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Coherence rephasing combined with spin-wave storage using chirped control pulses
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Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical
coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped
control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level � systems. The
pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created
by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission
when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the
medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate
that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It
integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the
atomic coherences.

DOI: 10.1103/PhysRevA.89.063806 PACS number(s): 42.50.Gy, 03.67.Hk, 42.50.Md, 42.50.Ex

I. INTRODUCTION

Constructing optical quantum memories is of paramount
importance for several applications in optical quantum in-
formation processing [1–3], e.g., for building quantum re-
peaters [4,5], or for linear optical quantum computing [6,7].
It is thus not surprising that devising and building such
memories, devices with the capability to store and faithfully
retrieve the quantum information contained in weak (few- or
single-photon) light pulses, is currently a very lively field
of research. A wide class of potential memory schemes
use an inhomogeneously broadened atomic ensemble as a
storage medium. The information carried by the amplitude
and phase of the signal is mapped to atomic coherences as it is
absorbed. These coherences promptly dephase, so a coherent
optical response of the ensemble is prevented. However, if the
dephased coherences can be rephased at a later time, an echo
of the signal may be emitted—optical quantum information
can be retrieved.

Numerous schemes of varying complexity have been
proposed and demonstrated for rephasing the atomic co-
herences of the storage medium. For example, controlled
reversible inhomogeneous broadening (CRIB) [2,8–10] and
gradient echo memory (GEM) [11,12] schemes operate by
broadening an initially narrow absorption line artificially with
an inhomogeneous magnetic or electric field. Reversing the
field also reverses the phase evolution of atomic coherences,
so dephasing can be reversed. Atomic frequency combs (AFC)
[13,14] involve preparing an absorption feature in the form
of narrow, equidistant peaks. Large bandwidth signals are
absorbed by atoms in multiple peaks, which first dephase, but
later rephase spontaneously due to the discrete nature of the
frequencies. To extend storage times and achieve on-demand
retrieval, optical coherences in AFCs can be transferred to
long-lived spin coherences between metastable ground states
using strong control pulses [15,16]. These schemes involve a
laborious preparation of the storage medium prior to signal
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absorption, but were demonstrated to function even at the
single-photon level [17–20].

An earlier proposal [21] to store single-photon light pulses
in inhomogeneously broadened ensembles was based on clas-
sical photon echos [22,23], which rely on strong control pulses
for coherence rephasing. The simplest schemes of this type
were shown to suffer from two major difficulties. The first one
is noise from the inverted medium at the time of echo emission,
which is incompatible with quantum information retrieval
[24,25]. The second one is the distortion of short, intense π

pulses—which are traditionally used as control pulses—while
propagating in the optically dense medium [24,26]. The first
one can be remedied by silencing the primary echo that would
be emitted after the first control pulse and employing a second
one to invert the medium again. The coherences can then be
rephased a second time and a secondary echo will be emitted
from an uninverted medium. One protocol, termed revival
of silenced echo (ROSE) [27], can be realized by choosing
the propagation direction of the control pulses such that the
spatial modulation of the rephased coherences does not fulfill
the phase-matching condition after the first pulse. The second
flaw can be remedied by using frequency-chirped pulses that
drive adiabatic passage (AP) between the atomic states as
control pulses. With these improvements, traditional photon
echos are compatible with few-photon signal storage [28] and
are functional directly on telecom wavelengths [29].

Adiabatic passage driven by chirped pulses has been applied
in a wide variety of fields for decades now [30,31]. Quite re-
cently, AP was also employed successfully in various quantum
memory applications, even though its use in such schemes
is a somewhat subtle affair. Contrary to most applications
of AP where only a robust population transfer is required,
in quantum memory schemes the phase that the AP process
imprints onto the atomic coherences is also very important.
While manipulating the atomic populations, the overall phase
associated with the process must also be essentially constant
across the whole ensemble. One can show, however, that when
two consecutive chirped pulses with identical amplitude and
phase dependence are used to invert an ensemble of two-level
atoms twice, the phases associated with each of the two AP
processes cancel such that the overall phase will be the same for
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all atoms [16,27,32]. For this reason, AP by two chirped pulses
can be used for implementing spin-wave storage in AFC mem-
ories [16], for spin-coherence rephasing in EIT based quantum
memories [33,34], and for optical coherence rephasing to
implement the ROSE scheme in two-level atoms [27–29].

The first advantage of AP in these schemes is, as in almost
all other applications, that the precise parameters of the control
pulses are not important; AP is robust with respect to parameter
changes. The second one is that coherence rephasing can be
realized with much smaller peak intensities than when short
π pulses are used. This is especially important in solid-state
media where the damage threshold of the crystal must not
be exceeded. The third advantage of AP is its ability to
function in optically dense ensembles. Population transfer and
coherence rephasing induced by short π pulses are very fragile
in an optically dense medium, because the control pulses
are strongly distorted [24,26,35]. Population transfer and
coherence rephasing induced by AP, on the other hand, is much
more resistant to pulse distortion during propagation [35,36].
This latter is not at all trivial, because the two successive
control pulses are distorted differently—one is absorbed by
the medium, while the other one, propagating in the inverted
medium, is amplified.

In this paper we consider the interaction between a series of
chirped pulses and an inhomogeneously broadened, optically
dense ensemble of three-level � systems. We show that a
chirped pulse that interacts with both optical transitions of the
system can realize an adiabatic rotation of the quantum states
that results in a cyclic permutation of the atomic populations.
Using three consecutive pulses, it is possible to regain the
initial populations, and, at the same time, to rephase any
optical coherences in the ensemble created by a signal prior
to the control pulses. During one interval between the pulses,
the information stored in optical coherences initially reside in
spin coherences between the two lower levels. This sequence
of control pulses thus integrates conveniently long-time spin-
wave storage into the ROSE [27] protocol using control pulses
from a single source. We investigate various aspects of the
interaction relevant to coherence rephasing for photon-echo
quantum memory applications. We consider the effect of the
spectral width of the atomic ensemble relative to the full
bandwidth of the control pulses. We discuss how echo emission
during a possible partial rephasing while the ensemble is
inverted can be suppressed by spatial phase mismatching as
in the original ROSE scheme. Furthermore, we consider the
question of control pulse propagation in the ensemble and
identify the conditions under which the present scheme can
rephase coherences in an optically dense sample. Finally, we
discuss some constraints that the energy-level spacings of a
material used for the realization of the scheme must fulfill and
mention a specific example that does so.

II. PERMUTATION OF ATOMIC POPULATIONS
WITH A CHIRPED PULSE

First, we study the effect of a frequency-chirped laser pulse
on a single atom. It has three relevant energy eigenstates
in a � configuration (Fig. 1); the frequency of the |1〉 ↔
|2〉 transition is ω12 = ω0 + �, offset by � from the line
center ω0 of the inhomogeneously broadened ensemble. We
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FIG. 1. Level scheme of the atomic system. The frequency ω12

of the |1〉 ↔ |2〉 transition is offset by � from the inhomogeneously
broadened line center ω0. We assume that ωR > 0 is the same for
each atom of the ensemble.

assume that there is no broadening with respect to ωR

and that decoherence effects can be neglected. The atomic
Hamiltonian in a frame rotating with ω0 becomes Ĥa =
��|2〉〈2| + �ωR|3〉〈3|. The pulse, polarized along �e, interacts
with both dipole allowed transitions, d12 = 〈1| �d�e|2〉,d32 =
〈3| �d�e|2〉 ∈ R—the matrix elements are taken to be real, but
not necessarily equal. We describe the atomic state with three
probability amplitudes as |ψ〉 = a|1〉 + b|2〉 + c|3〉 and, using
the usual dipole interaction Hamiltonian and the rotating-wave
approximation, seek to derive the time evolution operator that
propagates them from t = t1 − T ′ just before the pulse to
t = t1 + T ′ just after.

Writing ε(t,�r) = E(t,�r)e−iω0t+i�k·�r , we can (locally) de-
compose the slowly varying complex field envelope of the
pulse at the atom’s location E(t,�r) into a real amplitude and
phase as A(t)e−i�(t) = d12E(t,�r)/�. Transforming to ar (t) =
a(t), br (t) = b(t)ei�(t), and cr (t) = c(t), and neglecting any
decoherence, the relevant equation of motion will be

∂t

⎛
⎝ar

br

cr

⎞
⎠ = i

2

⎛
⎝ 0 A 0
A 2δ DA
0 DA −2ωR

⎞
⎠

⎛
⎝ar

br

cr

⎞
⎠ , (1)

where we have introduced D = d32/d12 and δ(t) = ∂t�(t) −
�, the instantaneous detuning perceived by the atom. If A(t)
and δ(t) change sufficiently slowly, this equation can be
solved by transforming to the reference frame of the adiabatic
eigenstates at t1 − T ′, neglecting any nonadiabatic transitions
between these eigenstates and transforming back at t1 + T ′.

The eigenvalue problem of Eq. (1) has been discussed at
length in numerous papers, most notably in the context of stim-
ulated Raman adiabatic passage (STIRAP) [37–39]. Here we
will simply summarize the relevant results; detailed formulas
can be found, for example, in [40]. First, without losing gener-
ality we assume that ωR > 0. Then the matrix on the right-hand
side has three distinct ordered eigenvalues for any δ, which
we denote as λ− < λ0 < λ+. In the limit when A → 0, the
eigenvalues and the corresponding eigenvectors u±,0 become

for δ < −ωR λ+ → 0, u+ → (1,0,0),
λ0 → −ωR, u0 → (0,0,1),

λ− → δ, u− → (0,1,0),
whereas for δ > 0 λ+ → δ, u+ → (0,1,0),

λ0 → 0, u0 → (1,0,0),
λ− → −ωR, u− → (0,0,1).

If nonadiabatic transitions can be neglected, the time evolution
operator from t1 − T ′ to t1 + T ′ in the adiabatic reference
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frame is simply

Ûad =

⎛
⎜⎝

ei�+
0 0

0 ei�0
0

0 0 ei�−

⎞
⎟⎠ ,

where �±,0 =
∫ t1+T ′

t1−T ′
λ±,0(t)dt

is the integral of the adiabatic eigenvalues. For a pulse
that is chirped from blue to red such that δ(t1 − T ′) > 0,
δ(t1 + T ′) < −ωR (i.e., it becomes resonant with both atomic
transitions), the time evolution operator in the original
reference frame will be

Û =
⎛
⎝ 0 ei�++i�(t1−T ′) 0

0 0 ei�−−i�(t1+T ′)

ei�0
0 0

⎞
⎠ . (2)

When the pulse is chirped from red to blue such that
δ(t1 − T ′) < −ωR , δ(t1 + T ′) > 0, it becomes

Û =

⎛
⎜⎝

0 0 ei�0

ei�+−i�(t1+T ′) 0 0

0 ei�−+i�(t1−T ′) 0

⎞
⎟⎠ . (3)

The matrices in Eqs. (2) and (3) describe a cyclic permu-
tation of the atomic populations with some additional phase
factors. Pulses with opposite chirps permute the populations
in an opposite sense. Figure 2 illustrates the process for a sech
pulse with tanh chirp:

A(t) = A0sech(t/τp),

∂t�(t) = δ0 + μτ−1
p tanh(t/τp). (4)

Figure 2(a) depicts the time evolution of the adiabatic
eigenvalues for μ < 0 (blue-to-red chirp), with the direction
of population transfer between the three atomic states being
illustrated in the inset with gray shading. The arrows that
indicate the population transfer have been colored the same
as the lines of the corresponding eigenvalues. Figure 2(b)
is a similar plot for μ > 0 (red-to-blue chirp). Because we
have a single field and ωR 	= 0, we never have two-photon
resonance during the process—the pulse becomes resonant
with the two single-photon transitions at different times. This
means that we are in a regime distinctly different from that of
STIRAP—we have no dark state. One can think of the process
as two sequential adiabatic population transfers: first on the
|1〉 ↔ |2〉, then on the |2〉 ↔ |3〉 transition (for blue-to-red
chirp). On the other hand, we do have an eigenstate that starts
from |1〉 and ends in |3〉 (or the other way around). In certain
parameter ranges, this contains only a small fraction of the
excited state |2〉, at any given time, so it may be quasidark [41].

The permutation of atomic populations is robust with
respect to various parameter changes, as it is an adiabatic
process. To show this, and in particular to quantify its
efficiency, we have solved Eqs. (1) using a computer with
various parameters, constructed the time evolution matrix,
and calculated Pjoint = |U12U23U31|2, the joint probability that
there is a complete population transfer on all three transitions
|2〉 ↔ |1〉, |1〉 ↔ |3〉, and |3〉 ↔ |2〉 simultaneously. The pulse
length τp and the chirp parameter μ were varied, while we had
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FIG. 2. (Color online) Adiabatic permutation of atomic popula-
tions by a chirped pulse. (a) Solid lines: time evolution of the adiabatic
eigenvalues for blue-to-red chirp; broken lines: eigenvalues forA = 0
(diabatic lines). The direction of population transfer is indicated in
the inset, where each arrow is the same color as the line of the
eigenvalue belonging to the eigenstate that realizes the population
transfer. (b) Eigenvalue evolution and direction of population transfer
for red-to-blue chirp. The unit of frequency in the figure is ωR;
the pulse parameters are τp = 10ω−1

R , A0 = 2ωR , δ0 = −0.5ωR ,
μτ−1

p = ∓2ωR , and � = 0, D = 1.

� = 0, D = 1 and the amplitude of the sech pulse and the
central detuning was always A0 = 20/τp and δ0 = −0.5ωR

(i.e., the central frequency of the pulse was exactly halfway
between ω12 and ω32). The results are shown in Fig. 3, where
(a) shows a contour plot of Pjoint as a function of τp and the
chirp range μτ−1

p , normalized by ω−1
R and ωR , respectively.
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FIG. 3. (Color online) (a) Contour plot of the joint probability
that there is population transfer on all three atomic transitions Pjoint =
|U12U23U31|2 as a function of normalized pulse length τpωR and
normalized chirp range μτ−1

p /ωR . (b) Line plots of Pjoint for three
values of μ as a function of τp .
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The line plots in (b) show Pjoint for three specific values of μ

as a function of τp. It is clear from these figures that for the
adiabatic permutation of populations to succeed, the transform
limited bandwidth τ−1

p must be much less than the spacing of
the two lower levels, i.e., τpωR � 1. This condition ensures
that the two optical transitions are traversed sequentially.
Figure 3(b) shows that the joint probability is practically one
for about τpωR = 5.

III. COHERENCE REPHASING WITH A SERIES
OF CHIRPED PULSES

A. Control pulses with negative chirp

We now consider a sequence of three consecutive chirped
control pulses for coherence rephasing in an inhomogeneously
broadened atomic ensemble. We have photon-echo based
quantum memories in mind; the time line of the envisioned
process is sketched in Fig. 4(a), while the transformation of the
atomic states by the various pulses is sketched in Fig. 4(b). All
atoms are in |1〉 initially, when a weak signal pulse, resonant
with the |1〉 ↔ |2〉 optical transition, is absorbed at t0. The
a∗

j bj atomic coherences created by the signal dephase, so the
overall ensemble polarization disappears. Three strong control
pulses with negative (blue-to-red) chirp follow at t1, t2, and t3,
respectively. The first one at t1 transforms the a∗

j bj coherences
into a∗

j cj spin coherences between |1〉 and |3〉, where they
can remain intact for a duration close to the spin-coherence
time Tstorage � Tspin. The second control pulse at t2 transforms
them into c∗

j bj optical coherences on the |3〉 ↔ |2〉 transition.
There is population inversion in the ensemble at this point, so
if rephasing should occur, echo emission must be suppressed
as it will be too noisy for quantum memory applications [24].
Finally, the third control pulse at t3 transforms coherences back

t
0

t
4

t
3t

1
t
2

signal

control control

echo

control(a)

t0
t1 t2

Ω s Ω c

Ω c

Ω c

Ω c

t3 t4

Ω c
Ω c Ω e(b)

FIG. 4. (Color online) (a) Time line of the pulse sequence. A
signal pulse at t0 is followed by three control pulses at t1, t2, and t3.
An echo of the signal is emitted at t4. (b) A sketch of the population
transfers driven by the signal s at t0, the three control pulses c at t1,
t2, and t3, and the echo e at t4. The figures in the rectangles symbolize
the atomic states at the end of each pulse. Optical coherences created
by the signal at t0 reside in spin coherences between t1 and t2.

to the |1〉 ↔ |2〉 transition. If coherence rephasing succeeds,
there will be a revival of the ensemble polarization and echo
emission becomes possible at t4.

To investigate whether coherence rephasing by the control
pulses is indeed possible, we construct the time evolution
operator that evolves the atomic states from t = t0 + T , just
after the signal pulse has been absorbed, to t = t4 − T just
before the echo is emitted at t4:

Û (�,�r) = ÛF (t4−T ,t3+T ′)Û3(�,�r)ÛF (t3−T ′,t2 + T ′)

× Û2(�,�r)ÛF (t2 − T ′,t1 + T ′)Û1(�,�r)

× ÛF (t1 − T ′,t0 + T ). (5)

Here Ûi(�,�r) is the time evolution operator of the ith control
pulse from t = ti − T ′ to t = ti + T ′, while ÛF (t ′,t) is that
for free evolution between the control pulses:

ÛF (t ′,t) =

⎛
⎜⎝

1 0 0

0 e−i�(t ′−t) 0

0 0 e−iωR (t ′−t)

⎞
⎟⎠ . (6)

The Ûi(�,�r) depend on � and �r , because the adiabatic
eigenvalues λ±,0 contain an explicit dependence on �, and
an implicit dependence on �r through A and � which vary in
space as well.

For atoms with � such that all three control pulses permute
the populations as described by Eq. (2), Û (�,�r) will be
diagonal with

[Û (�,�r)]11 = ei�0
1+i�−

2 +i�+
3

× e−i�(t3−t2−2T ′)−iωR(t2−t1−2T ′),

[Û (�,�r)]22 = ei�+
1 +i�0

2+i�−
3

× e−i�(t1−t0+t4−t3−2T −2T ′)−iωR (t3−t2−2T ′),

[Û (�,�r)]33 = ei�−
1 +i�+

2 +i�0
3

× e−i�(t2−t1−2T ′)−iωR(t1−t0+t4−t3−2T −2T ′). (7)

For brevity, we have not indicated the � and �r dependence
of the �

±,0
i and have dropped the unimportant �i(ti ± T ′)

constant phase terms. The a∗b coherence at t = t4 − T is then
given in terms of its value at t = t0 + T as

(a∗b)′ = a∗b exp
(
i
[
�0

2 − �0
1 + �+

1 − �+
3 + �−

3 − �−
2

])
× exp(−i�[t1 − t0 + t4 − 2t3 + t2 − 2T ])

× exp(−iωR[t1 − 2t2 + t3]). (8)

If the three control pulses are identical, the corresponding
�

±,0
j ’s are equal, so the argument of the first exponential

vanishes for any �. The third exponential describes a uniform
phase shift for the whole ensemble, while the second one is
exp(i2�T ) provided that the time intervals between the pulses
fulfill

t1 − t0 + t4 − t3 = t3 − t2. (9)

Therefore, with three identical control pulses, the atomic
coherences will be rephased at t4—an echo of the signal
can be emitted. Equation (9) also shows that rephasing does
not depend on the duration t2 − t1 when the coherences
generated by the signal reside in the |1〉 ↔ |3〉 spin coherence.
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Transferring optical coherences to spin coherences for long-
time storage is a step in several optical quantum memory
protocols [16,21], and is usually executed with a control pulse
pair used solely for this purpose. However, it is inherently and
conveniently included in the present protocol, using control
pulses from a single source.

The rephasing described above is in fact the secondary
rephasing which happens around the ground state like in
the ROSE protocol. To show this, we consider the fate of
optical coherences at a time t ′3 ∈ [t2 + T ′,t3 − T ′] when there
is population inversion in the ensemble. The time evolution
operator from t = t0 + T to t = t ′3 − T for atoms whose
populations are permuted by the first two control pulses will
have the following nonzero elements:

[Û ′(�,�r)]13 = ei�−
1 +i�+

2 e−i�(t2−t1−2T ′)−iωR (t1−t0−T −T ′),

[Û ′(�,�r)]21 = ei�0
1+i�−

2 e−i�(t ′3−t2−T −T ′)−iωR(t2−t1−2T ′),

[Û ′(�,�r)]32 = ei�+
1 +i�0

2e−i�(t1−t0−T −T ′)−iωR(t ′3−t2−T −T ′).

The c∗b coherence at t ′3 − T will thus be given by

(c∗b)′ = ab∗ exp
(
i
[
�0

1 − �0
2 + �−

2 − �+
1

])
× exp(i�[t1 − t0 + t2 − t ′3])

× exp(iωR[t1 − 2t2 + t ′3 − T + T ′]).

If the two control pulses are identical and t1 − t0 = t ′3 − t2
(which is bound to happen, since we need t1 − t0 < t3 − t2 to
obtain the secondary rephasing), the only � dependent term
in the coherence will be exp(i�−

2 − i�+
1 ). This in general

will prevent a perfect rephasing, but may not prevent a partial
revival of the ensemble polarization. There may then be a
partial echo emission with the corresponding loss of the stored
information.

B. Control pulses with positive chirp

The properties of coherence rephasing with three positively
chirped pulses can be derived in an analogous manner from
the time evolution matrices 3 and 6. The order in which the
quantum states are traversed is now reversed compared to that
shown on Fig. 4(b). The medium will be inverted after the
first control pulse between t1 and t2, while spin-wave storage
will take place between t2 and t3. The relevant formula for
the evolution of the atomic coherences from t = t0 + T to
t = t4 − T is

(a∗b)′ = a∗b exp
(
i
[
�0

2 − �0
3 + �+

3 − �+
1 + �−

1 − �−
2

])
× exp(−i�[2t1 − t0 + t4 − t3 − t2 − 2T ])

× exp(iωR[t1 − 2t2 + t3]).

Again, for three identical control pulses the argument of the
first exponential vanishes, while the second exponential gives
t1 − t0 + t4 − t3 = t2 − t1 for the condition of rephasing. As
before, we must also consider a possible rephasing in the
inverted medium, this time after the first control pulse. The
|3〉 ↔ |2〉 coherence at t ′2 − T will be

(c∗b)′ = ab∗ exp(i[�+
1 − �−

1 ]) exp(i�[t1 − t0 + t1 − t ′2])

× exp(−iωR[t1 − t2 + T + T ′]).

The second exponential will certainly disappear at some
t ′2 ∈ [t1,t2] because we need t1 − t0 < t2 − t1 to obtain the
secondary rephasing. While the first exponential will not be
zero, it may again be too weakly dependent on � to extinguish
the primary echo fully.

IV. TOWARDS A QUANTUM MEMORY

A. Silencing the primary echo

As discussed for ROSE in two-level atoms [27,35], the
primary echo in the inverted ensemble can be silenced with
an appropriate choice of the control pulse wave vectors. If the
spatial modulation of the revived ensemble polarization does
not fulfill the phase-matching condition, a collective emission
is not possible—coherence rephasing does not lead to echo
emission. Assuming plane-wave control pulses and taking
into account the ∼ exp(i�kl · �r) fast spatial modulation of the
lth amplitude, we can derive the spatial modulation of the
coherences after each pulse. We can then obtain the following
phase-matching conditions for the echo wave vectors:

for negative chirp: �k(3)
e = 2�k3 − �k2 − �k1 + �ks,

�k(2)
e = �k1 + �k2 − �ks,

for positive chirp: �k(3)
e = �k3 + �k2 − 2�k1 + �ks,

�k(1)
e = 2�k1 − �ks. (10)

Here �ks is the wave vector of the signal field and �k(i)
e denotes the

wave vector of the spatial modulation of the coherences after
the ith control pulse. We assume that the wave vectors of the
control pulses and the signal field are all approximately equal
in magnitude ks = k1 = k2 = k3. (More precisely we assume
that for any difference in the wave vectors L�k � π , where L

is the spatial extent of the storage medium.) Echo emission is
possible if there is a revival of the ensemble polarization due
to (partial) rephasing and k(i)

e = ks . The wave vector of the
secondary echo we want emitted in both cases is �k(3)

e , whereas
�k(2)
e and �k(1)

e are the wave vectors of the primary echoes we want
suppressed. From Eqs. (10) we can deduce the following.

(i) For control pulses collinear with the signal, all propa-
gating in the same direction �k1 = �k2 = �k3 = ±�ks , we have a
forward secondary echo: �k(3)

e = �ks .
(ii) If �k1 = �k2 = �k3 = −�ks , i.e., we have backward prop-

agating control pulses, �k(2)
e = −3�ks and �k(1)

e = −3�ks , so the
primary echo is silenced.

(iii) If we are not restricted to signal and control pulse
propagation along a single direction, we can obtain a back-
ward propagating secondary echo �k(3)

e = −�ks with the setups
sketched in Fig. 5.

Note that if ωR < 0 the formulas and figures for positive
and negative chirps must be interchanged.

B. Ensemble spectral width and chirp range

In Secs. II and III we have seen that coherence rephasing in
an ensemble requires the frequency sweep of the control pulses
to encompass both optical transitions (ω12 and ω32) of the
atoms to be rephased. At the same time, the distribution of �’s
must be wide enough to absorb all frequency components of the
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FIG. 5. (Color online) Control pulse propagation directions for
obtaining a backward echo using (a) positively and (b) negatively
chirped control pulses. The angles enclosed between neighboring
wave vectors are all π/3 in both cases.

signal—the ensemble spectral width σ� must be greater than
the signal bandwidth. Let us assume that the signal spectrum
is bounded by ω0 ± σs , i.e., this is the spectral range that the
control pulses must rephase. Assuming pulses as in Eqs. (4),
the range of �’s where both optical resonances are crossed
is � ∈ [δ0 − |μ|τ−1

p + ωR,δ0 + |μ|τ−1
p ], while the spectral

region properly rephased is expected to be slightly narrower
due to a transition region of width ∼τ−1

p at the edges of this
interval where nonadiabatic transitions are possible. Centering
the interval on � = 0 with δ0 = −ωR/2, the condition for τp

and μ of the control pulses becomes

�max = |μ|τ−1
p − ωR/2 > σs.

Note that because we assume that |3〉 is empty initially and that
the signal field is very weak, we do not need ωR > σs—the
signal bandwidth can be larger than the separation of the two
lower states.

After determining the minimal chirp range, we must also
compare �max to the ensemble spectral width σ�. This is
an important question, because the unmanipulated absorption
lines of atomic systems used in optical quantum memory
experiments are often much wider than the spectrum of the
control pulses. For example, in rare-earth ion doped crystals
that are popular candidates for such devices, very typical orders
of magnitude are ∼1 GHz for the inhomogeneous broadening,
∼10 MHz for hyperfine splittings of the lower states, and
∼1 MHz for signal bandwidths [18,20,28]. In these cases,
quantum memory schemes usually work only if the absorption
line is first tailored to a sufficiently narrow range (for example,
using optical pumping). In the original ROSE scheme, a
considerable number of atoms may be left excited after the
second control pulse if π pulses are employed for control
and an unmanipulated ensemble is used as a storage medium.
These are then a source of spontaneous noise during signal
retrieval. However, if chirped pulses are used for coherence
rephasing, the number of atoms left excited in the spectrally
wide ensemble can be orders of magnitude smaller [27,35].

Figure 6 depicts the effect of the control pulses on a
wide ensemble. It shows the final populations of the atomic
states after the three control pulses with parameters τp =
1 μs, ωR = 10 MHz, μτ−1

p = −30 MHz, and A0 = 16 MHz.
With these parameters, atoms are rephased roughly for
� ∈ [−23 MHz,23 MHz], the spectral range where they are
returned to |1〉 finally (the central part of the broken blue
line on Fig. 6). Apart from the transition regions where some
atoms are left partially in |2〉 due to nonadiabatic transitions,
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FIG. 6. (Color online) Final atomic populations of a wide en-
semble of � atoms with ωR = 10 MHz and D = 1 as a function of
� after the three chirped control pulses. Atoms were in state |1〉
initially. Sech pulses with tanh chirp were used for the calculation,
with a spectrum centered on −ωR/2 and with parameters τp = 1μs,
μτ−1

p = −30 MHz, and A0 = 16 MHz.

there is also a wide plateau where there is full excitation
after the control pulses. This happens because for atoms with
� ∈ [−35 MHz,−25 MHz] the control pulses never become
resonant with ω32, so these atoms behave like two-level atoms.
They are inverted three times by the control pulses and end up
in |2〉 after the third one (solid red line on Fig. 6). So, in a
spectrally wide ensemble, there is an ∼ωR wide region where
atoms are left excited after the control pulses. This region will
be a source of spontaneous noise at the time of signal retrieval.
Because ωR � τ−1

p , the situation is much less favorable than
for two-level atoms, where the regions at the edge of the control
pulse bandwidth with remanent excitation were ∼τ−1

p in width
[35]. Thus, to use the current rephasing scheme for quantum
memory applications, it is necessary to tailor the absorption
line to a width such that both atomic resonances are encom-
passed by the control pulses. However, this does not mean
that the optical depth of the storage medium will be reduced
at the signal frequency. All atoms with resonance frequencies
within the signal spectrum are used and rephased by the control
pulses. By contrast, schemes like CRIB and GEM must first
tailor an absorption line which is narrow compared to the signal
bandwidth, leading to a loss of optical depth.

C. Rephasing coherences in an optically dense ensemble

The next question to be considered is the ability of the
chirped control pulses to rephase an optically dense ensemble.
In photon-echo based memories we need optically dense
samples to absorb the signal—but these also distort the con-
trol pulses propagating within them considerably. Moreover,
consecutive control pulses will be distorted in different ways.
A pulse that excites the ensemble is absorbed, one that moves
atoms back to one of the ground states is amplified, while a
pulse that moves atomic populations between the two stable
states can propagate without considerable distortion to great
optical depths [42]. Therefore, even if the control pulses can
rephase the ensemble at the entry, their ability to do so further
into the medium is a question. In previous investigations, it was
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found that short π pulses are very fragile in optically dense
ensembles of two-level atoms [24,26], but two consecutive
chirped pulses can be used to rephase coherences to sufficient
optical depths [35].

To answer this question, we have solved the relevant
Maxwell-Bloch equation for the propagation of the control
fields using a computer. To obtain a tractable problem, we have
assumed that the control pulses are plane waves propagating
in the same direction along the z axis, i.e., we considered a
one-dimensional problem only. In the slowly varying envelope
approximation, the wave equation for the complex pulse
amplitudes j (z,t) = Ej (z,t)d12/� will be

(
∂z + 1

c
∂t

)
j (z,t) = i

αd

πg(0)

∫
[a∗(z,t,�)b(z,t,�)

+Dc∗(z,t,�)b(z,t,�)]g(�)d�.

(11)

Here αd = πg(0)kN d2
12/ε0� is the absorption constant of the

|1〉 ↔ |2〉 transition, g(�) is the spectral distribution function
of the ensemble, and N is the density. The integral on the right
is the overall polarization of the ensemble at time t and point
z—we now have an ensemble extended in both � and z, so the
probability amplitudes a, b, and c depend on these variables
too. Equation (11) must be solved together with the optical
Bloch equations

∂t

⎛
⎝a

b

c

⎞
⎠ = i

2

⎛
⎝ 0 ∗

j 0
j −2� Dj

0 D∗
j −2ωR

⎞
⎠

⎛
⎝a

b

c

⎞
⎠ (12)

for the atoms of the ensemble. [This is the same as Eq. (1)
rewritten in terms of a complex field amplitude j .] The
equations were solved for three consecutive, copropagating
chirped control pulses with blue-to-red chirp. Because we have
optical quantum memories in mind, the excitation that signal
absorption generates in the medium is completely negligible
when considering control pulse propagation; we can assume
all atoms to be in |1〉 initially.

Having obtained j (t,z) for all three pulses, we can readily
calculate the time evolution matrices Ûj (�,z) by solving
Eqs. (12) again for a set of atoms with various �’s and
initial conditions. To investigate the extent of the domain
where coherences are rephased, we define the rephasing factor
R(�,z) using the auxiliary quantities R1(�,z) and R2(�,z):

R1(�,z) = [Û1(�,z)]31[Û2(�,z)]23[Û3(�,z)]12,

R2(�,z) = [Û1(�,z)]12[Û2(�,z)]31[Û3(�,z)]23,

as

R(�,z) = R∗
1(�,z)R2(�,z). (13)

Comparing Eqs. (2), (7), and (8), one can see that |R1(�,z)|2
is the probability that an atom at z with frequency offset
� in state |1〉 initially is transferred to |3〉, then to |2〉, and
finally back to |1〉 by the control pulses, while arg[R1(�,z)]
is the overall phase associated with this process. |R2(�,z)|2
is the probability that an atom in |2〉 initially is moved to |1〉,
then to |3〉, and finally back to |2〉, while arg[R2(�,z)] is the
associated phase. For � and z such that all three control pulses
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FIG. 7. (Color online) Control pulse propagation in an optically
dense ensemble. (a) Magnitude of the control pulses at an optical
depth of αdz = 5. (b) Contour plot of |R(�,z)|2 and (c) arg[R(�,z)]
measured in radians. g(�) = g(0) for � ∈ [−20 MHz,20 MHz];
g(�) = 0 elsewhere. Pulse parameters are the same as for Fig. 6.
The black line in (b) marks |R(�,z)|2 = 0.99.

drive AP between the atomic states, R(�,z) is precisely the
first exponential factor in Eq. (8) that contains the eigenvalue
integrals �

±,0
j . In general, R(�,z) is an overall factor whose

magnitude gives the probability that all populations have been
permuted three times as required, and also the associated phase
factor, whether AP has taken place or not. Clearly, to be
able to rephase the coherences in some domain of the atomic
ensemble, we must have |R(�,z)|2 = 1 and arg(R[�,z)] =
const in an interval of � and z.

Note that we cannot simply construct the overall transfer
matrix Û (�,z) and use its diagonal matrix elements to
investigate coherence rephasing. Û11 = R1 and Û22 = R2 is
true only if all three pulses drive AP, i.e., if all elements of the
Ûj associated with nonadiabatic transitions are zero.

The control fields j and the rephasing factor R were
first calculated for an atomic ensemble whose spectral
distribution was taken to be a constant in the range � ∈
[−20 MHz,20 MHz] and zero elsewhere. Control pulse pa-
rameters were the same as those used for the calculation
depicted in Fig. 6, so this case amounts to tailoring the ab-
sorption line such that the pulses can perform the permutation
of the atomic populations for the whole ensemble. Figure 7(a)
shows the magnitude of the three amplitudes at an optical
depth of αdz = 5. Clearly, the j are different here, even
though they were identical at αdz = 0. 1, which transfers
atoms from |1〉 to |3〉, is not really changed, 2, which excites
atoms, is attenuated, while 3, which returns them to |1〉,
is amplified. Figures 7(b) and 7(c) depict |R(�,z)|2 and
arg[R(�,z)] (in radians) as a function of the optical depth
αdz and the frequency offset �. The black line in (b) marks
|R(�,z)|2 = 0.99. The plots demonstrate that the control
pulses can in fact rephase a considerable part of the ensemble.
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FIG. 8. (Color online) Control pulse propagation in an optically
dense ensemble. (a) Magnitude of the control pulses at an optical
depth of αdz = 5. (b) Contour plot of |R(�,z)|2 and (c) arg (R(�,z))
measured in radians. g(�) = g(0) for � ∈ [−50 MHz,50 MHz];
g(�) = 0 elsewhere. Pulse parameters are the same as for Fig. 6.

The magnitude of R is very nearly 1 for the whole spectral
width until about αdz = 5, and the phase difference is also
small (� ±10−1 rad) at αdz = 5 for a spectral width of
about 14 MHz. This seems sufficient, as it would allow a
signal of ∼10 MHz bandwidth to be stored and emitted
by the ensemble—an optical depth of αdz = 5 allows the
absorption of 99.3% of the signal pulse energy. Note that
for forward echos, which is the only possibility for control
pulses propagating along a single direction, αdz = 2 is the
ideal choice [10].

The j ’s and R were also calculated for an atomic
ensemble whose spectral width was wide with respect to the
bandwidth of the control pulses [g(�) = const was assumed
in the range � ∈ [−50 MHz,50 MHz]]. Figure 8(a) depicts
the |j |’s at αdz = 5, while 8(b) and 8(c) depict |R(�,z)|2
and arg[R(�,z)] (in radians). Clearly, this time the ability
of the same control pulses to rephase the coherences of the
ensemble deteriorates much more quickly as they propagate.
|R(�,z)|2 drops below 0.9 by about αdz = 3 everywhere, and
the phase differences are also much greater than they were in
the previous case. We attribute this loss of rephasing to pulse
distortions that arise from the interaction of the control pulses
with atoms for which ω32 is outside the control pulse spectrum,
i.e., which behave as two-level atoms. The pulse amplitudes
at αdz = 5 shown in Fig. 8(a) are much more distorted than
in the previous case [see Fig. 7(a)]. Increasing the pulse
amplitudes does not help; using more intensive pulses yields
very similar results. Therefore, we conclude that for the current
rephasing scheme to be useful for optical quantum memory
applications, the ensemble spectral width has to be tailored
to a width that allows permutation of the atomic populations
for the entire ensemble. However, we stress again that this
does not mean that we lose any optical depth at the signal
frequency.

D. Material considerations

Finally, we consider some material properties that are
required for the realization of our scheme. A number of
quantum memory schemes have been demonstrated in rare-
earth (RE) doped optical materials, where the hyperfine levels
of the dopant ions offer the possibility of selecting an atomic
system with a � configuration for spin-wave storage (see, e.g.,
[15,20,43]). Apart from the various homogeneous linewidths,
there is a special requirement in our case. Because the
same control pulses are to become resonant with two optical
transitions one after another, it is important that there be no
other atomic transitions between the two used for realizing
the � linkage. As hyperfine transitions in RE doped crystals
cannot usually be polarization selected, this effectively means
that if the excited state has multiple hyperfine sublevels, their
separation must be greater than that of the two ground-state
hyperfine levels used.

One possible example of such a material is 153Eu3+:Y2SiO5,
whose hyperfine levels have been sketched in Fig. 9 on the left,
taken from [44]. Making the correspondence |1〉 ↔ |±3/2g〉,
|3〉 ↔ |±1/2g〉, and |2〉 ↔ |±5/2e〉, to obtain a � system and
denoting the frequency of the |±3/2g〉 ↔ |±5/2e〉 transition
by ω12, we have ω32 = ω12 − 2π × 90 MHz, i.e., ωR = 2π ×
90 MHz. There are no optical transitions between ω12 and ω32;
the two closest to them will be the |±5/2g〉 ↔ |±5/2e〉 tran-
sition at ω12 + 2π × 119 MHz and the |±5/2g〉 ↔ |±3/2e〉
transition at ω32 − 2π × 51 MHz. This means that using
control pulses of length ∼0.1 μs and a chirp ranging from
ω12 − 2π × 130 MHz to ω12 + 2π × 40 MHz in frequency,
the angular frequency range where atoms can be rephased
will be approximately � ∈ [−30 × 2π MHz,30 × 2π MHz].
Longer control pulses (of length ∼1 μs) with a slightly
greater chirp range can rephase a range of � ∈ [−45 ×
2π MHz,45 × 2π MHz] without exciting unwanted atomic
transitions. The two oscillator strengths are also not very
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FIG. 9. (Color online) Hyperfine energy-level spacings of
Eu3+:Y2SiO5 for the 153Eu isotope (from [44]) on the left and the
151Eu isotope (from [45]) on the right. The hyperfine levels used for
the � system (sketched in the middle) are connected to the relevant
states with the broken blue arrows. Solid red arrows mark the optical
transitions used.
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different (D � 2), so driving both transitions in the adiabatic
regime with the same pulse is feasible. With an optical
lifetime of T1 = 2 ms and spin coherence times exceeding
days for temperatures around 2 K [46], this system seems
fit for the realization of ROSE combined with spin-wave
storage.

Of course, generating control pulses with a chirp spanning
this range can be quite challenging. A possible alternative
is to use the 151Eu isotope, where the hyperfine level
spacing is about three times smaller [45]; see the right side
of Fig. 9. Then ωR = 2π × 34.5 MHz, and all resonance
frequencies are higher than the ω12 frequency that belongs
to the |±3/2g〉 ↔ |±5/2e〉 transition except for ω32. We
have ωR = 2π × 34.5 MHz and the nearest unwanted reso-
nance frequency is ω12 + 2π × 46.2 MHz belonging to the
| ± 5/2g〉 ↔ | ± 5/2e〉 transition. This system thus yields a
somewhat smaller frequency range that can be used for signal
storage, but requires a much smaller chirp range.

V. SUMMARY

In this paper, we have investigated coherence rephasing
in an inhomogeneously broadened ensemble of � atoms
with three consecutive frequency-chirped control pulses for
optical quantum memory applications. We have shown that,
if the transform limited bandwidth is much smaller than the
frequency difference of the lower energy levels τ−1

p � ωR ,
but the overall bandwidth is greater, the control pulses can
drive a cyclic permutation of the atomic populations in the
adiabatic regime. With three such pulses interacting with the
ensemble one after the other, it is possible to rephase the
optical coherences left behind by a weak signal pulse, leading
to the emission of a signal echo. We have shown that this
rephasing, which happens when the atoms are predominantly
in the ground state (i.e., the medium is not inverted), is
analogous to the secondary rephasing of the ROSE scheme
when two-level atoms are being rephased with two control
pulses. There may also be a partial rephasing after one or
two control pulses, when the medium is still inverted. Echo

emission at this time can be prevented by choosing the control
pulse propagation directions such that the primary echo fails
the spatial phase-matching condition. At one point during this
three-pulse rephasing process (after one or two control pulses,
depending on the sign of ωR and the chirp direction), the
coherences left by the signal are stored as spin coherences
between the two lower levels of the � system. Thus this
scheme of coherence rephasing conveniently incorporates long
time spin-wave storage into the ROSE scheme using control
pulses from a single source. The separation of the lower levels
ωR limits only the control pulse duration, but not the signal
bandwidth that can be stored in the ensemble.

We have also investigated whether the current scheme is
able to rephase the coherences of an optically dense storage
medium. We have found, that despite the fact that the control
pulses are distorted during propagation, coherence rephasing
works well in a considerable domain in terms if spectral width
and optical depth. The necessary condition for this is that the
ensemble spectral width must be narrower than the bandwidth
where the control pulses can rephase the atoms, i.e., the control
pulses must cross both optical transitions for the entire spectral
range of the ensemble.

We have also considered the application of the scheme
in “naturally” inhomogeneously broadened media where the
broadening is greater than the control pulse spectrum. In this
case, however, there will be an ∼ωR wide part of the ensemble
where the control pulses interact with only one of the atomic
transitions. On the one hand, this part of the ensemble will
remain in the excited state after the third control pulse and
will be a source of noise during signal retrieval. On the other,
it will distort propagating control pulses much more in an
optically dense medium, so the rephasing ability of the three
pulses deteriorates fast. Thus the ensemble must be tailored to
a width narrower than the control pulse spectrum before signal
absorption. However, this does not mean that optical depth is
lost at the signal frequency as in numerous other schemes.

Finally, we have argued that, to realize the scheme, we need
materials whose excited-state sublevel separation is greater
than the ground-state one and have shown that Eu3+ doped
into Y2SiO5 is a good candidate.
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[21] S. A. Moiseev and S. Kröll, Phys. Rev. Lett. 87, 173601 (2001).
[22] I. Abella, N. Kurnit, and S. Hartmann, Phys. Rev. 141, 391

(1966).
[23] L. Allen and J. H. Eberly, Optical Resonance and Two-Level

Atoms (Dover, New York, 1987).
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L. Gouët, and T. Chaneliere, arXiv:1311.7331.

[29] J. Dajczgewand, J.-L. Le Gouët, A. Louchet-Chauvet, and
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