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Coherence creation in an optically thick medium by matched propagation
of a chirped-laser-pulse pair
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We consider the simultaneous propagation of a pair of Raman-resonant, frequency-modulated (chirped) laser
pulses in an optically thick medium, modeled by an ensemble of � atoms. A self-organization (“matching”) effect
is shown for the chirped-pulse pair, which leads to a quasilossless propagation. Furthermore, we demonstrate
that a well-defined coherent superposition of the atomic ground states and, correspondingly, a coherence are
robustly created in the medium that can be controlled by amplitudes of the laser pulses. The proposed scheme
can be applied to substantially increase the efficiency of the optical wave mixing processes, as well as in other
nonlinear processes where the initial preparation of a spatially extended medium in a coherent superposition state
is required.
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I. INTRODUCTION

Adiabatic control (AC) of atomic quantum states (see [1–3]
and references therein) is a powerful technique in quantum
optics that allows various applications in nonlinear optics, such
as high harmonic generation [4], multiphoton ionization [5],
nonlinear frequency conversion [6,7], and several transparency
effects [8]. The general aim of AC is to create a given
population distribution among the working levels of atomic
systems in a robust way using a limited number of laser pulses.

One important control problem is the creation of coherence
between specific states of single atoms or—allowing more
exciting applications—ensembles of atoms. It has been shown
[9] that preparing an optically thick medium of � atoms
(see Fig. 1) in the coherent superposition of their ground
states leads to numerous interesting phenomena. These include
lasing without inversion [10,11], enhanced index of refraction
of the medium [12,13], Ramsey interference [14], or enhance-
ment of magneto-optical effects [15,16].

In our present paper, we propose a method for achieving this
task by using a pair of frequency chirped (FC) laser pulses.
We anticipate that the presented method allows a relatively
precise control of the final state of the medium and is easier
to apply in certain experimental situations than other methods
known in the literature [17]. The problem of the preparation of
an extended medium naturally raises the question of whether
a lossless propagation of a pair of FC pulses is possible in the
medium and, if so, by what mechanism? In this paper, we wish
to give a detailed response to these questions.

The essence of AC is adiabatically tuning one of the
parameters of the atom-laser interaction in time, which drives
the atomic populations along the adiabatic states of the system
[18,19]. If the evolution takes place along the dark state
(population trapping), complete population control can be
achieved without excitation of the atom. This mechanism is
the basis of the stimulated Raman adiabatic passage (STIRAP)
[20–23]. In the AC schemes based on STIRAP, two (or more)
time-shifted laser pulses with constant carrier frequencies are
applied to a quantum system, resulting in adiabatic altering of
couplings between the laser fields and the atomic transitions.

FC laser pulses applied in the atom-laser interaction
represent another possibility for performing AC. In this

case, the frequency of the driving electromagnetic field(s)
is the key parameter governing the rearrangement of the
atomic population among its quantum states. Although perfect
population trapping in ground states cannot be realized when
AC is performed by FC pulses (such as in the STIRAP-
based schemes), numerous AC schemes were proposed with
negligible atomic excitation [24–27].

The above-mentioned works generally concentrate on AC
in single atoms and neglect the backaction of the atoms on
the laser fields along with other propagation effects, such
as the interaction of the laser pulses with each other. The
latter effects, however, have to be taken into account when
AC is performed in an optically thick medium [17,28–30]. In
this case, preparation of the atoms of a medium in coherent
superposition of the quantum states may significantly modify
its optical properties, leading to very interesting and important
propagation effects.

Most works in the literature deal with the propagation
of transform-limited laser pulse(s) (without modulation of
their frequency over time). In the (most known) case of
electromagnetically induced transparency (EIT) (see [31–33]
and references therein), an intense laser pulse (of constant
carrier frequency) renders the whole medium transparent for a
weak probe pulse in Raman resonance with the intense one. In
these schemes, no population redistribution occurs in the first
order.

Nearly lossless propagation was demonstrated in the
case of constant-frequency pulses having identical [34] and
complementary pulse envelopes [35] in optically thick media
consisting of � atoms. In the above-mentioned schemes,
the lossless propagation of the electromagnetic field(s) was
ensured by initially preparing the medium in a dark super-
position of the ground states. This means that no excitation
occurs in the atoms during the interaction, which significantly
reduces the backaction of the atoms on the laser field. As a
result, basically the same population-control mechanism was
established in the atoms of the extended medium as in a single
atom, even for significant propagation distances.

On the other hand, it has been shown in [36] that for a
sufficiently intense laser-pulse pair having constant frequen-
cies in Raman resonance, lossless propagation is possible in

1050-2947/2014/89(3)/033823(11) 033823-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.033823


N. SANDOR, G. DEMETER, D. DZSOTJAN, AND G. P. DJOTYAN PHYSICAL REVIEW A 89, 033823 (2014)

FIG. 1. Level scheme of the � atom. The dipole-allowed transi-
tions (between the excited state |0〉 and the lower metastable states
|1〉 and |2〉, respectively) are each coupled by a frequency-modulated
(i.e., FC) laser pulse. In this paper, we consider Raman-resonant
coupling, i.e., δ1 = δ2 = 0.

a medium of � atoms even if the initial preparation of the
atoms does not coincide with the dark state. The explanation
is that the laser pulses become distorted by the interaction
with the medium in such a way that the initial preparation of
the atoms corresponds to a dark state for the pulse pair after
propagating some distance. In this sense, the interacting laser
pulses become matched to each other through the interaction
with the atoms of the medium.

The propagation of FC pulses in an extended medium,
however, is less studied. In our earlier works ([37] and [25]), we
considered several interaction schemes including � atoms and
FC pulses. Comparing the schemes presented there, one may
conclude that the population transition process induced among
the states of the � atom depends on whether the coupling of
the two ground states are in Raman resonance. That is, it was
shown in [25] that a nearly excitation-free population transfer
may be established among the ground states with a single
FC pulse which can couple both of the transitions, provided
that there is an energy difference between them (i.e., there
is a Raman detuning between the couplings). Based on this
scheme, the possibility of the quasilossless propagation of a
single FC was shown [29].

The action of a pair of strong Raman-resonant FC pulses
on a single atom results in adiabatic excitation of the bright
component of the superposition of the ground states, leaving
intact the dark component of this superposition [37]. As a
result, a coherent superposition of the ground states is robustly
created along with excitation of the atom. This excitation,
however, is detrimental for the created coherence: One has to
transfer the population of the excited state to another ground
state to preserve the created coherence from the destructive
effect of the spontaneous decay.

In the present investigation, we show that the Raman-
resonant FC pulse pair, which would cause large excitation
in a single atom, is modified by the medium in such a way
that it no longer causes any significant excitation, and induces
a coherent redistribution of the populations among the ground
states of the atoms of the medium. It turns out that the matched
propagation of the FC pulse pair possesses an important feature
which is not typical for the matched propagation of pulses with
constant carrier frequencies. Namely, the FC pulse pair, while
propagating in a quasilossless way in the medium, prepares its
atoms in a well-defined superposition of the metastable ground
states. The created coherent superposition can be controlled
by the peak amplitudes of the interacting laser pulses. The
robust creation of (maximum) coherence between the ground

states of the atoms in an extended optically thick medium for
applications in nonlinear frequency conversion processes is an
important motivation of this investigation.

The paper is organized as follows. In Sec. II, a semiclassical
model is presented for describing the interaction of the
classical FC pulse pair with the optically thick medium
composed of � atoms. We present our results in Sec. III. We
analyze the behavior of the atomic states and the interacting
laser-pulse pair in a transformed (symmetric-antisymmetric)
basis at the boundary and inside the medium in Secs. III A and
III B, respectively, based on numerical calculations and also
by using the adiabatic approximation. We discuss our results
in the original basis in Sec. III C, comparing them with the
case of the propagation of a constant-frequency pulse pair.
Our findings are summarized in Sec. IV.

II. MATHEMATICAL MODEL

We use a semiclassical approach for studying the propaga-
tion of the FC pulses in a medium of � atoms: the internal
electronic state of the atoms is treated in the frame of quantum
mechanics, while the laser pulses are described by the classical
electric field,

�E(x,t) =
2∑

i=1

�εi[Ei(x,t)e−i(ωi t−kix) + c.c.]. (1)

The propagation of this field is given by the classical Maxwell
equations. In Eq. (1), Ei is the complex field amplitude of
the ith laser pulse, which changes slowly in time and space
compared to the frequency ωi and wave number ki (i ∈ {1,2}).
The propagation of the pulses is considered in one direction.
The central frequencies of the laser pulses are given by ωi . In
what follows, we assume that the pulses on the input boundary
of the medium have the same linear frequency modulation
(chirp), the range of which is much smaller than the transition
frequencies. This allows us to incorporate the chirp into the
slowly varying complex field amplitude Ei as a time-dependent
phase: Ei ∼ exp(iβt2), with β being referred to as the “speed
of the chirp.”

The medium in which this pair of classical FC pulses
propagates is modeled by identical, noninteracting, and mo-
tionless atoms, which are all initially prepared in one of
their internal ground states (for example, in state |2〉). We
divide the medium into small segments, inside which we
can neglect the backaction of the atoms on the electric field.
Since the dipole-allowed transitions between two metastable
states and a common excited state are quasiresonantly driven,
the atom can be described on the Hilbert space spanned by
the energy eigenstates (bare states) {|0〉,|1〉,|2〉} with λ-type
linkages (Fig. 1), where each pulse couples one transition. In
our model, the difference of the transition frequencies is small,
thus ω1 ≈ ω2 and k1 = k2 = kx hold for the central frequencies
and wave numbers of the coupling laser pulses. This coupling
scheme may be realized by an F = 1 → F ′ = 0 transition in
an atom interacting with two laser pulses having σ+ and σ−
polarizations.

The interaction of an arbitrary atom localized in the region
[x,x + δx] with the laser pulses is described in the rotating
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wave approximation (RWA) [38] by the Hamiltonian

Ĥ (x,t) = −�

2∑
k=1

[−δk|k〉〈k| + (	k(x,t)|0〉〈k| + H.c.)], (2)

where

	k(x,t) = E(x,t)d0k

�
≡ |	k|eiφk(x,t), k ∈ {1,2}, (3)

is the Rabi frequency of the kth laser pulse, with the change
of the frequency caused by the chirp included in the phase
φk (x,t). d0k = 〈0|d̂|k〉 is the matrix element (0,k) of the
dipole operator d̂, whereas δk is the detuning of the central
frequency (ωk) of the kth pulse from the transition frequency
between states |0〉 ↔ |k〉. Here we consider a case where
these “central detunings” are equal (δ1 = δ2), which we now
set to be zero for the sake of simplicity. Note that the
frequency modulation of both pulses entering the medium
follows the same time dependence at the boundary of the
medium. Therefore, at the boundary of the medium, the
differences between the pulses’ instantaneous frequencies and
the corresponding atomic transition frequencies are equal in
every time point, i.e., the pulses which enter the medium are
in “Raman resonance” with the atoms.

For later convenience, it is worth introducing ξ = x/ξ0 and
τ = (t − x/c) /τσ dimensionless, space- and retarded-time
coordinates. The time is measured in the unit of τσ , which
characterizes the duration of the pulses. For the normalization
of the space coordinates, we introduce the absorption length of
a laser pulse of constant frequency ωL in a medium consisting
of resonant two-level atoms with a density of N , which is
given by [38]

ξ0 = ε0�c

NωL |dA|2 T
, (4)

where T is the natural lifetime of the excited state and dA

is the dipole momentum of the coupled atomic transition.
Although there are two atomic transitions in the present
case, it is consistent with our previous approximations to
regard a common absorption length for both coupling pulses
by setting |d01| = |d02| = dA, ωL = (ω1 + ω2) /2, and T =
2/1 = 2/2 = 2/, where i is the longitudinal relaxation
rate from the excited state |0〉 to the metastable state |i〉,
i ∈ {1,2}.

We describe the response of the atoms for the ingoing laser
radiation inside a certain space interval by the master equation

∂τ ρ̂(ξ,τ ) = 1

i�
[Ĥ (ξ,τ ),ρ̂(ξ,τ )] − 2|0〉〈0|ρ00(ξ,τ )

+
2∑

k=1

{ρ00(ξ,τ )|k〉〈k| − [ρ0k(ξ,τ )|0〉

× 〈k| + H.c.]}(ρkl = 〈k|ρ̂|l〉), (5)

where the density matrix as a function of the space coordinate
ξ is defined by the average

ρ̂(ξ,τ ) = 1

N

N∑
i=1

ρ̂(i)(τ ). (6)

Here, N is the number of the atoms inside the space interval
[ξ,ξ + δξ ] and ρ(i) denotes the density matrix of the ith atom.

Since the change in the electromagnetic field is neglected
inside a small segment, the Hamiltonian Ĥ (ξ,τ ) which drives
the evolution of the average density operator is formally the
same as in Eq. (2).

The atoms of the medium may affect the propagating laser
pulses by means of basically two mechanisms: by spontaneous
emission from the excited state and by dipole radiation [36].
Here we put emphasis on the latter by regarding a weakly
decaying limit, where the lifetime of the excited state is
assumed to be about an order of magnitude longer than the
interaction time. The macroscopic polarization induced in the
medium by the laser fields may be written as

�P (ξ,τ ) = NTrρ̂(ξ,τ )d̂ = N

2∑
k=1

[ρ0k(ξ,τ )d0k + H.c.]. (7)

This quantity serves as a source in the Maxwell equation
which is used to describe the dynamics of the electric field.
Consistent with the RWA, one can apply the slowly varying
envelope approximation [39] in order to get a first-order
differential equation for the propagation from the second-order
wave equation. Using these approximations, one gets the
following differential equations for the Rabi frequencies of
the laser pulses [see Eq. (3)]:

∂

∂ξ
	k(ξ,τ ) = −iαρk0(ξ,τ ), k ∈ {1,2}, (8)

where α = τσ /(2T ) describes the strength of the coupling
between the medium and the lasers.

Equations (5) and (8) together form a system of partial
differential equations, which describes the coupled laser-atom
system in the extended medium. In order to study the behavior
of the propagating FC pulses and the atomic transitions
induced by the laser field, we solve this system numerically.
We use the following boundary conditions of two Gaussian,
linearly chirped pulses entering the medium at ξ = 0 [see
Fig. 2(a)]:[

	1(ξ = 0,τ )

	2(ξ = 0,τ )

]
=

[
ϑ1

ϑ2

]
e−τ 2( 1

2 +iβ), ϑk ∈ R ∀k ∈ {1,2} ,

(9a)

ρ̂(ξ,τ → −∞) = |2〉〈2|, (9b)

(a) (b)

FIG. 2. (Color online) Boundary conditions given in (a) the
original atomic basis and (b) the symmetric-antisymmetric basis. All
of the atoms in the medium are initially prepared in the metastable
state |2〉, which corresponds to a coherent superposition in the
symmetric-antisymmetric basis given by the peak amplitudes ϑ1 and
ϑ2 of the ingoing laser pulses.
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where ϑ1 and ϑ2 are the peak amplitudes of the laser pulses
at the entrance of the medium, and β is referred to as the
speed of chirp. The parameters {ϑ1,ϑ2,β,τσ } in what follows
are chosen in such a way that the conditions of adiabaticity [1]
are fulfilled.

A. Symmetric-antisymmetric basis

For further investigation of the population dynamics in
arbitrary segments of the medium, let us introduce a basis
transformation on the atomic states and the electric-field
modes adapted to the boundary conditions given in Eq. (9).
This transformation leads us to the following symmetric-
antisymmetric basis and effective Rabi frequencies:

{|0〉,|s〉,|a〉} =
{
|0〉,ϑ1|1〉 + ϑ2|2〉

ϑ
,
ϑ2|1〉 − ϑ1|2〉

ϑ

}
, (10a)

[
	s

	a

]
=

[
(ϑ1	1 + ϑ2	2)/ϑ

(ϑ2	1 − ϑ1	2)/ϑ

]
, (10b)

where ϑ =
√

ϑ2
1 + ϑ2

2 , and 	s and 	a give the couplings
between the excited state |0〉 and the symmetric and anti-
symmetric superpositional states |s〉 and |a〉, respectively. The
Hamiltonian in this new basis becomes

Ĥsa(ξ,τ ) = −�

∑
j∈s,a

[	j (ξ,τ )|0〉〈j | + H.c.]. (11)

The dynamics of the effective Rabi frequencies formally obeys
the same differential equation as the original ones:

∂ξ	j = −iαρj0, j ∈ {s,a}, ρj0 = 〈j |ρ̂|0〉, (12)

where ϑk ∈ R ∀k ∈ {1,2} was utilized. Transforming the
boundary conditions according to Eq. (10b) yields a set
of boundary conditions which is more convenient for our
purposes, as it only contains one ingoing laser mode [see
Fig. 2(b)]:[

	s(ξ = 0,τ )

	a(ξ = 0,τ )

]
=

[
ϑ

0

]
e−τ 2( 1

2 +iβ), (13a)

ρ̂(ξ,τ → −∞) = 1

ϑ2
(ϑ2|s〉 − ϑ1|a〉)(ϑ2〈s| − ϑ1〈a|).

(13b)

B. Rotating basis for adiabatic approximation

In the case of adiabatic evolution, the dynamics of the
system can be well described by the analysis of the eigenstates
of the interaction Hamiltonian. This is based on the fact that
the evolution is slow (compared to the characteristic frequency
defined by the inverse of the difference of the eigenenergies),
thus the system follows the eigenstate in which it was initially
prepared in [18,19]. We can only apply this approximation if
the interaction Hamiltonian contains matrix elements that vary
slowly in time (compared to the time scale of the interaction).
For applying this approximation, it is important to use a basis in
which the Hamiltonian of the system contains slowly varying
matrix elements (in the scale of the interaction time).

We use an interaction picture for describing the atomic
dynamics in each segment, applying the following rotating

basis vectors:

{|0〉,|s̃〉,|ã〉} ≡ {|0〉,|s〉e−iφs (ξ,τ ),|a〉e−iφa (ξ,τ )}. (14)

As a result, the time evolution is described in each segment by
the following—slowly varying—Hamiltonian:

Ĥsa(ξ,τ ) = −�

∑
j∈{s,a}

[∂τφj (ξ,τ )|j̃〉〈j̃ |

+ (|	j (ξ,τ )||0〉〈j̃ | + H.c.)], (15)

where φj (ξ,τ ) , j ∈ {s,a}, is the phase of the Rabi frequency
	j (ξ,τ ) , j ∈ {s,a} [cf. Eq. (3)]. Note that this transformation
does not change the absolute values of the coefficients in the
system’s state vector.

III. PROPAGATION OF THE FC PULSE PAIR
IN THE OPTICALLY THICK MEDIUM

In order to describe the collective behavior of the atom-laser
system, we solve the system of differential equations (5)
and (8) numerically. As already mentioned, the propagation
equations for the Rabi frequencies are the same in both the
original atomic and the transformed symmetric-antisymmetric
basis except for the boundary conditions. Thus, it is easy
to analyze the system in both coordinate systems. This is
beneficial because the processes can be understood better in the
transformed system, whereas it is important to have the results
in the atomic basis where a possible measurement could be
conducted.

The ingoing coupling fields that we consider are relatively
strong, having a few 10π for pulse area of the Rabi frequencies
	1 and 	2. The frequency modulation is chosen so that the
pulses drive an adiabatic population transfer at the boundary
of the medium, with a speed of chirp of β = 7[1/τ 2

σ ]. We
would like to analyze a coherent population-transfer process
in the medium, so the ingoing fields are considered to be short
compared to the lifetime of the excited state T|0〉 = 50τσ . For
example, for a Rb87 atom having a lifetime of τ = 26.235 ns,
the pulse length should be approximately 2 ns, which means
that a linear chirp speed of 28 GHz/ns and maximum Rabi
frequencies in the order of 30 GHz would be needed.

A. Population dynamics induced by the FC pulse pair
at the boundary of the medium (ξ = 0)

We first describe the interaction of the atoms with the
Raman-resonant FC pulse pair at the boundary of the medium
in the symmetric-antisymmetric basis. (The results are also
valid approximately for an optically dilute medium.) It is easy
to see from Eqs. (15) and (13) that the antisymmetric state |ã〉
is an eigenstate of the Hamiltonian Ĥsa (ξ = 0,τ ) since the
coupling 	a is 0 for ξ = 0. The other metastable state |s̃〉 and
the excited state |0〉 form a two-state atom coupled by a FC
pulse which drives a rapid adiabatic passage from state |s̃〉 to
the excited state |0〉, [2] (see Fig. 3). Since the antisymmetric
state is decoupled from the excited state, it represents a dark
state for the Raman-resonant FC pulses.

Similarly to the original case of constant-frequency
matched pulses propagating in the medium of � atoms [36,40],
the initial preparation of the atoms given in Eq. (13) does
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FIG. 3. (Color online) Eigenvalues of the Hamiltonian Ĥsa

[Eq. (15)], which describes the atom-laser system at the boundary
of the medium (ξ = 0). The eigenvalues belonging to the diabatic
states are plotted with dashed lines which correspond to states |0〉,
|s̃〉, and |ã〉, respectively. The eigenvalues of the adiabatic states are
plotted with solid lines. The antisymmetric state |ã〉 is an eigenstate
of the Hamiltonian Ĥsa with an eigenvalue of λ1 = 0. The eigenstate
belonging to λ2 evolves from the excited state |0〉 to the symmetric
state |s̃〉, while the other eigenstate belonging to λ3 follows the inverse
path (|s̃〉 → |0〉).

not coincide with the “dark” state. Based on the above
considerations in the frame of the adiabatic approximation,
the atoms at the boundary are expected to be transferred
from a superposition of the metastable states |s̃〉 and |ã〉 to
a superposition of states |s̃〉 and the excited state |0〉. This
result is in perfect agreement with the numerical solution of
the master Eq. (5) at ξ = 0, which is depicted in Fig. 4.

In order to understand the laser propagation, it is important
to analyze the time evolution of the coherences ρ0a (ξ = 0,τ )
and ρ0s (ξ = 0,τ ). We can easily understand the behavior of
the absolute values of the coherences [see Fig. 5(a)] from
the predictions of the adiabatic approximation. Since there
is a complete population transfer between states |s〉 and |0〉,
the absolute value of the coherence between them is 0 in the
beginning and at the end of the interaction, and only differs
from zero during the population transfer with a maximum

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. (Color online) Dynamics of the atomic populations in
the symmetric-antisymmetric basis at the boundary of the medium.
The parameters used for the calculation are ϑ1 = 15 [1/τσ ],
ϑ2 = 13.5 [1/τσ ], and β = 7[1/τ 2

σ ].

0.0

0.1

0.2

0.3

0.4

0.5

(a)

(b)

FIG. 5. (Color online) Time evolution of (a) the absolute value
and (b) the phase of the atomic coherences at the boundary of the
medium. For the absolute values of the coherences, the solid lines
show the result of the numerical solution of the master equation for
ξ = 0 using the same parameters that are given in Fig. 4. In the case of
the phase of the coherences, the dots represent the result of the numer-
ical solution, and the solid lines are the fitted functions: The function
β0 + β1τ

2 is fitted on the values of ρ0s(ξ = 0,τ ) and on ρ0a(ξ = 0,

τ < −1.5τσ ) with the fitting parameters of {βs
1 = −6.99,βs

0 = 0.04}
and {βa

1 = −7.01,βa
0 = −34.35}, with βs

0 − βa
0 = �φ = 10π +

0.95π . A different function determines the time evolution of ρ0a(ξ =
0,τ > −1.5τσ ): the function α0 + α1 exp(−π exp[α2τ ]/2) is fitted
on the values, with the parameters {αa0

0 = −0.78, αa0
1 = −80.12,

αa0
2 = 0.76}.

value of ϑ2
2 /(2ϑ2). The time evolution of |ρ0a| is determined

by the change of the population of the excited state |0〉 in
time, since the population of state |a〉 does not change, as
it is a dark eigenstate of the dressed atoms at the boundary
of the medium. In parallel with the excitation of the atom,
a coherence ρ0a = ϑ1ϑ2/ϑ

2 is established as a result of the
interaction.

The time evolution of the phase of ρ0s is determined
by the phase of the coupling pulse 	s , which is set to be
linearly chirped. It is clearly seen from Fig. 5(b) that the
quadratic function β0 + β1τ

2 accurately fits the numerically
calculated results of arg(ρ0s). The behavior of the phase of
the coherence between the excited and the antisymmetric
ground state ρ0a is more complicated. Its time function starts
as the same quadratic one as for ρ0s , but the evolution changes
approximately at τ = −1.5τσ , and it tends to a constant value
as α0 + α1 exp(−π exp[α2τ ]/2).
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B. Interaction of the propagating pulse pair and the atom
inside the medium (ξ > ξ0)

1. Laser field inside the medium

Let us now consider the time and space evolution of the
effective Rabi frequencies 	s and 	a . In the symmetric-
antisymmetric basis, only one, strong-coupling field (	s)
enters the medium of � atoms, which are prepared in a
superposition of states |a〉 and |s〉 [cf. Eq. (13)]. In the
course of the coherent transition process between the atomic
states induced by 	s , a coherence is established between
the antisymmetric and the excited state of the atoms close
to the boundary, with a time function of its phase described in
the previous section (cf. Fig. 5). This coherence generates the
laser field 	a .

The time evolution of the absolute values and phases of the
effective Rabi frequencies 	a and 	s at a given location inside
the medium (ξ = 40ξ0) is presented in Fig. 6. The coupling
field 	s is only slightly modified during the propagation. The
pulse envelope remains Gaussian with a good approximation
after a propagation of multiple times of the absorption length
ξ0. The change in the envelope of the effective Rabi frequency
	s is presented in the inset of Fig. 6(a). It can be observed that
after 40ξ0 of propagation, the distortion from the boundary
condition is less than 4% of the pulse area. The phase function
with respect to time inside the medium also has the same
character as at the boundary: the same quadratic function β0 +
β1τ

2 fits the data in Fig. 6(a), so the frequency of this effective
field changes linearly in time. Thus, the ingoing laser mode
	s preserves its initial properties during the propagation in the
medium, with only a small loss in the pulse envelope.

However, the loss in the ingoing laser mode 	s allows
for generating another mode 	a . The numerical calculations
[see Fig. 6(b)] show that the character of the phase function
of 	a (ξ,τ ) over time is at every location very similar to
arg[ρ0a (ξ = 0,τ )], that is, the phase of the coherence between
the symmetric and excited state over time. To be more specific,
the same curve can be fit onto the numerical values of 	a (ξ,τ )
∀ξ as in the case of the coherence ρ0a at the boundary, with
almost the same fitting parameters. The only differences are
a shift of −3π/2 in the constant parameters α0 and β0 and a
phase jump of π at every retarded-time point where 	a = 0.

The behavior of the phase functions of 	s and 	a is
understandable if we look at the coherences between the
excited state and the antisymmetric and symmetric states—
ρ0a (ξ,τ ) and ρ0s (ξ,τ )—for the atoms at a typical inner
location of the medium. It can be seen in Fig. 7 that although
the absolute values of the coherences are smaller for atoms
at ξ � ξ0, the functions of their phases over time remain the
same as they were at the boundary apart from phase jumps of
π in the case of ρ0a (ξ,τ ). Since the macroscopic polarizations
of the medium for the laser modes 	a and 	s are proportional
to ρ0a and ρ0s , respectively, the result for the phases of the
laser modes is plausible.

The phase jumps of π in the phase function of 	a (ξ � ξ0)
and also of ρ0a (ξ � ξ0) occur when the quantities change
there signs from positive to negative, or the other way around.
This oscillatory behavior of the antisymmetric mode 	a and
the coherence between the excited state and the antisymmetric
state |a〉 can be understood as follows. The time evolution of
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FIG. 6. (Color online) Absolute values and phases of the effec-
tive Rabi frequencies (a) 	s and (b) 	a as a function of the retarded
time at a fixed space point inside the medium (ξ = 40ξ0). Inset:
Magnification of the plot showing the time evolution of the phases
between τ = −1 and τ = 4. The parameters used for the calculation
are the same as given in Fig. 4. The solid lines in the case of the
absolute values and the dots in the case of the phases are the results of
the numerical calculation. The same function—solid lines connecting
the dots—fits on the calculations as the one that describes the phase
of ρ0a (ξ = 0,τ ) (see Fig. 5), apart from “jumps” of π/2 which
correspond to sign changes in the Rabi frequencies from positive
to negative, or the other way around.

the phase of the antisymmetric mode is close to constant for
approximately τ > 1.5τσ . This means that the excited and the
antisymmetric ground states |0〉 and |a〉 are coupled by a train
of small resonant pulses having nearly constant frequency, with
a phase difference of π between the adjoining pulses. The pulse
areas of these small pulses are much less than π , thus, as a result
of the interaction with one pulse, a small part of a Rabi cycle
proceeds between states |0〉 and |a〉. After this interaction, the
process is reversed because of the next pulse, which has an
opposite sign (π phase shift). Once this oscillation appears in
the coherence ρ0a , it affects the formation of the field 	a , and
that is why the further this pulse propagates, the more small
pulses appear (see Fig. 8).

To summarize, we found that—along with the almost-
unchanged chirped 	s symmetric mode—an antisymmetric
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FIG. 7. (Color online) Time evolution of the absolute values and
phases of the atomic coherences (a) ρ0s and (b) ρ0a inside the
medium (ξ = 40ξ0). Inset: Magnification of the plot showing the
time evolution of the phases between τ = −1 and τ = 4. The solid
lines in the case of the absolute values and the dots in the case of
the phases are the results of the numerical calculation with the same
parameters as in Fig. 4. The solid lines that connect the dots are
functions fitted on the points. The same fitting functions were used
as in the case of the coherences at the boundary (see Fig. 5) and the
fitting parameters also proved to be the same. The only exception is
β0, which needs to be shifted by π at the point where there is a jump
in the data.

FIG. 8. (Color online) Absolute value of the effective Rabi fre-
quency 	a as a function of the retarded-time coordinate and the
propagation distance. The parameters used for the calculation are the
same as in Fig. 4.
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FIG. 9. (Color online) Eigenvalues of the Hamiltonian Ĥsa

[Eq. (15)], which describes the atom-laser system far from the
boundary of the medium (ξ = 40ξ0). The notations are the same
as in Fig. 3.

mode 	a appears which is linearly chirped at the beginning
and has a constant frequency at the end of the pulse.

2. The time evolution of the atoms’ state inside the medium

Let us analyze the time evolution of the state of the atoms
caused by the interaction with the above-described two modes
	s and 	a at a given location inside the medium. First
we use the adiabatic approximation. The eigenvalues of the
Hamiltonian Hsa (ξ,τ ) defined in Eq. (15) are presented in
Fig. 9.

There is an obvious difference between this energy spec-
trum and the one of the interaction Hamiltonian characteristic
to the atoms in the boundary (cf. Fig. 3). Namely, the
eigenenergy of the diabatic state |a〉 has the constant value of
zero and since |a〉 is completely uncoupled at the boundary, i.e.,
	a (ξ = 0,τ ) = 0, |a〉 is an adiabatic eigenstate as well, with a
zero eigenvalue constant in time. In contrast, for atoms at inner
locations ξ � ξ0 of the medium, 	a (ξ � ξ0,τ ) is, though
small, nonzero and, as discussed in the previous section, has a
nontrivial phase function over time. Since the time derivative of
this phase is incorporated into the Hamiltonian Ĥsa (ξ � ξ0,τ )
in the interaction picture defined by the rotating basis (14),
the diabatic state |a〉 here has a nontrivial time-dependent
eigenvalue.

At the beginning of the interaction, the atoms are prepared in
the superposition of the antisymmetric and symmetric diabatic
states |a〉 and |s〉. As can be seen in Fig. 9, the eigenvalues of
these adiabatic states correspond to the adiabatic eigenvalues
λ1 and λ3. Similar to the case at the boundary, the population,
which was initially in state |a〉, remains there since λ1 perfectly
overlaps the diabatic energy of the antisymmetric state. On the
other hand, the adiabatic eigenvalue λ3 moves further from the
diabatic energy of state |s〉 and remains close to the energy
of |a〉. Based on the adiabatic theorem [18,19], we expect the
population that was initially in the symmetric state |s〉 to be
transferred into the antisymmetric state |a〉.

We also have to notice that these eigenstates—λ1 and λ3—
move close to the diabatic energy of the excited state |0〉 at the
end of the interaction, for τ > 1.5τσ . We do not expect a large
excitation of the atoms, however. Comparing Figs. 9 and 6(b),
one realizes that the coupling 	a is very small for τ > 1.5τσ .
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FIG. 10. (Color online) Dynamics of the populations of the
atomic states inside the medium (ξ = 40ξ0) in the symmetric-
antisymmetric basis. The parameters used for the calculation are the
same as given in Fig. 4.

The results of our numerical calculations—presented in
Fig. 10—fit perfectly with the considerations in the adiabatic
picture. That is, the majority of the population is transferred
into the antisymmetric state |a〉 and the excitation of the atom
is drastically reduced (it does not exceed 5% during the whole
interaction). Thus, although complete population trapping
is not established as in the case of the constant-frequency
matched pulses [36], a quasidark state is created by the two
modes 	s and 	a .

It is easy to see how the population-control process
induced by the laser-pulse pair changes in the course of their
propagation in the medium by looking at Fig. 11. This figure
shows the populations of the states |a〉, |s〉 and |a〉 after the
atoms’ interaction with the laser pulses 	s and 	a . At the
boundary and within one absorption length ξ0, a significant
part of the population is transferred into the excited state.
After a few absorption lengths, the excitation of the atom
decreases, and although it shows an oscillatory behavior, it is
always below 5% for atoms that are located at space positions
ξ > 6ξ0.
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FIG. 11. (Color online) Final populations of the atoms at differ-
ent space points ξ in the symmetric-antisymmetric basis. After a
few absorption length ξ0 of propagation, the pulse pair transfers the
majority of the atomic population to the antisymmetric superposition
of the ground states. The same parameters were used for the
calculation as in Fig. 4.

We would like to point out here that the self-organization
mechanism of the chirped-pulse pair is based on a population-
transfer mechanism inside the medium that is substantially
different from other cases found in the literature (see, e.g.,
[17,36] with references therein) dealing with propagation of
constant-frequency pulses. Both of the latter are based on the
fractional-STIRAP mechanism, where the final distribution
of the population among the ground states is determined by
the intensities of trailing edges of laser pulses [17]. In the
case of the matched propagation of two constant-frequency
pulses [36,40,41], the originally simultaneous laser pulses
become shifted in time with respect to each other, allowing
for a lossless propagation. Since oscillations can occur on the
pulses’ envelope, the final state can be significantly different
for atoms at different locations. In [17], this problem is
overcome by using adiabatons as the boundary condition, but
it has the disadvantage of the need for precise control of the
ingoing pulse shape.

In our case, however, the adiabatic transfer occurs due
to a different mechanism. This mechanism is based on the
special time function of the antisymmetric mode 	a , which
is generated by the medium. The adiabatic transfer results
in the complete emptying of the symmetric state |s〉 and
in the transfer of the majority of the population into the
antisymmetric state |a〉.

C. Description of the system in the original basis

From the point of view of possible applications, it is impor-
tant to “translate” our results in the symmetric-antisymmetric
basis and with the effective couplings 	a and 	s into the orig-
inal atomic basis. Figure 12 presents the population-transfer
process induced by a pair of FC and constant-frequency pulses,
respectively, in the original atomic basis at the boundary and
at two given propagation lengths inside the medium (ξ = 40ξ0

and ξ = 60ξ0). The dynamics of the populations induced by
the FC [Fig. 12(a)] and the constant-frequency pulse pair
shows a conspicuous difference. This pronounced difference
demonstrates well the different underlying physics, explained
in detail in Sec. III B 2 by using the symmetric-antisymmetric
basis.

On one hand, at the boundary, the Raman-resonant FC
pulse pair induces a coherent population transfer, which
distributes the population initially prepared in state |2〉 into a
superposition of the three atomic states. The population of the
excited state as a result of the interaction with the pulse pair is
ρ00 = ϑ2

2 /ϑ2, coinciding with the population of state |s〉 at the
beginning of the interaction, while the population that remains
in the ground states after the population transition process
is ρ11 = (ϑ2

1 ϑ2
2 )/ϑ2 and ρ22 = ϑ4

1 /ϑ2, respectively (which
coincides with the initial population of the antisymmetric
state |a〉).

Note that the requirement of the Raman resonance between
the couplings plays an important role in the whole process un-
der consideration. That is, a substantially different population
evolution is induced by Raman-detuned couplings of the two
allowed transitions [25], which leads to population transfer
between the ground states, along with negligible excitation of
the atom. This mechanism is rather similar for both a single
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FIG. 12. (Color online) Evolution of the populations as a func-
tion of the retarded time τ induced by a pair of (a) chirped (FC)
and (b) constant-frequency pulses at the boundary and at two typical
propagation lengths inside the medium (ξ = 40ξ0 and ξ = 60ξ0).
The parameters used for the numerical calculations are the same as
in Fig. 4.
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FIG. 13. (Color online) Final populations of the atoms at differ-
ent space points ξ in the case of a (a) frequency chirped and (b)
constant-frequency pulse pair. Inset: Final populations close to the
boundary (ξ � 6ξ0) for a FC pulse pair. After a few absorption
length ξ0 of propagation, the FC pulse pair transfers the majority
of the atomic population to the antisymmetric superposition of the
ground states, while in the case of the matched pulses having constant
frequency, the final state strongly varies with ξ . The parameters
used for the calculations are ϑ1 = 15 [1/τσ ], ϑ2 = 13.5[1/τσ ],
β = 7[1/τ 2

σ ], and β = 0, respectively.

atom and the atoms in an optically thick medium, taking into
account propagation of the interacting laser pulses.

In contrast, in the present case of Raman-resonant coupling,
both the pulse envelopes and the time function of the phases
of the pulses are modified by the interaction with the medium
after a short propagation length. The modification takes place
in such a way that instead of exciting the atom, the pulses drive
the main part of the population into the (ϑ2|1〉 − ϑ1|2〉) /ϑ

superposition of the ground states (see Fig. 13).
On the other hand, the constant-frequency pulses induce a

Rabi oscillation between the excited state and the superposition
of states |1〉 and |2〉, which corresponds to the antisymmetric
state |a〉. Similarly to the FC case, the constant-frequency
pulses become “matched” [36] (cf. Sec. III B 2), that is, the ex-
citation of the atoms is drastically reduced inside the medium.

Note that neither in the FC nor in the constant-frequency
case is all the population transferred to the antisymmetric
superposition. In the case of the FC pulse pair, it is the excited
state which is slightly populated, but in the weakly decay-
ing regime under consideration, this does not significantly
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disturb the preparation of the medium into a well-defined
superposition state controlled by the peak Rabi frequencies
of the ingoing pulses, as shown in Fig. 13(a). Figure 13(b)
demonstrates the advantage of using FC pulses. Since the
matched pulses having constant frequencies transfer different
(though small) amounts of population into the symmetric
superposition |s〉 in atoms at different locations ξ , the induced
population distribution among the atomic states changes
significantly as a function of ξ [see Figs. 12(b) and 13(b)].
We would like to emphasize that the difference in the state of
the medium created by the chirped and the constant-frequency
pulse pair is due to the different underlying physics, explained
in detail in Sec. III B 2.

The Rabi frequencies can be expressed by the symmetric
and antisymmetric Rabi frequencies as

	1 = ϑ1

ϑ
	s + ϑ2

ϑ
	a, (16a)

	2 = ϑ2

ϑ
	s − ϑ1

ϑ
	a. (16b)

As the pulses propagate in the medium, energy is transferred
from 	2 (which couples the transition where the atoms are
prepared) to 	1. Since 	a is one order of magnitude weaker
than 	s , even after propagation length of many times ξ0 (cf.
Fig. 6), the distortion is small. In this sense, it can be stated that
the FC pulse pair propagates quasitransparently and that it can
prepare a well-defined coherent superposition of the ground
states in an extended medium of relatively large optical depth
(see Fig. 14).

IV. SUMMARY

We have analyzed the propagation of a pair of Raman-
resonant, linearly frequency-modulated strong laser pulses
in an optically thick medium, which is modeled as a mo-
tionless and noninteracting ensemble of � atoms. We have
demonstrated that quasilossless propagation of FC pulses is
possible not only when the medium is initially prepared in a
quasidark state [29], but through a matching effect between
the two pulses. Namely, although the Raman-resonant pulse
pair causes a significant excitation in the atoms close to
the boundary of the medium, the excitation of the atoms
becomes negligible in the medium at larger propagation length.
Excitation of the atoms near the boundary of the medium,
however, plays an important role in the generation of a
macroscopic polarization, which interaction with the FC pulses
results in the matched quasilossless propagation of the pulses
in the optically thick medium.

By analyzing the dressed states of the atoms, we have
demonstrated that the FC pulse pair induces a population-
transfer mechanism substantially different from the transfer
process typical for the matched pulses having constant carrier
frequency. The FC pulse pair, in the course of its propagation,
transfers the majority of the atoms of the medium into
approximately the same coherent superposition of their ground
states. In contrast, the population distribution among the
ground states induced by the constant-frequency pulse pair
may change significantly at different locations in the medium.

We have shown that the composition of the coherent
superposition, established by the propagating FC pulse pair,
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FIG. 14. (Color online) (a) Envelope functions of the pulses at
the boundary (dashed lines) and at ξ = 40ξ0 (solid lines). (b) The
phases of the Rabi frequencies as a function of the retarded time τ at
the boundary (dashed lines) and inside the medium (solid lines). The
same parameters were used for the numerical calculation as given in
the caption of Fig. 4.

depends on the peak amplitudes of these laser pulses at
the boundary of the medium. Therefore, the magnitude of
the coherence created by the interaction may be tuned by
parameters which are easily controllable experimentally.

The obtained results, especially those concerning the robust
creation of coherence between atomic metastable (ground)
states in a spatially extended, optically thick medium, may find
important applications in schemes of frequency conversion
through nonlinear optical mixing processes, as well as in
other nonlinear processes where the initial preparation of an
extended medium in a coherent superposition state is needed
[9–16].

Another possible application of the process may be in the
realm of quantum communication, where chirped pulses have
been proven useful in photon-echo-based quantum memories
[42]. For this direction of usage, the analysis of the propagation
mechanism in the presence of inhomogeneous broadening is
needed, which we will be the subject of our next paper.
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