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Nonlinear pulse propagation phenomena in ion-doped dielectric crystals
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We theoretically analyze pulse propagation in a medium of inhomogeneously broadened two-level quantum
systems, which have a vibrational degree of freedom with respect to the center-of-mass coordinate. This system
mimics local mode oscillations of rare-earth-metal-ion dopants in dielectric crystals that are coupled to electronic
transitions. We show the emergence of various nonlinear optical phenomena, such as self-induced transparency
or the nonlinear interaction between two pulses coupling to different electrovibrational transitions. Interaction
between the pulses makes it possible to generate various Raman sidebands of the incident fields and to tune the
location where they are generated. We also demonstrate controlled population transfer between electrovibrational
states of the ions at specific points along the propagation axis. Similarities and differences between our results
and other pulse propagation phenomena of few-level quantum systems are discussed.
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I. INTRODUCTION

Coherent optical phenomena, such as self-induced trans-
parency [1,2], photon echo [3,4], electromagnetically induced
transparency, slow light [5,6], and numerous other effects,
have received considerable interest in recent years. This
is because they can be exploited for various applications,
including efficient nonlinear field conversion, few-photon
light switching, and quantum communication and quantum
computing.

Among the materials used for coherent optical phenomena,
rare-earth-metal-ion-doped crystals play an important role as
they possess remarkably long optical coherence times [7–9].
While the microscopic theory of optical transitions in rare-
earth-metal-ion-doped crystals is rather complex [10–15], typ-
ically building upon semiempirical Hamiltonians [10,16,17],
it is by now well established that the low-temperature spectra
are governed by sets of equidistant vibronic transitions. They
arise from the electronic states of the dopant ions, which
are coupled to localized vibrational modes of the ions and
the surrounding lattice [18–23]. In the optical spectra the
resulting vibronic sublevels are about 10–100 cm−1 apart.
Similar to the Franck-Condon principle of natural molecules,
vibrational motion of the ions is excited in conjunction
with electronic excitation. This is because the potential that
restrains the ion within the lattice depends on its electronic
state; hence the equilibrium position and the vibrational
frequency may both change with an electronic transition [12].
In contrast to natural molecules, the electronic transitions
are typically inhomogeneously broadened because of strain
effects.

In this paper, we study optical pulse propagation effects
within a medium of inhomogeneously broadened molecule-
like systems, designed to model dopant ions and their immedi-
ate surroundings within a crystal lattice. We employ a generic
but simple model consisting of systems with two electronic
states and a center-of-mass motion, which is assumed to
take place within a pair of harmonic potentials, one for the
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ground and another one for the excited state (configurational
coordinate model for the dopant ions in solids; see, e.g.,
[12,19]). The two potentials, which we consider for simplicity
as one-dimensional, are displaced with respect to each other
and can have different level spacings. We consider optical
coupling to a set of laser pulses resonant with the different
electrovibrational transitions in the resolved sideband regime.
We compute the propagation of the pulses in an optically
thick medium. Throughout we assume the crystal to be at
low temperatures and take the initial state of the ions as the
lowest vibrational level of the electronic ground state. Both
intraband and interband relaxation processes are neglected.

For single pulses that are nearly resonant and not too
strong, we find that the propagation is identical to that inside
a medium of inhomogeneously broadened two-level systems.
For the simultaneous propagation of two pulses, resonant with
different electrovibrational transitions of the ions, we find that
a large number of quantum states are connected in a chainwise
manner, leading to a rich variety of nonlinear interactions
between the two pulses. Among them are the generation of
fields on various Raman sidebands of the incident radiation,
the absorption of one pulse together with the amplification of
the other one, and the generation of Raman sidebands at a
tunable location along the propagation direction. Our results
also demonstrate a controlled population transfer between
electrovibrational states of the ions at specific spatial locations
through coupling to the propagating pulses.

Our scheme resembles that of stimulated Raman scattering
(SRS) in the transient regime [24–31], where the pulse width
τ is much shorter than the dephasing time of the molecular
dipole but much longer than the vibrational period associated
with the Raman transition. In this regime it is possible to
generate a high number of Raman sidebands. The generated
modes propagate as solitary waves and are mode locked by the
dynamics of the molecular polarization. The resonant coupling
and the chainwise connection of the levels are the principal
difference between our scheme and that of transient SRS.

Quite generally, the problem studied in this paper is closely
related to several previous works on self-induced transparency,
pulse matching, and solitary wave propagation in three-
and five-level systems [32–37]. Indeed, in our work several
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propagation phenomena turn out to be similar to those obtained
for three-level systems, such as the analytical solutions for
two-pulse propagation with an energy exchange between the
pulses [32]. Nevertheless, the current system is considerably
more complex since two copropagating pulses of different
frequencies couple nearly resonantly to a long (infinite) ladder
of chainwise connected states, which gives rise to variety of
effects.

This paper is organized as follows: In Sec. II we introduce
the theoretical framework underlying our analysis. The basic
properties of pulse propagation are considered in Sec. III. In
our system the various generated field modes have different
group velocities; hence it is possible to tune the location of
the interaction of the modes in the medium. This effect is
discussed in Sec. IV. Finally, Raman sideband generation is
studied in Sec. V. The summary and some conclusion can be
found in Sec. VI.

II. THEORETICAL FRAMEWORK

In our approach we consider an ensemble of quantum sys-
tems with a ground state and an excited electronic state, each
possessing a series of vibrational substates |g,m〉,|e,n〉 (see
Fig. 1). The individual systems are defined by the Hamiltonian
Ĥ = ĤA + ĤAF , where the “atomic” Hamiltonian ĤA for the
ions is given by

ĤA = h̄ωeg

∑
m

|e,m〉〈e,m| + h̄νg

∑
j

j |g,j 〉〈g,j |

+ h̄νe

∑
j

j |e,j 〉〈e,j |. (1)

The last two terms describe the center-of-mass motion of the
system in a pair of one-dimensional harmonic potentials (as
we are only interested in the properties of the excited system,
we have not explicitly indicated the zero-point energy of the
oscillators). The energy difference between |g,0〉 and |e,0〉
is assumed to be much larger than the difference between
the vibrational levels ωeg � νg,νe. Note that the restriction of
the harmonic oscillator to a single spatial dimension is valid
for systems whose optical response is governed by a single
vibronic transition.

We assume that an ensemble of such molecular systems
interacts with a classical electric field E(z,t). Using the
usual dipole and rotating-wave approximations, the interaction
Hamiltonian ĤAF is given by

ĤAF = −d̂ (+)E(−) − d̂ (−)E(+), (2)

where

d̂ (+) =
∑
m,n

〈g,m|d̂|e,n〉|g,m〉〈e,n| = dge

∑
m,n

Fm,n|g,m〉〈e,n|.

(3)

The dipole matrix elements between the various ground- and
excited-state sublevels are assumed to factor into a constant
matrix element deg ∈ R, calculated from the electronic-state
wave function, and a Franck-Condon factor Fm,n. The matrix
of Franck-Condon factors is given by

Fm,n =
∫

φ∗
g,m(x)φe,n(x − D)dx, (4)

−4 −2 0 2 4 6

ν
e

D

ω
eg

ν
g|g,m〉

|e,n〉

FIG. 1. (Color online) Level scheme of the considered model
system. The center-of-mass motion of the ions in the harmonic
potentials gives rise to a set of equidistant vibrational levels
|g,m〉,|e,n〉 for the ground and excited electronic states with spacing
vg and ve, respectively. The potential minima for the two electronic
states are displaced by a distance D with respect to one another.

where φg,m and φe,n denote the vibrational eigenfunctions
of the ground- and excited-state potentials, respectively. We
assume that the displacement of the excited-state potential
relative to the ground-state one is D [38] and denote the
characteristic length scales of the harmonic oscillators with
level spacings νg,e as ξg,e = √

h̄/Mνg,e. Throughout we
neglect the decay between different vibronic sublevels.

We describe the field E(z,t) = E(+)(z,t) + E(−)(z,t) as a
superposition of several plane waves with a constant frequency
spacing,

E(+)(z,t) = 1

2

∑
l

εl(z,t)e
−i(ωl t−klz),

(5)
ωl = ω0 + lδ, kl = η ωl/c, l ∈ Z,

where the complex amplitudes εl(z,t) vary slowly in time and
space on the scale of ω−1

l and k−1
l , respectively, c is the speed

of light in vacuum, and η is the refractive index of the host
medium.

Writing the state of an ion with transition frequency ωeg

located at position z along the propagation direction as

|ψ〉 =
∑
m

am(z,t)e−im(δ+�)t+imδz/c|g,m〉

+
∑

n

bn(z,t)e−inδt+inδz/ce−i(ωegt−k0z)|e,n〉, (6)
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the Schrödinger equation for the probability amplitudes am,bn

can easily be derived to be

i∂tam(z,t) = (mκg − �)am(z,t) − 1

2

∑
l

�∗
l (z,t)

×
∑

n

Fm,nbn(z,t)ei(l+m−n)δ(t−z/c)

(7)

i∂tbn(z,t) = nκebn(z,t) − 1

2

∑
l

�l(z,t)

×
∑
m

F†
n,mam(z,t)e−i(l+m−n)δ(t−z/c).

Here we have introduced the notation

�l(z,t) = degεl(z,t)

h̄
(8)

for the Rabi frequency of the lth pulse mode. Note that
this frequency corresponds to a unit Franck-Condon factor,
whereas the effective Rabi frequency for a |g,m〉 → |e,n〉 tran-
sition additionally involves the Frank-Condon factor according
to �n−mF†

n,m. � = ωeg − ω0 is the detuning between the
frequency of the l = 0 mode and the resonance frequency of
the 0 → 0 vibrational transition of the ion under consideration.
The differences between the vibrational levels in the ground
and excited states and the frequency spacing δ of the modes
are denoted by κg = νg − δ, κe = νe − δ.

When the frequency spacing of the vibronic levels is much
larger than all other frequency scales, δ � �,�l,κg,κe, we can
employ the usual random-phase approximation and neglect
terms with l + m − n �= 0 as they quickly average out in
combination with the slowly varying amplitudes. In other
words, we assume that the bandwidth of the pulses is much
smaller than the spacing of the vibrational states, which is
very reasonable considering that the latter is of the order of
10–100 cm−1. Thus, for the evolution of the ions’ state at a
certain z in space we are left with

i∂tam(�; z,t) = (mκg − �)am(�; z,t)

−1

2

∑
l

�∗
l (z,t)Fm,m+lbm+l(�; z,t),

(9)
i∂tbn(�; z,t) = nκebn(�; z,t)

−1

2

∑
l

�l(z,t)F†
n,n−lan−l(�; z,t).

These are the equations that we have to solve for an ensemble of
ions with different detunings � and at different points along the
z direction. In the equation we have now explicitly indicated
the dependence on �. In general, the macroscopic response of
the medium to the propagating fields involves a wide detuning
distribution for the ions. Thus, for weak pulses the macroscopic
coherence between ground- and excited-state sublevels decays
rapidly due to dephasing. The ions are assumed to be initially
in the |g,0〉 state, which is a valid assumption in the low-
temperature case.

For the propagation of electromagnetic waves in the crystal
doped with ions, we employ the slowly varying envelope

approximation and arrive, after some manipulations (for details
see the Appendix), at

∂

∂z
�l(z,t

′) = i
k0deg

2ε0εh̄
Pl(z,t

′) = iα
∑
m

Fm,m+l

×
∫

a∗
m(�; z,t ′)bm+l(�; z,t ′)g(�)d�, (10)

where Pl(z,t ′) is the polarization corresponding to a given
mode number l, k0 is the wave number of light, g(�) is
the spectral distribution of detunings, and t ′ = t − z/vg is the
retarded time. (Here vg is the group velocity in the host medium
for the frequency range of the pulses; see the Appendix.)
Note that in the above equation the lth mode of the field
is driven only by the corresponding polarization mode. The
constant α = Nd2

egk0/ε0εh̄ is the propagation constant for the
medium, with N being the space density of ions. While in
general a single absorption parameter cannot be defined for the
propagation of the lth mode, in the case of a single pulse and
the ions in state |g,m〉 initially, one recovers the well-known
Beer’s absorption law, where the decay parameter for the field
is given by αBeer = πF2

m,m+lg(0)α.
Our model calculation for the center-of-mass vibrations of

the dopant ions is based on an elementary one-dimensional
model for the local vibrations, while in reality the ions
are embedded in a three-dimensional crystal. However, it
has been shown that both heavy and light ions can have
localized vibrational modes in three-dimensional host crystals
(see [39,40] and references therein for an extensive review).
Green’s-function analysis shows that the local modes can have
small linewidths (a fraction of 1 cm−1), but this field is still
not well understood. Our proposal assumes a pulse length
in the picosecond-nanosecond range; hence a homogeneous
linewidth of 0.1–0.01 cm−1 for the local vibrational modes is
sufficiently small.

III. PROPAGATION OF PULSES

We have numerically solved Eqs. (9) and (10). The pulses
entering the medium at z = 0 are assumed to be

�j (0,t) =
{

Aj sin2
(
π

t−Tj

τj

)
, t ∈ [Tj ,Tj + τj ] ,

0 , otherwise ,
(11)

where Aj is the amplitude, Tj is the time delay, and τj is
the temporal width of the j th pulse. In the current work, we
consider at most two pulses of different modes entering the
medium. The pulse lengths are assumed to be much shorter
than the typical relaxation times of the excited-state sublevels
and the single atom dipole relaxation time. This is necessary
to justify the use of the Schrödinger equation. It does not
constitute a severe restriction since excited-state lifetimes of
rare-earth metals in solids can be as long as 100–1000 μs, and
the homogeneous lifetime (dipole relaxation time) is of the
order of 10–100 μs at 4 K. For the detunings we consider a
Gaussian distribution g(�) = exp(−�2/2σ 2

�)/(σ�

√
2π ) with

σ� � Aj ,1/τj . Throughout this work we set νg = νe = δ

and only consider displaced, but undistorted, potentials. It
is assumed that the vibrational levels are well resolved, i.e.,
σ� � δ. Furthermore, we use for the displacement between
the two potentials D = ξ , which results in Franck-Condon
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factors that decay fast with the difference in the numbers of
vibrational excitations. In what follows, we will always use
the dimensionless spatial coordinate normalized through the
propagation constant, z′ = πg(0)αz.

A. Single pulses: Self-induced transparency

Let us first consider the propagation of a single pulse
inside a medium of inhomogeneously broadened ions. When
the vibrational spacing of the states is much larger than the
pulse bandwidth 1/τj (resolved sideband regime), any pulse
with l � 0 effectively interacts with an inhomogeneously
broadened medium of two-level systems. It therefore produces
self-induced transparency (SIT) phenomena [1,2]. Thus it
becomes completely absorbed for sufficiently weak pulses
(of pulse area A = ∫

Fm,m+l�l(t ′)dt ′ < π ), reshapes into the
classical “sech” SIT solitons for stronger pulses (of pulse area
π < A < 3π ), and breaks up and reshapes into multiple SIT
solitons for the strongest pulses (for A > 3π ). On the other
hand, any single pulse with l < 0 propagates unaffected since,
with all the ions in |g,0〉, there is no transition it can excite.

B. A pair of interacting pulses

The simultaneous propagation of two pulses of different
modes gives rise to a rich variety of phenomena. Previously,
many interesting solutions have been found for simultaneously
propagating pulses in media consisting of multilevel systems,
where each field interacts with one specific transition (e.g.,
matched pulses for � or double-� atoms [33] or the dark
coherence wave equation for � atoms [37]). Things are more
complicated in our case since two fields of different l couple
a whole set of electrovibronic states in a chainwise manner,
e.g., for l = 0 and l = −1 we have |g,0〉 → |e,0〉 → |g,1〉 →
|e,1〉 → |g,2〉 → . . . . In addition, the same field interacts with
several of these transitions and thus yields a whole set of
different Rabi frequencies. As the two fields are able to drive
the ion to successively higher vibrational states, polarizations
of modes other than the original input ones are generated.
These, as shown by Eq. (10), can generate new fields, i.e.,
Raman sidebands of the input radiation.

In the following we focus our discussion on effects that do
not depend on the detailed parameter values of our model
but reflect general properties of the system under study.
Most importantly, since modes with l < 0 propagate in the
unperturbed medium unaltered, the light-matter interaction
will tend to drive the energy of the input pulses into these
modes. (Some of the energy is inevitably absorbed by the
medium, of course.) An illustrative example can be seen in
Figs. 2 and 3: a pulse of mode l = 0 enters the medium and
is followed by a l = −1 pulse with a delay of T−1 = 1.2τ0.
Both pulses have the same temporal width τ0 = τ−1. Figure 2
shows the contour plot of the propagation of the two modes as
a function of z′ and t ′/τ0, and Fig. 3 reports the time evolution
of the same modes at specific propagation distances. Upon
entering the medium, the first pulse �0 reshapes into the usual
SIT pulse and slows down. The second pulse �−1 initially
does not interact with the ions, so it propagates unaltered and
finally catches up with the first pulse. When the two pulses start
interacting with the same set of ions simultaneously, the first
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FIG. 2. (Color online) Contour plot of the sum of the two Rabi
frequencies �0 and �−1 as a function of z′ and t ′ for two interacting
pulses. The pulses entering the medium are labeled at z′ = 0 on
the left. The first pulse �0 can be seen to propagate slowly, so the
second one �−1 catches up to it. The first pulse then decays as
the l = −1 mode becomes amplified and finally exits the medium.
Parameters used for the calculation are τ0 = τ−1, A0 = 20/τ0,A−1 =
10/τ0,T−1 = 1.2τ0,σ� = 200/τ0.

pulse is absorbed completely, while the second one reshapes
and becomes amplified. The reason for this is that the first
pulse excites the ions to |e,0〉 and hence creates a population
inversion (on the |e,0〉 → |g,1〉 transition) for the l = −1
pulse. In the SIT soliton propagation the excitation energy then
no longer returns to the l = 0 pulse but is transferred to l = −1.
Eventually, the l = 0 pulse decays, either through a complete
energy transfer to the �−1 pulse or through absorption (for an
area smaller than π ).

This interaction between the two pulses bears a strong
resemblance to the analytic solutions derived in Ref. [32]
for a medium composed of atoms with a � level scheme
and for identical atom-field coupling parameters for the two
transitions. When the atoms are prepared in one of the stable
states, energy is exchanged between the two pulses, and
one of the pulses completely disappears. Clearly, our case is
somewhat different as we have an infinite number of chainwise
connected states and the light-matter coupling is not identical
for the two pulses. As a consequence, asymptotically, modes
with l < −1 will have a finite (though small) amplitude.
Despite these differences, the outcome of the interaction
is quite similar. The generalized area theorem derived in
Ref. [32], however, is not valid in our case.

The interaction between two pulses is more complicated
when both of them can directly interact with the medium,
i.e., l � 0. Initially, both pulses reshape into SIT pulses
and slow down. Whether the two pulses can interact in the
medium depends on their propagation velocities and whether
the second pulse is sufficiently fast to catch up to the first one.
Figure 4 shows results of a simulation where two pulses of
modes l = 0 and l = 1 are injected with initial pulse areas
of A0 = A1 = 2π . As the pulses interact in the medium,
higher-order sidebands are created transiently (in Fig. 4 we
show the l = 2 mode), which disappear at later times. Note that
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FIG. 3. (Color online) Line plots of the Rabi frequencies �0(t ′)
and �−1(t ′) at specific propagation distances from the input of the
medium. Parameters are the same as for Fig. 2.

high-order sidebands may propagate for quite some distance as
their absorption parameters, proportional to F2

0,l , are typically
small. Again, asymptotically, the energy of the pulses is
transferred to modes with l < 0, in this case predominantly
l = −1 and l = −2.

IV. SPATIALLY TUNED INTERACTION

As within the system under study certain pulses can
propagate faster than others; by changing the delay between
the pulses one can tune the location of the interaction within
the medium at will. This could be exploited to modify the
character of an output pulse leaving the doped crystal by simply
tuning the time delay, which provides a resource for generating
Raman sidebands with l > 0 or for time-resolved probing of
the light-matter interaction to obtain information about the
Franck-Condon factors between the vibrational states. Another
interesting possibility is the transfer of population from the
initial state |g,0〉 to other states, which could be used to bring
the system to specific vibrational levels within selected regions
of the medium, similar to the adiabatic population transfer
schemes suggested in Ref. [41].

Figure 5 shows the final populations of selected levels after
the interaction with two pulses with l = 0 and l = 2 as a
function of the propagation distance. At specific locations all
of the population is transferred to a single final state. Note that
the populations are plotted for the ions that are resonant with
the pulses, � = 0. The width, as well as the location of these
regions, can be flexibly tuned by changing the duration of the
pulses, the delay between them, and their respective initial
amplitudes.
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FIG. 4. (Color online) Line plots of the Rabi frequencies of
several modes at specific propagation distances from the input of the
medium. (left) �0(t ′), �1(t ′), and �2(t ′). (right) �−2(t ′) and �−1(t ′).
Parameters used for the calculation are τ0 = τ1, A0 = 16.1/τ0,A1 =
22.8/τ0,T1 = 1.2τ0,σ� = 1000/τ0.

An interesting possibility derives from the fact that the
displacement D between the vibrational potential minima
is usually not very large, and the Franck-Condon factors
for high-order sidebands of the fundamental |0,g〉 → |0,e〉
transition are usually small. This means that one needs a
much larger amplitude to generate a pulse of A = 2π on,
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FIG. 5. (Color online) Final populations of selected states of the
ions after the interaction between the two pulses has taken place as a
function of propagation distance. Parameters used for the calculation
are τ0 = τ2, A0 = 16.1/τ0,A2 = 45.6/τ0,T2 = 1.2τ0,σ� = 1000/τ0.
The curves refer to ions with � = 0.
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say, a |0,g〉 → |4,e〉 transition than the |0,g〉 → |0,e〉 one.
Thus, a large-amplitude pulse can propagate unchanged as
an A = 2π SIT pulse on a high-order sideband. When such
a high-amplitude pulse interacts with a second pulse, the
energy is transferred to lower-order modes, as discussed in
the previous section. In the process, pulses of substantial
amplitude may be transiently created in modes with l > 0
lying below the input mode, even pulses with A > 3π . Again,
by changing the delay of the second pulse, one can tune the
location within the medium where the generation of these
fields takes place. The significance of all this is that a pulse
of A > 3π falls apart during propagation, so one cannot, in
general, inject a pulse of such amplitude from the outside to
any location within the medium. Nevertheless, the interaction
between the pulses does provide a way to generate such pulses
at any given location.

Figure 6 illustrates such a process. Two pulses with l =
4 and l = 3 enter the medium initially, with pulse areas
A3 = A4 = 2π . Through the light-matter coupling, the pulse
energies are transferred to lower-order sidebands until finally
only modes that do not interact with the medium remain.
However, there is a transient rise of field amplitudes in
intermediate modes during the interaction. The top panel of
Fig. 6 shows the pulse areas for the intermediate l = 1,2,3,4
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FIG. 6. (Color online) Pulse areas of specific modes l calculated
using the Franck-Condon factor F0,l as a function of propagation
distance z′. (top) A4,A3,A2, and A1. (bottom) A0,A−1,A−2, and
A−3. The top panel shows intermediate modes reaching areas
A > 3π . Pulses like this break up during propagation, so to
have one at a specific location within the medium, it must be
generated there. Parameters used for the calculation are τ3 = 2τ4,
A3 = 111.8/τ3,A4 = 316.2/τ4,T4 = 2.4τ4,σ� = 1000/τ0.

modes with respect to the |g,0〉 → |e,l〉 transitions (i.e.,
calculated with the Franck-Condon factor F0,l). The areas
A3,A2, and A1 can be seen to reach values close to 4π .
The bottom panel shows the area of the l = 0 mode and the
l = −1,−2,−3 modes. These latter ones are where the energy
is finally transferred during the process. Within the transfer
process some of the energy is naturally lost to the medium.

V. RAMAN SIDEBAND GENERATION

The general behavior that modes of l � 0 always decay
while modes with l < 0 may amplify and finally propagate
without a change is valid also when the incoming pulses
are more intense. However, as more intense pulses can drive
the ions into highly excited vibrational states, higher-order
polarizations become sizable, and a larger portion of the energy
is transferred to more distant sidebands (either permanently or
transiently) as a result of the interaction. Thus, it is expected
that pulses of higher amplitude can efficiently generate
sidebands.

Figure 7 shows the amplitudes of the incoming and sideband
modes at specific locations in the medium. From Fig. 7 it
is clear that with l = 0,−1 modes entering the medium, the
amplitudes of both the transiently created l = 1,2 sidebands
and the output l = −2 sideband are considerably enhanced in
comparison to the case shown in Fig. 4.

Because large area pulses break up into smaller ones while
propagating, it is no longer practical to use the pulse delay
to tune the location of the interaction within the medium: the
interaction takes place close to the entry. Nevertheless, the
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�−2(t ′) and �2(t ′). Parameters used for the calculation are τ0 =
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FIG. 8. (Color online) The fraction of the original input energy
transferred to some specific output modes by the interaction of the
two pulses as a function of the delay of the second pulse. Parameters
used for the calculation are identical to those used for Fig. 7, except
for the delay T1.

delay does significantly influence how much of the overall
input energy is transferred to specific sidebands. In Fig. 8 we
show for different pulse delays the energy content in specific
sidebands as a fraction of the original input energy after
the interaction. The energy of the l = −2 mode shows, as a
function of delay time, a rapid rise and then a slow decay, while
the l = −3 mode exhibits a distinct peak at T−1 = 0.45. With
no delay between the pulses, all of the original input energy is
absorbed by the l = −1 mode. Note that pulse amplitudes at
the input of the medium are not extremely large, corresponding
to pulse areas of a few times 2π for both input modes.

VI. SUMMARY AND OUTLOOK

We have presented a numerical study of pulse propagation
phenomena in a medium of two-level quantum systems, which
have a vibrational degree of freedom with respect to the center-
of-mass coordinate. The system is intended as a simple model
for ion-doped dielectric crystals where localized oscillation
modes are excited in conjunction with electronic excitation.
When two pulses resonant with different electrovibrational
transitions propagate in the medium simultaneously, the
pulses couple a large number of electrovibrational states in
a chainwise manner. This, in turn, results in strong nonlinear
interactions between the pulses.

We have analyzed the simultaneous propagation of two
pulses under several conditions. First, we have considered the
injection of pulse pairs with several different frequencies and
have shown that the nonlinear light-matter interaction tends
to transfer the pulse energies to low-order Raman sidebands
of the fundamental frequency. These Raman pulses propagate
without further amplification inside the medium. As numerous
Raman sidebands of the input radiation can be generated at
least transiently, the properly chosen time delay between the
two pulses can be used to release energy into these sidebands
at a tunable location along the propagation direction. Using
the same principle, it is also possible to generate population

transfer between specific electrovibrational states at certain
locations within the medium. While the phenomena occurring
for the propagation of two pulses are fairly complex, in several
cases similarities to propagation phenomena derived for much
simpler three- and five-level systems exist, which can be used
to interpret our results.

The outcome of the interaction between pulses depends
upon a number of parameters, namely, input pulse mode
numbers, amplitudes, temporal lengths, and delays. Thus in
case of specific applications a parameter optimization will be
needed in order to, e.g., maximize the energy transferred to a
specific Raman sideband.
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APPENDIX

In this Appendix we provide the details for deriving
Eq. (10). Our starting point is the wave equation for the
propagation of electromagnetic waves in the crystal doped
with ions, which in the slowly varying envelope approximation
reads

∑
l

kle
−i(ωl t−klz)

(
∂εl(z,t)

∂z
+ 1

vg,l

∂εl(z,t)

∂t

)

= −iμ0
∂2P (+)(z,t)

∂t2
, (A1)

where vg,l = ∂ωl/∂kl is the group velocity for the lth mode
with kl = η ωl/c. The frequency-dependent refractive index
η is defined through the relation ε ≡ η2 = 1 + χ (ω) (χ (ω)
is the linear susceptibility of the host medium; see [26]). In
the following it is assumed that the frequency spread of the
modes is small, so that η can be evaluated at ω0, which implies
that all the group velocities vg,l are the same vg . The positive
frequency part of the macroscopic polarization P (+)(z,t) on
the right-hand side of Eq. (A1) is entirely due to the response
of the ions to the fields and is defined by

P (z,t) = P (+)(z,t) + P (−)(z,t) = N
∫

〈d̂〉g(�)d� (A2)

so that

P (+)(z,t) = Ndeg

∫ ∑
m,l

Fm,m+la
∗
m(�; z,t)bm+l(�; z,t)

× e−i(ωl t−klz)g(�)d�. (A3)

In this expression N is the space density of the ions,
and g(�) is the spectral distribution of the detunings of
the inhomogeneously broadened ensemble. Similarly to the
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electric field, we can write the polarization as a superposition
of equidistant modes:

P (+)(z,t) = 1

2

∑
l

Pl(z,t)e
−i(ωl t−klz), (A4)

with

Pl(z,t) = 2Ndeg

∫ ∑
m

Fm,m+la
∗
m(�; t)

× bm+l(�; t)g(�)d�. (A5)

After taking the second derivative of Eq. (A3) with respect
to time, inserting the leading-order term into Eq. (A1), and

rewriting the equation using the retarded time t ′ = t − z/vg ,
we obtain∑

l

kle
−iωl t

′ ∂

∂z
εl(z,t

′)

= i
Ndeg

ε0ε

∑
m,l

k2
l

∫
Fm,m+la

∗
m(�; z,t ′)bm+l(�; z,t ′)

× e−iωl t
′
g(�)d�. (A6)

As described above, we can replace kl with k0 in the equation.
This equation is strictly valid for the sum of the field
components. However, because amplitudes vary little on the
time scale of 1/ωl , to an excellent approximation, it is valid
for each l separately, and Eq. (A6) can be cast to the final form
of Eq. (10).
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