam resonance. This property has already been sh
for ordinary Doppleron resonances@14,15#. While in a two-
level atom these processes necessarily involve the exc
state of the atom, and are therefore sensitive to incohere
introduced by spontaneous emission, with aL-type system
we may have such resonances between different gro
states of the atom. Since the levels containing the exc
electronic states of the atom are only marginally popula
during these resonances, they are much less sensitiv
spontaneous emission.

From Eq.~3.3! one can easily see an interesting depe
dence of the energy splitting~and hence the oscillation fre
quency! on the relative spatial phasef of the two standing
waves. The various terms in this product are associated
the intermediate states that lie between the two reson
states. Since there are two different ways an atom can
from an intermediate excited stateni

0 to ni 12
0 , ~through the

stateni 11
1 by the emission and the absorption of as2 pho-

ton, and through the stateni 11
2 by the emission and absorp

tion of as1 photon!, the amplitudes for these two possibil
ties must be coherently summed. The energy splitting
proportional to the product of the norms of terms contain
such coherent sums. Since the relative phase of the term
these sums can be seen from Eq.~3.3! to be dependent on
f, it is obvious that, at particular values ofV6 andf, there
may be destructive interference between the two possibili
in one of these sums, and the energy splitting given by
~3.3! may be zero. More precisely, assuming 0,n0 ,n1, the
energiesEn

6(q) are monotonically increasing functions o
n, and becauseE'En0

1 'En1

2 for a resonance, for a pair o
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-
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intermediate ground-state levelsnj
1 andnj

2 the two denomi-
natorsE2Ej

1 andE2Ej
2 will be of opposite sign. For this

reason, the norm of the sum of these terms will be large
e2 i2f521, i.e., if f56p/2, and smallest iff50,p. Be-
tween the maximum and the minimum, the energy splitt
given by Eq.~3.3! is a monotonic function off. Thus we
have the important result that the resonant coupling betw
the two ground-state sublevels is always strongest when
nodes of one standing wave coincide with the maxima of
other. If the nodes of the two standing waves coincide,
energy splitting given by Eq.~3.3! may disappear altogethe
at specific values of the field intensities. This does not m
that the resonances will be completely suppressed, as t
may still be a significant splitting in a more precise appro
mation ~see the Appendix for the details!, but the coupling
can be orders of magnitude larger atf56p/2 than at
f50,p. Note that the exact value of the resonant energ
and detunings also varies slightly withf.

Figure 3 depicts the time evolution of the velocity spa
state probabilities of a system initially in staten0

156601.
The figure shows Pendello¨sung-type oscillations between th
states 6601 and 6662. These values were chosen to corr
spond with those in Ref.@15# for a good comparison. The
transfer time is around 0.4 in recoil units in a six-phot
resonance. The transfer efficiency is almost 90%, with
remaining 10% of the population being scattered into vari
neighboring nonresonant levels. The maximum probabili
of neighboring excited states are approximately 6%. The d
for the figure were obtained by numerically solving Eq
~2.8!. The frequency of the oscillations, as well as the va

FIG. 3. Time evolution of the state probabilities in veloci
space of a system initially in staten056601, showing oscillatory
behavior between levels 6601 and 6662. Time on the horizontal
axis is measured in units of inverse recoil frequency. The figure
obtained by numerically solving Eqs.~2.8!. The parameters use
were V152200v r , V251500v r , e15217827.1v r , e2

5210 000v r , andf5p/2. Both the frequency of the oscillations
and the place of the resonance are in good agreement with
values calculated from Eq.~A13!. It can be seen from the figure tha
around 90% of the population is transferred in a six-photon tra
tion to the state 6662, while 10% is scattered into neighborin
nonresonant levels. The state probability of one of these leve
also illustrated at the bottom of the figure for comparison. T
maximum probability of this level is around 6%. Note that t
frequency of the oscillations in the situation above withf50
would be less than one-tenth of the frequency of oscillation on
figure.
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of the detunings where the resonance appears, is in g
agreement with the values calculated from Eq.~A13!.

Resonances that are very similar in nature to the o
decribed above were mentioned in Ref.@26#. The authors
considered a three-level system with a Zeeman-degene
excited state, and, in the presence of a magnetic field a
standing light wave with a polarization gradient, identifie
velocity-tuned resonances between different excited-s
sublevels. They termed these Raman-type resonances.
sidering a three-level system with two Zeeman-degene
ground-state sublevels in this latter field configuration brin
even closer the similarity between these resonances, and
ones considered in this paper.

Another work discussing similar resonances is Ref.@27#.
In this paper, multiphoton resonances between the grou
state sublevels of aL-type system in two bichromatic wave
is discussed. While only the internal states of the atom
considered in the treatment, it is stressed that an atom m
ing along a standing wave will ‘‘see’’ a bichromatic wav
because of the Doppler shift, hence at given detunings of
two standing waves the resonances can be regarded t
velocity-tuned resonances. The resonances described in
paper and those in the present paper are only equiva
however, if recoil effects may be completely neglected. T
means that unlessDE@ l 2\v r ~wherev r is the recoil fre-
quency andl 5n12n0 the number of photons absorbed a
emitted!, the full electrotranslational description must b
used for the discussion of the resonances. With the additio
requirement of clean, two-beam resonances, the simpli
treatment of that paper is valid only in the limit of stron
fields and very large velocities.

IV. SUMMARY

We have investigated the properties of velocity-tun
resonances between ground-state sublevels of aL-type sys-
tem. We have shown that these resonances, just like ordi
Doppleron resonances, have the potential for small tran
times for beam splitting or deflection, while being large
immune to the incoherent effects of spontaneous emiss
This fact may make such resonances a useful tool of a
optics.
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APPENDIX

We now set out to derive the resonant solutions of E
~2.8!. We first introduce the dimensionless quantiti
g65V6 /v r and d65e6 /v r , where we have used
v r5\k2/2M , the recoil frequency, as a unit. The dimensio
less equations to be solved are thus

i ċn
1~q!5@~n1q!21d2#cn

1~q!2g2@cn21
0 ~q!1cn11

0 ~q!#,

i ċn
2~q!5@~n1q!21d1#cn

2~q!2g1@eifcn21
0 ~q!

1e2 ifcn11
0 ~q!#, ~A1!
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i ċn
0~q!5~n1q!2cn

0~q!2g2* @cn21
1 ~q!1cn11

1 ~q!#

2g1* @eifcn21
2 ~q!1e2 ifcn11

2 ~q!#.

For the sake of simplicity, we shall suppress the depende
on the parameterq in what follows, with the exception of the
kinetic energy. As the dimensionless counterpart of E
~2.9!, we introduce the notationsEn

65(n1q)21d7 and
En

05(n1q)2 for the unperturbed energies of the levels w
even and oddn, respectively. Writing the variables in vecto
form,

1
A

cn
1

cn
2

cn11
0

cn12
1

cn12
2

cn13
0

A

2 , ~A2!

the set of Eqs.~A1! may be tackled by solving the eigen
value problem

S • • •

g2 Dn
1 0 g2 0

g1eif 0 Dn
2 g1e2 if 0

g2* g1* eif Dn11
0 g2* g1* e2 if

A A A
D

3S A

cn
1

cn
2

cn11
0

A

D 50, ~A3!

where we used the notationsDn
6(E)5E2En

6 for even val-
ues ofn, andDn

0(E)5E2En
0 for odd values ofn. We must

find the energiesE for which nontrivial solutions of Eq.~A3!
exist, and the corresponding eigenvectors. While this is n
tridiagonal recurrence relation as in the case of the two-le
atom, one may still proceed either by using matrix-continu
fractions@28#, or by using a slight generalization of the co
tinued fraction method adopted in Refs.@14,15#. We first
single out the two potentially degenerate states with indi
n0

1 andn1
2 for which

En0

1 'En1

2 . ~A4!

We assume for now thatn12n0,n0, so in the case of
q50,61, if any of these two states also possesses a Br
resonant state of the same parity, it is sufficiently far away
be neglected. Condition,~A4!, however, only determines th
ce

s.

a
el
d

s

gg
o

difference between the two detunings. For any givend2 , for
example, we may find d1 , so that (n01q)21d2

5(n11q)21d1 is satisfied, and there may exist an odd i
dex m for which Em

0 5(m1q)2'(n01q)21d2 ; i.e., even
in the absence of Bragg resonances, we may have a thre
degeneracy appearing at an infinite number of values
d2 . In what follows, we assume that this is not the case, i
that we have chosen the detunings so that there is no fur
degeneracy apart from the levelsn0

1 andn1
2 . This assump-

tion, however, needs to be verified for every actual value
d6 used. Pursuing a slight generalization of ordinary cont
ued fractions, we now write

cn11
0 5tn11~g2* cn

11g1* eifcn
2!,

cn21
0 5sn21~g2* cn

11g1* e2 ifcn
2!

if n is even, and

cn11
1 5Tn11

1 g2cn
0 ,

cn21
1 5Sn21

1 g2cn
0 ,

~A5!

cn11
2 5Tn11

2 g1eifcn
0 ,

cn21
2 5Sn21

2 g1e2 ifcn
0

is n is odd.
Substitution of these equations into Eqs.~A3! yields the

following reccurence relations:

tn5
21

Dn
01ug2u2Tn11

1 1ug1u2Tn11
2 ,

sn5
21

Dn
01ug2u2Sn21

1 1ug1u2Sn21
2

if n is odd, and

Tn
15

2Dn
21ug1u2tn11~ei2f21!

Dn
2Dn

11Dn
2ug2u2tn111Dn

1ug1u2tn11
,

Tn
25

2Dn
11ug2u2tn11~e2 i2f21!

Dn
2Dn

11Dn
2ug2u2tn111Dn

1ug1u2tn11
,

~A6!

Sn
15

2Dn
21ug1u2sn21~e2 i2f21!

Dn
2Dn

11Dn
2ug2u2sn211Dn

1ug1u2sn21
,

Sn
25

2Dn
11ug2u2sn21~ei2f21!

Dn
2Dn

11Dn
2ug2u2sn211Dn

1ug1u2sn21

if n is even.
Using these relations to eliminate the levelsl ,n0 and

l .n1, the equations for the potentionally resonant leve
and the nonresonant levels in between then, become

Dn0

1 cn0

1 1sn021ug2u2cn0

1 1g2g1* e2 ifsn021cn0

2 1g2cn011
0 50,

~A7a!



1478 56G. DEMETER, G. P. DJOTYAN, J. S. BAKOS, AND Zs. SO¨ RLEI
Dn1

2 cn1

2 1tn111ug1u2cn1

2 1g2* g1e2 iftn111cn1

1 1g1eifcn121
0 50, ~A7b!

1
Dn0

2 1ug1u2sn021 g1e2 if 0 ••• •••

g1* eif Dn011
0

g2* g1* e2 if 0 •••

�

�

�

••• 0 g2* g1* eif Dn121
0

g2*

••• 0 g2 Dn1

1 1ug2u2tn111

2 S
cn0

2

cn011
0

cn012
1

A

cn121
0

cn1

1

D
51

2g2* g1eifsn021cn0

1

2g2* cn0

1

0

A

0

2g1* e2 ifcn1

2

2g2g1* eiftn111cn1

2

2 . ~A7c!
a

di-

all
Denoting the matrix in the equation above byN, we may
eliminate the variablescn0

2 , cn011
0 , cn1

1 andcn121
0 from Eqs.

~A7a! and ~A7b! by inverting N and expressing them as
linear combination ofcn0

1 andcn1

2 . We thus receive the fol-

lowing equations for the two potentially resonant levels:

S A~E! G1~E!

G2~E! B~E!
D S cn0

1

cn1

2 D 50, ~A8!

whereA andB are given byA5Dn0

1 1A8 andB5Dn1

2 1B8,

and the auxillary quantitiesA8, B8, G1, andG2 are by

A85sn021ug2u22
D1,1

Dn0 ,n1

ug2u2ug1u2sn021
2

2sn021S D1,2

Dn0 ,n1

ug2u2g1* e2 if1c.c.D 2ug2u2
D22

Dn0 ,n1

,

B85tn111ug1u22
Dm,m

Dn0 ,n1

ug2u2ug1u2tn111
2

2tn111S Dm,m21

Dn0 ,n1

g2* ug1u2e2 i2f1c.c.D
2ug1u2

Dm21,m21

Dn0 ,n1

,

~A9!
G152g2g1* e2 if
D2,m21

Dn0 ,n1

2g2g1*
2e2 i2fsn021

D1,m21

Dn0 ,n1

2g2
2 g1* eiftn111

D2,m

Dn0 ,n1

2g2
2 g1*

2sn021tn111

D1,m

Dn0 ,n1

,

G252g2* g1eif
Dm21,2

Dn0 ,n1

2g2* g1
2 ei2fsn021

Dm21,1

Dn0 ,n1

2g2*
2g1e2 iftn111

Dm,2

Dn0 ,n1

2g2*
2g1

2 sn021tn111

Dm,1

Dn0 ,n1

.

Here we have denoted the determinant of matrixN by
Dn0 ,n1

, D i , j is the j ,i th element of the adjunct ofN, andm is

the dimension ofN. A nontrivial solution of the two-by-two
problem~A8! exists, if

AB2uGu250. ~A10!

Furthermore, we would like to enforce the resonance con
tion

A5B. ~A11!

Turning to the weak interaction limit, we define the sm
parameter

«5maxH ug6u
Di

J , ~A12!
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where the indexi runs through all the nonresonant leve
between, and in the vicinity of the resonant levels. From
reccurence relations~A6! we may see that the imaginar
parts of the quantitiessn021 and tn111 are at leastO(«4)
times smaller than the real parts, and can thus be taken t
real to an excellent approximation in the weak interact
limit. We may then writeG5G15G2* and Eqs.~A10! and
~A11! may easily be rewritten as

d15d22~n11q!21~n01q!22A81B8, ~A13a!

E1,25d21~n01q!22A86uGu, ~A13b!

as the conditions for nontrivial resonant solutions of E
~A8!.

It is instructive to expand the quantitiesA, B, andG in
powers of«, and see the leading order terms. They turn
to be

A5E2~n01q!22d22
ug2u2

Dn021
0 2

ug2u2

Dn011
0 1O~g«3!,

~A14a!

B5E2~n11q!22d12
ug1u2

Dn121
0 2

ug1u2

Dn111
0 1O~g«3!,

~A14b!

G52g2g1* e2 if )
i 5n011

i odd

n121
1

Di
0 )

j 5n012
j even

n122 S ug2u2

D j
1 1

ug1u2e2 i2f

D j
2 D .

~A14c!

It is evident from Eqs.~A14! that the quantitiesA8, B8, and
G are only weakly dependent ond1 andE ~i.e., the depen-
dence is only through terms that are higher order than zer
the parameter«,1). Givend2 , Eqs.~A13! are best solved
by a simple iteration, noting that they are of the form
d15 f 1(E1,2,d1) andE1,25 f 2(E1,2,d1), and using the ini-
tial values d1

(0)5d22(n11q)21(n01q)2 and E(0)5(n0

1q)21d2 .
n

P

rd

tt.

oc
e

be
n

.

t

in

The splitting between the two resonant levelsE1,2 from
Eq. ~A13b! is DE52uGu. While for d1 we actually obtain
two different solutions withE1,2, in the weak-interaction
limit this difference is negligible. From Eq.~A13b! and the
expansions~A14! it can be seen that the leading-order co
rection to E1,2 comes from the interaction of the resona
levels with the nearest nonresonant ones. This shifts the r
nant levels, and brings about a renormalization of the re
nance condition~A13a!. The leading-order term in the cou
pling G is easily seen to beO(g«n12n021). Since, to be
consistent, we must keep all terms at least as large as th
A and B, in all cases of practical interest (n12n0>4) we
shall have to use a longer expansion ofA andB that includes
corrections arising from the coupling of the resonant lev
to levels such asnn062

6 and nn162
6 . In practice, while the

different terms in this expansion have clear physical me
ings, it is difficult to pursue. Fortunately, calculating the m
trix N and inverting it numerically to findA, B, and G in
each step of the iteration is easily done by computer.
must not forget, however, that the continued fraction exp
sion to the quantitiessn021 and tn111 should also be fol-
lowed through to include all terms whose orders of mag
tude in« is larger than, or equal to that ofG. With E1,2 and
d1 fulfilling Eqs. ~A13a! and ~A13b!, the eigenvectors cor
responding to energiesE1,2 will be given by u1,2&'(1/
A2)(un0

1&6eigun1
2&) to corrections the order of«. @g is a

phase factor that may arise from the complex nature of
eigenvalue problem~A10!.#

The problem of solving Eqs.~2.8! in a region where mul-
tiple degeneracies appear due to Bragg resonances~i.e.,
when q50 and n0 is small, so that the coupling betwee
Bragg-resonant states is not negligible compared to that
tween Doppleron-resonant states! may be simplified by in-
troducing symmetric and antisymmetric solutions in the fo
xn

0,65cn
0,61c2n

0,6 and zn
0,65cn

0,62c2n
0,6 , and noting that the

equations for these variables are separate. By using t
variables, one may truncate the redundant equations
n,0, and thus formally get rid of the problem of havin
Bragg resonant states at2n0.
s.
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