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Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of
absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for
information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence
rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the
two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an
optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo
emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to
unit efficiency. Potential advantages over similar schemes working with 7 pulses include greater potential signal
fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory

channels.
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I. INTRODUCTION

Building a quantum memory for light is vital for creating
future large-scale quantum-communication networks and es-
sential for several devices in quantum-information processing.
We must store the quantum state of light in some material
device and be able to retrieve it efficiently and faithfully. Thus
intense research is going on to create an optical memory that
could work right down to the single-photon level, using several
different approaches [1,2]. In particular, photon-echo-based
techniques have been investigated extensively [3].

The first essential ingredient for any optical memory
based on the photon-echo principle is an inhomogeneously
broadened ensemble of “atoms” that absorb the signal and
dephase for storage. Rare-earth-ion dopants embedded in
solid-state lattices are a popular choice because they have
very long coherence times at low temperatures, the density
of absorbers can be very large, and decoherence due to
atomic motion is absent. The second essential ingredient is
a protocol to collectively rephase the atomic coherences of the
ensemble for the retrieval of the signal echo. The numerous
techniques can be categorized in two wide groups. The first
one uses an atomic ensemble with a “natural” inhomogeneous
broadening and one or more strong control pulses to rephase
the coherences in the spirit of the classical photon-echo
phenomenon [4]. The second group uses specially prepared
atomic ensembles, whose absorption line shapes are crafted
prior to signal absorption.

The simplest technique of the first category is the classical
two-pulse photon echo. It uses a single short v pulse to rephase
the coherences and does not require any initial state preparation
of the ensemble. However, Ruggiero and co-workers showed
[5] that it is unsuitable for a quantum-memory protocol for
several reasons. First, rephasing occurs when the ensemble
is inverted, severely limiting the signal-to-noise ratio during
quantum-state retrieval. Second, the control pulse is distorted
during propagation, its bandwidth decreases gradually, and it
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develops a long tail that may interfere with the detection of the
echo [6]. Furthermore, the protocol is extremely sensitive to
the precise preparation of the control pulse, as the pulse area
of  is in fact an unstable solution of the famed area equation.
Third, a control pulse whose bandwidth is wide enough to
rephase the coherences of the ensemble must be very short,
with a high peak intensity, which may well exceed the damage
threshold in a crystal.

Noise from an inverted storage medium prevents quantum-
information storage in other cases as well [7], so techniques
were proposed to prevent the emission of the first echo and
use a second control pulse to rephase the coherences again.
This secondary echo (in fact an echo of the primary echo) is
emitted when the atomic dipoles rephase around the ground
state. Damon and co-workers [8] used the fact that if signal and
control pulses propagate in different directions, the primary
echo fails the phase-matching condition, so it is silenced—a
technique also employed in [9]. Another protocol [10] uses a
third atomic level and strong Raman-type interaction to store
the signal in the coherences between the two stable states.
It employs special writing, rephasing, and reading pulses
to achieve rephasing around the ground state. An auxiliary
electrical field gradient that broadens the absorption line during
the first rephasing can also be used to silence the primary
echo [11].

Techniques belonging to the second group achieve co-
herence rephasing around the ground state by preparing a
special absorption feature in the storage medium. Controlled
reversible inhomogeneous broadening (CRIB) [3,12—-14] and
gradient echo memory [15,16] techniques use a narrow absorp-
tion line broadened by an externally applied inhomogeneous
field. Reversing the field gradient rephases the atoms, so
inverting them is not necessary. These techniques have been
demonstrated to work in solid-state media [17—-19] and used in
more elaborate configurations such as information storage in
Raman coherences [20,21] or polarization-state qubit storage
in three-level systems [22,23]. Another technique is to craft
an absorption feature composed of narrow, equidistant peaks
termed atomic frequency combs (AFCs) [24-26]. Atomic
coherences then spontaneously rephase periodically, with a
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period given by the frequency spacing of the peaks. The
greatest difficulty with these techniques is the preparation of
the required absorption feature with sufficient optical depth.

As for techniques of the first category that use an unmanip-
ulated absorption line, silencing the primary echo still does not
solve problems associated with control-pulse propagation in
an optically dense medium, such as pulse distortion, high peak
intensity, and sensitivity to the precise pulse area. Recently,
frequency-chirped control pulses that drive adiabatic passage
(AP) between the atomic states were proposed for use in
photon-echo quantum memories [8,26,27]. It has been shown
that while AP with a single chirped pulse cannot, in general,
rephase the coherences collectively, a pair of consecutive APs
can under certain conditions, most notably when the control
pulses are identical. With chirped control pulses, the precise
pulse area is not important and they can invert the same
frequency range of the atomic ensemble using much smaller
peak intensities than 7 pulses. For this reason, AP demon-
strates superior performance compared to 7 pulses also in
rephasing coherences in quantum memory experiments based
on electromagnetically induced transparency [28]. However,
the question of pulse propagation effects remains. Even if the
control pulses are identical at the entry of the medium, they
will surely be different at finite optical depths, because the
second one propagates in a gain medium inverted by the first
one. For a collective rephasing of the coherences, it is not only
population transfer that counts, but also the time integral of the
adiabatic eigenvalues [26,27]. So how do pulse propagation
effects modify the ability of a pair of chirped control pulses to
rephase atomic coherences?

In this paper we investigate the propagation properties
of two consecutive, frequency-chirped control pulses in an
optically thick, inhomogeneously broadened atomic ensemble.
Calculating the distortion that the control pulses undergo, we
investigate their ability to collectively rephase the coherences
of the ensemble. We also compare their performance to that of
a pair of r control pulses. We show that chirped control pulses
are much more suitable for rephasing an optically thick storage
medium for multiple reasons. Finally, we calculate the echo of
a series of weak signal pulses and characterize the efficiency
and fidelity of an optical memory with chirped control pulses.
We prove that together with phase mismatching to extinguish
the primary echo, frequency-chirped control pulses can be used
effectively in optical quantum memories.

II. BASIC PRINCIPLES

We consider two variants of a photon-echo memory
protocol in which an unmanipulated, natural inhomogeneously
broadened absorption line is used for storage, and two
consecutive control pulses drive AP in the ensemble twice to
rephase the coherences around the ground state. The general
timelines of the variants are depicted in Fig. 1. In the first one,
we simply use an ensemble of two-level atoms and two control
pulses. In the second variant, we assume that an additional
pair of counterpropagating pulses transfer the excited-state
population to a third, long-lived state |s) just after signal
absorption as in several other protocols (e.g., [26]). This step
can extend storage time and perform phase matching to enable
backward echo emission. We envision a solid-state medium
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FIG. 1. (Color online) Interaction timeline. A signal field at 7y
is followed by two consecutive control pulses at #; and #,, with the
echo emission occurring at 3. The primary echo at #] is silenced
by spatial phase mismatching. In a variant of the protocol, a pair of
counterpropagating pulses can be used to transfer atomic populations
between the excited state and a third, stable state to achieve longer
storage times and obtain phase matching for backward echo emission.

where inhomogeneous broadening is independent of the pulse
propagation direction, and assume that L >> X is fulfilled for
the length L of the storage medium, so the primary echo can
be silenced using spatial phase mismatching [8]. We restrict
our consideration to signal- and control-pulse propagation
along a single dimension. The reason is that the interaction
region where the signal is absorbed in photon-echo memory
experiments is usually highly elongated, so achieving AP
with control pulses at an angle would probably require pulses
with prohibitively large intensities and/or very oblique beam
shapes. Finally, we assume that the signal field is so weak (a
few-photon pulse) that it does not, in any way, interfere with
control pulse propagation, i.e., this can be computed in the
“empty” medium and the results then used to calculate the
triggering of echoes.

A. Basic equations

We consider propagation along a single direction and
write the electric field as a sum of forward- and backward-
propagating modes, so the (classical) electric field is

E(z,t) = %[Ef(z,t)e"sz“"” + Ep(z,0)e ol 4 ccl)

with the slowly varying envelope functions E(z,t) and
Ep(z,t). Here wq is the central frequency of the inhomo-
geneously broadened absorption line and we use the time-
dependent complex phase of the envelope functions to include
detunings and frequency modulations in our description.

We use the rotating-frame Hamiltonian H, =hAle){e| to
describe a two-level system with transition frequency w,, =
wo + A, offset by A from the inhomogeneously broadened
line center. In addition, we use the standard dipole interaction
Hamiltonian and the rotating-wave approximation. Thus we
obtain the following equations for the probability amplitudes
a(t;z,A),B(t; z,A) that describe the state of an atom at point
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zas |y) = a(r;52,A)|g) + Bt 2,M)|e):
Bar:2.8) = S5 + 2.2 112, ),

AB(t:2.A) = ’E[sz (.25 + Qpt,2)e a2, )
—iAB(t;z,A).

Here Qy; = dE /I are the Rabi frequencies of the forward-
and backward-propagating fields with d = (e|d|g) the dipole
matrix element. We have neglected all decay processes in
this description, so the overall interaction time must be much
shorter than any atomic population or coherence decay times.
It is convenient to decompose the probability amplitudes as a
series of spatial Fourier modes:

a(t;2,8) = ) an(t;z, M),
n

Blt:;2,8) =Y Bult;z, A,
a,(t;z,A) and B,(t; z,A) still depend on z, but now vary only
slowly on the scale of the light wavelength, similarly to €.
Using kL > 1, we can separate the evolution equation for the
slowly varying probability amplitudes:

i
ooty = _(Q?,Bn+l + QZIBn—l),

PR

; (1)
0By = E(Qfanfl + Qpany1) — A,

(The explicit dependence on ¢, z, and A has been suppressed
for brevity.)

To obtain the spatiotemporal evolution of the fields from
the wave equation, we employ the slowly varying envelope
approximation. Using kL >> 1, the equations for Q2 (z,) and
Q,(z,t) can be separated:

oy
7g(0)
oy

1 .
(28, - 8Z>Q;,(t,z) = zﬂg(O)P_l(z,t).

Here g(A) is the inhomogeneous line shape function, oy =
wg(0)kNd?/eoh is the absorption constant, and we have
introduced the notation

Pri(z.0) = / > o Busig(A)dA 3)

1
(Ea, + az>szf(z,z) =i Pi(z,1),

2

for the forward and backward parts of the polarization. The
fact that each field interacts only with the corresponding part of
the polarization is an expression of the spatial phase-matching
condition. Equations (1) and (2) together with (3) constitute
the set of Maxwell-Bloch equations for our case. They can be
solved analytically for the signal field in the weak-excitation
limit [5], but can only be solved numerically for the control
pulses and for the echo. However, we assume that the pulses
propagate in complete time separation, so the solution is
somewhat simplified—during the time interval [t; — T,t; + T']
where the ith pulse has a finite amplitude, it is enough to solve
Egs. (1) for one or two pairs of amplitudes {«,,B8,+1} that
; couples, those that may be nonzero at the time of the ith
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FIG. 2. (Color online) Steps of the first memory variant showing
the populated probability amplitudes and the transfers driven by the
various fields. Two backward-propagating control pulses rephase the
coherences around the ground state and a forward echo is emitted.

pulse and may contribute to P1;. In the second variant of
the protocol where two additional pulses transfer the atomic
excitation between |e) and a third state |s), we simply assume
that they are perfect w pulses or a pair of identical chirped
pulses. Because the |e) <> |s) transition is virtually empty
in the case of weak signal fields, the medium is perfectly
transparent for these pulses, and propagation effects need not
be taken into account for them.

B. Primary echo suppression via spatial phase mismatching

The main steps of the two variants are sketched in Figs. 2
and 3, which depict the various probability amplitudes that
differ from zero at certain times. Assuming that we start with
a spatially homogeneous medium, initially only ¢ is nonzero.
In the first case, the absorption of the forward-propagating
signal pulse at 7y creates coherences in the {,8;} amplitude
pair [Fig. 2(a)]. The first control pulse at #;, which propagates
in the backward direction, inverts the atoms, transferring the
populations to S_; and &y [Fig. 2(b)]. When coherences
rephase around the excited state at f; the polarizations P,
and P_; are both zero—indeed only P_3 is nonzero—so
the primary echo is silenced. At #, the second control pulse
(backward propagating) returns the populations to {«g,B1}
[Fig. 2(c)], so the rephasing at #3 occurs around the ground
state, giving rise to Py, i.e., forward echo emission [Fig. 2(d)].

The first step of the second variant is identical to the
first one [Fig. 3(a)], but now it is followed by a transfer
of the excited-state population to the shelving state |s) by
a forward-propagating pulse [Fig. 3(b)]. The dephasing is
halted and the signal stored in the coherence between {o, )0}
as in other protocols [10,26]. Upon demand a second pulse,
this time backward propagating, transfers the population from
¥ to B_1, and rephasing can proceed. We assume that the
difference between the wavelengths of the control-pulse pair
driving the shelving transition |e) <> |s) and the signal field
is small (Jk, — k;|L < 1), so this pulse pair also performs
the necessary phase matching required for backward echo
emission. Because this transition is virtually empty, we simply
assume them to be a pair of identical chirped pulses and

052316-3



GABOR DEMETER
t b
® ® s
Bo B] —
As [ 2 & = ]
eoo "o o, o, o,
o, o,
—
(c) &
B-z B_1 BO B1
ﬁc /gc
o, o, o, o,
@ ¢ (ON
B, B, B, B, B, By
o, o, o, o, o o,

FIG. 3. (Color online) Steps of the second memory variant
showing the populated probability amplitudes and the transfers driven
by the various fields. A pair of counterpropagating pulses on the
le) <> |s) transition and two forward-propagating control pulses
rephase the coherences around the ground state and a backward echo
is emitted.

need not consider their propagation. Next, the first control
pulse at ¢, this time forward propagating, inverts the atoms,
transferring the populations to 8; and «_, [Fig. 3(c)]. When
the coherences rephase around the excited state at ¢{, only P3
is nonzero. Rephasing occurs at 73, after the second control
pulse [Fig. 3(d)] giving rise to P_y, i.e., a backward echo is
generated [Fig. 3(e)]. Note, however, that because of possible
imperfections in the population transfer process, we must in
fact use more amplitude pairs than depicted in Figs. 2 and 3
when computing echo emission numerically.

III. COHERENCE REPHASING WITH ADIABATIC
PASSAGE

A. Properties of the time-evolution operator

The control pulses at #; and 7, must be able to rephase a suf-
ficiently large region of the atomic ensemble in terms of optical
depth and frequency range in order to trigger echo emission
with high efficiency and good fidelity. To investigate whether
the coherences imprinted by the signal can be rephased by
the pulses, we construct the time-evolution operator U(A,z)
that connects the values of a pair of probability amplitudes
at t = t3 — T just before echo emission with their values at
t =ty + T just after the signal pulse has been absorbed:

“ N e
ﬁy,lil B < ,Bnil )

(The upper sign in B,4; is valid for forward-propagating
control pulses, and the lower sign for backward ones.) U(A,z)
can be constructed from the time-evolution matrices UC' (A, z)
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and UC%(A,z) of the two control pulses that propagate the
amplitudes during the time intervals [¢t;, — T',f;» + T'] and
the free-evolution matrices between the various pulses. (See
the Appendix for a short derivation, or [27] for a detailed
treatment.)

Let us now define the quantities R¢! and R? using the
of-diagonal matrix elements of UC(Az), je{l1,2):

RY(A,2) = [09(A, )]l (A, )]

Clearly, RY/(A,z) is the quantity that is relevant for the
collective rephasing of coherences by the jth control pulse.
First, its magnitude gives the probability that the control pulse
inverts the atomic states. Second, |R%/(A,z)| =1 implies
[U(A, D)1 = [U%(A,2)]n = 0, so in this case the atomic
coherences are transformed by the pulse during the time
interval [t; — T',t; + T'] as

(@ Bus1) = (RY(A,2)af Brsr)*

For a perfect 7 pulse, R/ = 1, while for a control pulse that
creates AP between the two atomic states

RE(AL2) = =T+ 0TI F 04T (g

[see Eq. (A6)]. Here AT are the time integrals of the adiabatic
eigenvalues for the duration of the control pulse which depend
explicitly on A and, through the complex pulse amplitude
2;(z,t) which changes as the control pulse propagates, also
on z. @ ;(z)is the complex phase of 2 (z,?). In general, a single
control pulse is able to collectively rephase the coherences in
some region of the ensemble if, in this domain of A and z,
both [RE/(A,z)| = 1 and arg[R%/ (A ,z)] = const are satisfied
simultaneously. This is usually not the case. (Rephasing is
possible when the control-pulse amplitude is so large that the
dependence of AT on A is negligible, but this presents the
same problems with peak intensity as a short & pulse.)

When two chirped control pulses are used in succession for
rephasing, both of which create AP, the overall transformation
of the atomic coherences becomes

(@ Bus1) = (@ B DIT (A, DT} [U(A, D]

= (B RN (A DR (A
« ¢l A@L=201+10—1342T) (5)
[see Egs. (A7)—we stress again that this formula is valid
only when both pulses create AP]. From Eq. (5) it is clear
that a pair of chirped control pulses can rephase atomic
coherences collectively even if a single one cannot [26,27].
If |IRCY = |R€? =1 and arg(R€") = arg(R?) + 2mm are
both satisfied simultaneously, coherences will be just prepared
for rephasing at t3 by the control pulses provided that 2f, —
2t + to — t3 = 0. At the entry of the storage medium, this can
easily be achieved by the use of two identical control pulses.
But the two control pulses will be deformed during propagation
in a different way, because they experience different initial
conditions. The first pulse is absorbed, while the second one
propagates through an inverted medium and is thus amplified.
Thus we must also investigate just how fast propagation effects
destroy the capability of the control-pulse pair to rephase.
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B. Simulation results

To investigate whether a pair of control pulses would be able
to rephase an optically thick ensemble of two-level atoms, we
solved Egs. (1)—(3) for a pair of propagating chirped control
pulses using a computer. We used control pulses of the form

Q(0,1) = Qo[sech(r/7)]'TH, (6)

which yield a time-dependent detuning from the atomic line
center as

3,®(0.1) = —%tanh(%). 7

For p = 0, there is no chirp and the pulse area is A = 7/,
while for p # 0 the chirp ranges from u/t to —u /7. Before
the first control pulse, all atoms are in the ground state, while
the second one propagates through the medium prepared by the
first one—atomic excitations remain, but the coherences have
had time to dephase. Having obtained €2;(z,t) we constructed
the operators UC/(z,7) to investigate its matrix elements as
a function of A and z. We considered two different cases.
In one, the inhomogeneous broadening of the atomic line is
much larger than the pulse bandwidth, so g(A) = g is taken
to be constant. In this case the pulses are able to invert only a
part of the ensemble, leaving atoms with a large A untouched.
Clearly, there is then a transition region where the control
pulses interact with the atoms but AP is not perfect. In the
other case, we have a Gaussian line shape function g(A) =
exp(—AZ?/202)/oa~/2m and the control-pulse bandwidth is
great enough to encompass the whole absorption line. The
first of these two cases is especially interesting, as it is the one
that corresponds to the case of a very widely broadened ionic
transition in a crystal.
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FIG. 4. (Color online) The behavior of two successive frequency-
chirped sech control pulses as they propagate in the storage medium
with g(A) = go. Pulse parameters: v = 1 us, €y = 10 MHz, and
n = —20. (a),(b) |€2;(¢)| and |2,(¢)| (both in MHz) at normalized
propagation distances of oyz = 0,2,4,6. (c),(d) contour plots of [R¢!|
and |[R€?| vs A and o, 2.
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FIG. 5. (Color online) The behavior of R¢! for the first control
pulse. (a) Contour plot of Re(R¢") as a function of A (MHz) and
a,4z. (b) Line plots of |arg(R¢!) /| vs ayz for A = —14, —6, 10, and
18, indicated by arrows. (c) Line plot of Re(R¢!) vs A at ayz = 0.
(Pulse parameters are the same as for Fig. 4.)

Figures 4(a) and 4(b) depict how a pair of successive chirped
control pulses are deformed during propagation when g(A) =
go- The time plots of the pulse amplitudes show clearly that
the first pulse is considerably attenuated, while the second
one is amplified. At the same time both pulse amplitudes are
modulated in time. Figures 4(c) and 4(d) depict |R€'| and
|R2| as functions of A and a,z. They show that at z = 0 both
pulses create AP over roughly the A € {—20 MHz,20 MHz}
frequency interval, but the range where AP works for the first
pulse narrows continuously, and at about «yz = 4.5 it starts
deteriorating over the entire frequency range. The second pulse
on the other hand maintains AP until the calculated distance
of ayz = 10 with only the frequency interval narrowing very
slightly. Figure 5 illustrates the rephasing power of the first
control pulse, or rather the lack of it. The contour plot of
Re(RC") [Fig. 5(a)] shows that the phase associated with the
transformation of the atomic coherences is not uniform across
the ensemble, not even in the domain where the pulse creates
AP. It changes with A at any given optical depth o,z and also
for any A as a function of the optical depth «,z. Line plots
of |arg(R€")/m| for several values of A in Fig. 5(b) and of
Re(RC") at ayz = 0 in Fig. 5(c) demonstrate this even more
clearly.

What we have seen so far is just what we anticipated.
The surprising result is shown in Fig. 6 where the behavior
of RE[RE?]* has been plotted, the quantity associated with
coherence rephasing by a pair of two successive control pulses.
Its magnitude, shown in Fig. 6(a), gives the probability that
an atom of the ensemble at z and with frequency offset A
undergoes AP twice as a result of the interaction. This value
is close to 1 in an extended region of A and oyz—a region
essentially identical to the one in which the first control pulse
is able to create AP [see Fig. 5(c)]. Remarkably, the complex
phase arg(RC![R?]*) shown in Fig. 6(b) is also essentially
constant in this region. The line where |R¢![R¢?]*| = 0.98
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FIG. 6. (Color online) The behavior of RC![R?]* for a pair of
successive chirped control pulses. (a) Contour plot of |RC'[RC?]*| as
a function of A and a,z. (b) Contour plot of |arg(RC![R2]*)/m |—
the heavy black line corresponds to |RC!'[R?]*| = 0.98. (c) Line
plots of arg(RC![R€*]*)/m vs A at optical depths of ayz =
0, 2, 4, and 6. (Pulse parameters are the same as for Fig. 4.)

has been drawn over the contour plot for guidance. This
means that despite the considerable and unequal distortion
the two control pulses suffer during propagation, the pair of
chirped pulses can rephase a sizable domain of the atomic
ensemble in terms of both optical depth and frequency interval.
With these parameters the boundaries are roughly at A €
{—15 MHz, 15 MHz} and o,z = 4.5, but this can be extended
easily by increasing the pulse amplitude or the chirp slightly.
For example, the same pulses with ¢ = 12 MHz instead of
o = 10 MHz can rephase the coherences to about oryz = 8.7.

For a comparison, we also calculated the rephasing abilities
of a pair of consecutive 7 pulses in an identical way.
Naturally, a pulse of much shorter duration and hence much
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FIG. 7. (Color online) The behavior of RE!'[R?]* for a pair of
successive 7 pulses. (a) Contour plot of |R€![RC%]*| as a function
of A and ag4z. (b) Contour plot of |arg(RC[RC?]*)/m|—the heavy
black line corresponds to |R€! [R2]*| = 0.98. Pulse parameters: T =
0.01 us, 29 = 100 MHz, u = 0.
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FIG. 8. (Color online) The behavior of R¢![R2]* for a pair of
successive frequency-chirped pulses propagating through a medium
with a Gaussian inhomogeneous line shape function with o, =
6.2666. (a) Contour plot of |RC!'[R?]*| as a function of A and
ayz. (b) Contour plot of |arg(RE!'[RC?]*)/m |—the heavy black line
corresponds to |RE'[RC?]*| = 0.98. Pulse parameters: T = 1 s,
Qo = 12 MHz, ;. = —30.

greater peak intensity is needed to rephase a comparable
region of the ensemble. Figure 7 shows the contour plots
of the magnitude and phase of RE'[RC2]*. It is clear that
with the chosen parameters (r = 0.01 us, ¢ = 100 MHz,
u = 0) the performance of the m-pulse pair is inferior to
that of the chirped-pulse pair. The frequency interval where
IRERE?T*| & 1is much narrower even at z = 0 and narrows
rapidly. While the pulse energies are the same with these
parameters, the peak intensity of the mw pulses is 100 times
greater.

One advantage of 7 pulses is of course that the interaction
time is much shorter, and the control works faster. However,
because of the long “tail” that the mw pulses develop during
propagation [5] this advantage is far smaller than the actual
difference between the time constants. (For the present case the
initial 7 pulses of 7 = 0.01 us widen to several times 0.1 us
by about oyz = 5 which means that an initial advantage of
two orders of magnitude is essentially reduced to one order of
magnitude.)

Finally, Fig. 8 depicts RC!'[R?]* for a pair of chirped
control pulses that propagate through a medium with a
relatively narrow inhomogeneous broadening. g(A) is now
a Gaussian with a width of o, = 6.2666, while the chirp
range of the pulses is from —30 MHz to 30 MHz, so the
control pulses are able to invert the whole atomic ensemble.
Figure 8(a) shows that now the ability of the pulse pair to
create AP twice is lost only around the central frequencies
where the medium is optically the densest. Figure 8(b) shows
that, again, arg(RC![R?]*) is almost constant in the region
where AP works (the black line again marking the boundary
of |RC[RC?]*| = 0.98; a deviation from the constant phase
can be observed for ayz > 7).

IV. PHOTON ECHOES

To verify that frequency-chirped control pulses are suit-
able for applications in photon-echo memories, we used
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Egs. (1)-(3) to calculate the echoes of a set of weak signal
pulses and compare them with the original signal. Gaussians
of the form E(t) ~ exp(—t>/21?%) were used with T = 1 us,
and a variable frequency wjy, detuned slightly from wq (to
which the central frequency of the control pulses was tuned).
We performed a parameter scan with respect to w, and the
optical length of the storage medium «, L for both variants of
the memory protocol described in Sec. II B. We used a classical
signal, but assumed that it is so weak that it does not in any
way influence the propagation of the strong control pulses.
Thus after having calculated the coherences imprinted in the
ensemble by the signal, we used the time-evolution operators
computed in Sec. III (without a signal) to calculate the atomic
states at 13 — T'. We then solved Eqgs. (1)—(3) again numerically
for the time interval [3 — T,13 + T'] to obtain the echo.

The efficiency of the memory protocol with chirped pulses
was then characterized by calculating the ratio of echo energy
to signal energy:

_ JIELn)*dt

T TEPdt ©

which, in the weak-signal limit corresponds to the overall
probability that an incident photon is absorbed by the medium
and later reemitted as a signal echo. Another figure of merit
calculated was a classical fidelity

é_ — max fEe(t - tdelay)E;k(t)dt

)
Taelay \/ [1E(Pdt [ |Eo(0)2dt

which characterizes the similarity of the signal and echo fields,
neglecting an arbitrary difference in phase and reduction in
amplitude.

Our calculation of the echo field includes all of the atomic
ensemble, those atoms that undergo AP twice during the
interaction with the control pulses, and also those that do
not. Atoms that are too far either in optical depth ozz or in
frequency offset A to be rephased may still contribute during
echo emission, possibly to distort the signal. However, the
calculation is entirely classical, so it does not account for
quantum noise, such as spontaneously emitted photons from
atoms that, due to imperfect AP, are left in the excited state
after the second control pulse. The classical fidelity presented
here cannot be identified with the true fidelity of a one- (few-)
photon signal pulse.

Figures 9-12 depict our results. In each figure, (a) shows
a contour plot of the efficiency n as a function of signal
detuning wy; — wp and optical length oyL. The results are
symmetric with respect to w; — wp, so only negative values
have been plotted for a better visibility. (b) in each figure
shows n for two specific values of w; —wy along with
the curves of the best theoretical efficiency calculated for
CRIB [13]: ' = (1 — e%%)? for backward echo emission and
n = (agL)*>e~*" for forward echo emission. In each figure,
(c) is a plot of n and the fidelity £ as functions of w; — wy for a
given optical length. Figures 9 and 10 show that when we have
g(A) = go, n is practically constant at any oy L for a wide
range of signal detunings. The efficiencies for w; = wy lie
precisely on the curves for ’, and even w;, — wg = —16 MHz
yields efficiencies just very slightly below them. The fidelity

PHYSICAL REVIEW A 88, 052316 (2013)

(b)

(a)
x ©O~0,=0
0.8 o cos—c)0=—16 MHz
0.6 — (1—e~y2
0.4
02 08 &
20 -15 -10 -5 0 7

6
oL

4

2

© 0 ~0, [MHz]
1 ——9—9 999
-
0.5 <t
OO [MHZz]
-20 -15 -10 -5 0

FIG. 9. Color online) Memory efficiency and fidelity for back-
ward echo emission and g(A) = go. (a) n vs optical length o, L
and signal detuning w; — wy. (b) n vs 4L for w; — wy = 0 (blue
%), wy — wy = —16 MHz (red ), and ' = (1 — e~%%)? (solid line).
(c) n and & vs w; — wy at ayL = 7.2. Control-pulse parameters are
identical to those in Figs. 4-6.

& is also extremely close to unity in this region. Both n and
& start to decrease only when the boundary of the control
pulse frequency range (between —20 MHz and 20 MHz) is
approached. For backward echos, nn.x = 1 with n = 0.9985
being reached by oy L = 7.2 depicted in Figs. 9(b) and 9(c),
while for forward echos nmax = 0.54 at oy L = 2 [Figs. 10(b)
and 10(c)]. The reason for the reduction of 1, for forward
echos is the same as in the case of CRIB—the echo is
reabsorbed again by the storage medium if it is too thick.
Figures 11 and 12 show the case when we have a
Gaussian g(A). Backward echo efficiency now approaches
Nmax = 1 only for wy = wy and is considerably less for a
signal detuning of w; — wg = —5 MHz already [Figs. 11(a)

(a) (b)
0.5 . ms—wo=0
0.4 o O -0,=-16 MHz
03 | (a)’e™
0.2
0.5f ¢ ";;\
0.1 $ ¥
04y | %
-20 -15 -10 -5 0 N0.3} 4 X
o_-o, [MHz X
(c) s °[ ] 0.2
1
——1 0.1{f
0.5 o & 0
0 -0y [MHZz]
-20 -15 -10 -5 0

FIG. 10. (Color online) Memory efficiency and fidelity for for-
ward echo emission and g(A) = go. (a) n vs optical length o, L
and signal detuning w; — wy. (b) n vs gL for w; — wy = 0 (blue
*), Wy — wy = —16 MHz (red ¢), and ' = (ay L)?e~%" (solid line).
(¢) n and & vs w; — wy at ayL = 2. Control-pulse parameters are
identical to those in Figs. 4-6.
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FIG. 11. (Color online) Memory efficiency and fidelity for back-
ward echo emission and g(A) a Gaussian. (a) n vs optical length oy L
and signal detuning w; — wy. (b) n vs oy L for w; — wy = 0 (blue *),
ws — wy = —5 MHz (red ¢), and ' = (1 — e~*%)? (solid line). (c) 5
and £ vs w; — wp at ay L = 6. Control-pulse parameters are identical
to those in Fig. 8.

and 11(b)]. Forward echo efficiency does approach np. =
0.54 for a wider range of detunings, but the storage medium
length which is required is greater for a signal detuned from
wy [Figs. 12(a) and 12(b)]. This is because with a relatively
narrow broadening (oa = 6.2666) a signal detuned from the
atomic line center experiences a reduced optical length. For
the same reason, at a given medium length, the efficiency n
decreases with |w; — wp|. At the same time Figs. 11(c) and
12(c) show that the the echo signal is only reduced but not
distorted; £ remains close to 1.

Some comments on possible control-pulse parameters are
in order. First of all, decoherence effects other than dephasing
due to inhomogeneous broadening have been neglected in

@) ()

o 0.5 « ms-%:o

L 0.4 o ms—m0=—5 MHz
o

. 0.3 —(aL)%e™

4 0.2

2~ 0.1

-10 -5 MH] 0
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(© s 0
1
——1
0.5W7
0 0 _~0g [MHZz]
-0 -8 -6 -4 -2 0

FIG. 12. (Color online) Memory efficiency and fidelity for for-
ward echo emission and g(A) a Gaussian. (a) n vs optical length oy L
and signal detuning w; — wy. (b) n vs oy L for w; — wy = 0 (blue ),
Wy — wy = —5 MHz (red ), and ' = (g L)?e~%" (solid line). (c) n
and € vs w; — wp at ay L = 2. Control-pulse parameters are identical
to those in Fig. 8.
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our description. Because there are no other “inherent” time
scales, the results presented apply equally well to any other
parameter set which is scaled consistently (pulse lengths,
Rabi frequencies, chirp parameters, and atomic frequency
offsets must be scaled together). Naturally, the time delay
between the control pulses (which is half the memory storage
time without the auxiliary shelving state |s)) cannot be more
than a few percent of the excited-state lifetime I'™! for our
results to remain valid. While control pulses of arbitrary 7
can satisfy the requirements of AP, the upper bound will be
set by ™ ~ 103 I'~!. AP requires that the pulse area of
the real envelope function be A = [ |Q(t)|dr Z 107 (The
precise value of course depends slightly on the pulse shape
and the chirp function; in our case .A = 107 proved entirely
sufficient.) Together with the constraint on T™¥*, this sets the
lower bound of the peak Rabi frequency to be Qg‘i“ > 104 T.

The ideal choice for the chirp parameter is such that the
full bandwidth of the pulse is at least a few times €25. Much
lower values are impractical, because then the extension of
the transition region in A where the control pulses perturb
the atoms but AP fails is comparable to the region where
AP works correctly. (The significance of this will be clarified
shortly.) t™" and ™™ will be set by the requirement that
the full control-pulse bandwidth cannot exceed the distance
to the nearest unused electronic level. This then constrains
Qy™ as well. It may well happen, however, that this Q™
already corresponds to a peak intensity that is either too high
to generate or for the medium (host crystal) to endure. In this
case the latter constraint on 7™ obtains precedence and sets
™" via the requirement on A.

Regarding the possible range of optical depths one may
consider, we note that due to the exponential decay of the signal
during absorption, a medium with «yL = 5-10 is perfectly
sufficient to absorb the signal. Thus we need not consider
optical depths of «yz > 10 and, indeed, the ideal choice for
forward echo emission is oy L = 2. In our simulations ¢ =
10 MHz rephases atoms of the ensemble almost perfectly until
about «zz = 4.5, which is already sufficient for an excellent
memory efficiency. However, this limit can easily be extended
if necessary—2y = 12 MHZ rephases the ensemble to oyz =
8.7, Qp = 14 MHZ to well above ayz = 10.

A. Further implications for photon-echo memories

In light of these results, it is clear that a pair of chirped
control pulses that drive AP are better for building quantum
memories than a pair of w pulses for several reasons. The
first one mentioned already in the Introduction is of course
that pulses with much smaller peak intensity can be used. [In
Sec. III the particular example showed that chirped pulses
with two orders of magnitude smaller peak intensity deliver
far better rephasing ability for the case of constant g(A).]

The second advantage is the small width of the transition
region in frequency where atoms are not perfectly rephased,
but nevertheless considerably perturbed by the control pulses.
When we have a widely broadened inhomogeneous line and
can hope to rephase only a relatively narrow frequency region
(which is in fact the generic case in rare-earth-doped crystals),
this is very important because atoms that are not inverted
twice perfectly may remain excited after the second control
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(a) Remanent excitation (b) Remanent excitation
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FIG. 13. (Color online) Remanent excitation in the medium after
the two control pulses at a;z = 0 for 7 pulses [(a) and dashed line
in (b)] and chirped pulses [solid line in (b)] as functions of A. Pulse
parameters are the same as for Figs. 4 and 7. (c) The ratio u of the
overall excitation left in the medium by the chirped control pulses and
the 7 control pulses as a function of optical depth for two different
chirped-pulse amplitudes.

pulse. They will then be a source of noise due to spontaneous
emission at the time of signal retrieval. (It is important to note
that even though the duration 7., of the whole sequence may
be Tem < T'™!, the question of spontaneous emission during
echo emission must still be considered, at least qualitatively.
Because the ultimate goal is to retrieve a single photon pulse,
if there are a large number of excited atoms in the ensemble
at retrieval time, spontaneous emission may be detrimental,
however short the signal pulse is [5].)

To assess the reduction in spontaneous noise more quanti-
tatively, we compute the probabilities that atoms remain in
the excited state after the second—sm or chirped—control
pulse, the “remanent excitation” due to the control pulses
PI(A,z) and PEC(A,z). This quantity can be extracted from
the time-evolution operator used earlier:

PAA,2) = |[U(A, )]

The plot of PJ(A) at ayz = 0 for a pair of 7 pulses can be
seen in Fig. 13(a), which shows two wide regions of remanent
excitation one on each side of the narrow central hole. This
latter is the region where atoms are correctly rephased, while
the fast oscillations on both sides trace out a slow envelope
of two wide maxima. The precise frequency and phase of the
rapid oscillations depend on the time between the two control
pulses; the width of the slow envelope however depends only
on their bandwidth. In this case, T = 0.01 us has been used
(as for Fig. 7), so the width of the high-P” region is about
100 MHz. PeC(A) is shown by the solid line in Fig. 13(b),
which again shows a rapidly oscillating curve that traces out
two relatively narrow maxima at A = £20 MHz. (The pulse
parameters used were the same as for Figs. 4-6: 7 =1 us,
Qo = 10 MHz, and u = —20.) The width of the maxima is
approximately 1 MHz, the bandwidth of the pulse due solely
to its duration, while their positions are at the two limits of the
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full frequency range of the chirped pulse. The dashed curve
between the two sharp maxima is the plot of the very central
part of P (A) from Fig. 13(a), plotted to show that with these
parameters, the m-pulse pair rephases atoms only in a much
smaller frequency range.

To characterize the reduction in spontaneous noise
due to atoms in the transition region, we calculate u =
[ PE(AYA/ [ PF(A)dA, the ratio of the overall excitation
remaining in the two cases. This quantity is shown with a solid
line in Fig. 13(c); its initial value at oz = 0 is u = 0.015. It
increases very slightly at first with the optical depth, because as
the m pulse loses energy its bandwidth decreases and thus the
width of the transition region narrows somewhat. At around
the point where AP for the first chirped control pulse starts
failing (agz = 4.5 in this case) p starts increasing much faster
because the second chirped pulse then starts leaving more
and more atoms in the excited state for every A within its
bandwidth. At «yz = 4.5 we have u = 0.056, so spontaneous
noise due to remanent excitation at this point is still about 18
times less for the chirped pulses. The optical depth to which
AP works can also be extended easily with slightly larger pulse
amplitudes—ypu calculated with a chirped-pulse amplitude of
Qo = 12 MHz is shown with a broken line in Fig. 13(c). We
also note that for the comparison we used 7 pulses which are
capable of rephasing a far smaller frequency domain within
the ensemble to start with. [The width of the central region
where atoms are rephased is only about 12 MHz, while it
is close to 34 MHz for the chirped pulses; see Fig. 13(b).
Also compare Figs. 6 and 7.] Altogether it is safe to say
that spontaneous-emission-induced noise can be reduced by
a factor of 1072 if we use chirped control pulses instead of 7
pulses with comparable rephasing ability.

For a relatively narrow g(A) it is of course possible to
choose control pulses where the whole atomic ensemble is
inverted, i.e., the transition region lies in a spectral domain
void of absorbers. Then its width is not important. However,
unmanipulated ionic transition lines in solids are usually broad.
A narrow absorption feature (of a few megahertz in width as
used in Sec. III) would have to be prepared using techniques
identical to those used for CRIB.

One may also envision devices where the same storage
medium is used for several distinct “memory channels”
of different frequencies, manipulated separately by control
pulses. In this case, one clearly has to maintain a spectral
distance between the channels such that they do not interfere
with each other—*“cross-talk” between the channels must be
kept low. This means that the interchannel spectral distance
is constrained by the width of the transition region. Chirped
pulses clearly have a much greater potential in this field.

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the ability of a pair
of chirped control pulses to rephase the coherences in an
inhomogeneously broadened, optically thick ensemble of
two-level atoms. By solving the Maxwell-Bloch equations
numerically, we have shown that as long as both pulses drive
AP between the atomic states, they can collectively rephase the
atomic coherences. This result is somewhat counterintuitive,
because the time integral of the adiabatic eigenvalues plays
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an important role in rephasing and the two successive pulses
evolve differently as they propagate through the medium. The
first pulse is attenuated because of absorption, while the second
one, propagating in the gain medium prepared by the first
one, is amplified. Nevertheless, there is a well-defined region
in the ensemble in terms of atomic frequency and optical
depth, where rephasing works well. The extent of this region is
considerably greater than that rephased by a pair of consecutive
7 pulses with the same energy, but two orders of magnitude
higher peak intensity, which is an important property when
rare-earth-ion impurities embedded is a crystal are used as
a storage medium. The price to pay is a somewhat longer
control-pulse time, which, however, is only about one order
of magnitude greater after pulse propagation effects are taken
into account.

We have shown that it is possible to use chirped control
pulses in photon-echo memory schemes, where the primary
echo after the first control pulse is silenced by spatial
phase mismatching. The atomic coherences rephase again
after the second control pulse, this time without the storage
medium being inverted. Using chirped control pulses, the
same maximum echo efficiencies are theoretically attainable
in an unmanipulated, naturally inhomogeneously broadened
ensemble, as in schemes such as CRIB or AFC. For these
latter schemes numerous preparatory steps are required to
obtain the absorption feature required by the protocol. For
chirped control pulses, the frequency width of the transition
region where the control pulses excite the atoms considerably,
but fail to rephase them properly, can be relatively small. This
means that quantum noise emanating from it (atoms left in
their excited states by the control pulses emitting photons
spontaneously during echo emission) could be small enough
for the retrieval of quantum information.

It is also possible to use an ensemble with great inhomoge-
neous width for the storage of several memory channels with
different frequencies simultaneously. Because of the narrow
transition region, using chirped pulses means that a much
smaller frequency distance between the distinct channels is
needed to suppress cross-talk between them. This allows
multimode information storage with the separate, on-demand,
recall of the information stored in different channels. The same
with a pair of 7 pulses would not be possible, for the width of
the disturbing transition region is orders of magnitude greater.

APPENDIX: CONSTRUCTION OF THE TIME-EVOLUTION
OPERATOR

Let us regard an atom at z and with frequency offset A,
such that it is well within the frequency range spanned by
the spectrum of the control pulse. U(A,z) propagates the
probability amplitudes from ty + T to 3 — T as

o) .
(/3’ ) = U(A,2)(anBpx1),

n+xl

where T is a time of about the same order of magnitude as
the signal length, sufficiently long that the signal field has
effectively decayed to zero everywhere in the medium. U (A ,z)
can be constructed from the operators for free evolution
between the pulses UF!, UF2, and U and those for the
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control pulses UC'(A,z) and U2(A ,z) as

UA,2)=U0P0A, 000,00 . (AD

Here U, U2, and U correspond to free evolution during
the time intervals [tg+ 7,61 —T'], [ + T ,to — T'], and
[t + T',1; — T, respectively, and UC'(A,z) and U*(A,z)
to evolution during the intervals [ty — T',t; + T'] and [t, —
T',t; + T']. The time parameter T’ plays the same role as T
does for the signal pulse—it is chosen such that the control
fields are effectively zero outside the intervals [¢; — T",¢; +
T'). For any [z,¢'], UF is given by

~p 1 0
v = 0 e-ide-n |-

To construct U Cl(A,z) it is convenient to introduce the
real envelope and phase functions as Q(t) = A(t)e '®1®
and transform to a reference frame that rotates with the
instantaneous frequency of the pulse, using

/\.i_ 1 0
Ro={, oo

Then the equations for o, () = a(t) and B,.(t) = B(t)e!®'®
become

o . 0 A(1)/2 o,
0 = , A3
' (m) ’ (Al(r)/z s J\g ) B
where we have introduced the instantaneous detuning per-
ceived by the atom, 6(¢) = 9,®;(r) — A. The Hamiltonian
matrix in Eq. (A3) can be diagonalized by transforming to

the reference frame of the instantaneous eigenvectors in the
standard way [29]:

q+(t) _ VT (a,(t))
q=(1) Br@®) )"

where V is given by
N cosd —sinf
V = .
sinfd  cos6

. . Al
with sinf = ——,
VR =82+ A7

AT + 82,

(A2)

R—3$
cos) = ———,
(R — 82+ A}

and R =
Then (A3) becomes
+ + + +
g Y _ (2 0)\(4q ot (4
o(5) = (o D)) rern(T)
(A4)
where the first term on the right-hand side contains the

adiabatic eigenvalues AT = %(5 + R) and the second term
describes nonadiabatic transitions due to the finite rotation
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speed of the basis:

fiey 0 0,0
o,VV = (_319 0 )
If we neglect nonadiabatic transitions, we can solve (A4) to
obtain the time-evolution operator in this frame as

~Cl erl 0
Uip = iAT
0 M

The AT depend on A through AT, as well as the precise time
evolution of A(¢) and 0, D;.

We now assume that the frequency modulation is posi-
tive, s0 8(1y — T’) < 0and 8(t; + T’) > 0. Then sin 6|,y =
0,cos@|,—r = landsin 8|, 47 = 1, cos 8|+ = 0, soin the

t+T’

where AT:/ AE@Hdr'.

n—T'

(A5)
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original reference frame we obtain
0Q ., = Rt + TVt + THOSHV @ — THR](1 — T')
0 oiAT i1 =T)
T\ _pinf i) 0 : (A6)

Anidentical construction for the second control pulse U(CA% 2
and a substitution of (A2) and (A6) into (A1) yields

[Oeanln = AT A O =T )= (1 +T )i Ay =11 =2T").
[Un,zln

— AT AT+ OO =T = D02+ T")] =i Al —~to-+3 12T —2T")
- ’

[Uaohz = [0l =0 (A7)

for the matrix elements of U(A,z) when the conditions for
adiabatic passage are fulfilled.
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