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Numerical investigation of optically induced director oscillations in nematic liquid crystals

G. Demeter* and L. Kramer
Physikalisches Institut der Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 24 April 2001; published 24 July 2001!

We present a theoretical study of the effects induced by the passage of a linearly polarized light beam
through a thin cell of homeotropic nematic liquid crystal. The light is incident at a slightly oblique angle and
is polarized perpendicular to the plane of incidence. Experiments in this geometry have revealed a rich variety
of complex, time dependent director motion. We solve numerically the director equations for the nematic and
compare the results with existing experimental findings.
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Liquid crystals~LCs! are very interesting anisotropic op
tical materials that have been investigated thoroughly for
cades. In particular, phenomena associated with the so-c
light-induced director reorientation in nematics have be
intensively investigated both theoretically and experim
tally @1#. These phenomena occur when the intensity of
light incident on the LC is sufficiently large so that the o
enting effect of the electric field of the light overcomes t
elastic forces opposing reorientation in the nematic. The s
plest of all these phenomena is the ordinary light-induc
Fréedericksz transition~LIFT! in various geometries.

One particular geometry of light-induced director reorie
tation that has aroused considerable interest is the case
linearly polarized plane wave incident on a thin cell of h
meotropically aligned nematic LC at a small anglea ~Fig.
1!. The direction of polarization is perpendicular to the pla
of incidence~ordinary wave!. Experiments revealed that a
the intensity of the light is increased the director starts os
lating. These oscillations are at first periodic and regular,
at higher intensities various dynamical regimes and eve
transition to chaos can be observed@2,3#. Chaotic oscilla-
tions have been reported in only one other geometry
only very recently@4#. A theoretical model involving a few
discrete reorientation modes showed that in the geom
mentioned above one can indeed expect chaotic dynami
the system, and can even hope to observe a peculiar rou
chaos through a cascade of gluing bifurcations@5#. Recent
experiments@6–8# seem to verify some predictions of th
model, but not all. In particular, there is clear experimen
evidence for the occurrence of the first gluing bifurcation@8#,
but no clear evidence for any further bifurcations of the c
cade. Furthermore, the onset of chaos is observed to b
much higher intensity than that predicted by theory.

In an attempt to shed light on the cause of this discr
ancy between the model@5# and experiments@7,8#, we have
performed numerical simulations of the basic equations
describe the system. We consider the setup depicted in F
with strong anchoring of the nematic at the boundaries of
cell. The equation that describes the evolution of the direc
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n(r ,t) can be deduced from the free energy of the nem
that contains two contributions: the elastic energy of
nematic and its dielectric energy in the light wave@1#. By
this we assume that backflow effects can be absorbed into
renormalization of the orientational viscosity constantg and
consider only the director to be an active dynamical variab
We also assume the director to depend only on thez coordi-
nate and for further simplicity apply the one-constant a
proximation to the elastic free energy, i.e.,K15K25K3
5K. The equations for the director components thus beco

gṅk5K]z
2nk1

«a

8p
EkniEi2lnk , ~1!

whereK is the elastic coefficient and«a5« i2«' the dielec-
tric anisotropy in the optical regime.~Indices appearing
twice in a product imply summation over that index.! l is a
Lagrange multiplier that maintainsnini51 during the course
of time and is

l5niK]z
2ni1

«a

8p
~niEi !

2. ~2!

These equations must be augmented by the self consist
relation thatE(z,t) is a solution of Maxwell’s equation. We
assume the nematic to be a transparent dielectric wit
position-dependent dielectric tensore i j 5«'d i j 1«aninj .
The parameters the equations contain are the material pa
eters K, g, «' , «a , the wavelength of the lightlL , the
thickness of the cellL, the angle of incidencea and the

r
t, FIG. 1. Geometry of the setup: an ordinary wave incident o
cell of homeotropic nematic at a slightly oblique angle.
©2001 The American Physical Society01-1
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intensity of the lightI. From theory@5# it is clear however,
that the number of parameters that are essential to descr
qualitative behavior in the system is considerably less t
eight. First,g appears only in the constanttd5gL2/p2K
that merely sets the timescale for the phenomena. Apart f
td , K appears only together with the light intensity—a
can be included in a dimensionless intensity parameter
5I /I F where I F5@p2c(«'1«a)K/L2«aA«'# is the thresh-
old intensity for the LIFT. The dependence onL, lL , «'

and «a can be simplified by introducing the parameterk
5@L sin2(a)«a /lLA«'(«'1«a)#. The equations now de
pend only onr, k, b5«a /«' anda. Furthermore, the ex
plicit dependence ona is only through terms such as
1sin2(a), which is very weak for the angles in question (a
<12°). So we are left with three essential parameters:r, k
which can be thought of as the angle parameter, and
material parameterb. This latter varies little between differ
ent materials in the optical regime.

Equations~1! and ~2! together with Maxwell’s equation
were the starting point of our investigations. To solve this
of nonlinear partial differential equations we have used
implicit Crank-Nicholson finite-difference scheme whic
proved to be stable and fast. To calculate the electric fie
we solved Maxwell’s equations with an adaptive Rung
Kutta algorithm. The data which the simulation produc
were the values of the three director components at a se
of points in space at each timestep. To reduce the amou
data and to obtain quantities that give better insight into
evolution of the director, we first singled out thex and y
components of the director. The assumption of strong
choring allows us to expand these components asnx(z,t)
5(mAm(t)sin(mpz/L), ny(z,t)5(mBm(t)sin(mpz/L). Since
the higher order modes are strongly damped by elasti
~see Refs.@5,1#!, only the amplitudes of the first few mode
are of non-negligible magnitude so the system effectiv
reduces to a finite-dimensional one.

The present simulation improves over the theoreti
model of Ref.@5# in several aspects. First, the reorientati
and hence, the mode amplitudes were assumed to be sm
the model and a perturbation expansion was employed
was correct to third order. Second, the smallness of the a
of incidence was explicitly used in the model to simpli
formulas. These assumptions were discarded in the pre
simulation. Note that the assumption that we need to incl
only the first few sine modes for the director compone
was used in the simulation only to reduce the amount of d
to store. It was not used during the calculation and its va
ity was explicitly checked when determining the number
modes to save. The assumption that we are dealing wi
plane wave and that the director depends only on thez coor-
dinate was kept, however, and so was the assumption
flow does not play a major role in the dynamics. When so
ing Maxwell’s equations, we also kept the assumption t
the director changes very slowly on the spatial scale of
wavelength of light, thus reflection within the material
negligible. One simplification that was not used in the mo
but was applied in the simulation was the one-constant
proximation for the elastic energy. We argue, however, t
this should not cause a great difference in the results
02070
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settingK15K25K3 in the model results only in slight nu
merical differences in the parameter values at which bifur
tions occur, the overall behavior is not affected. This is to
expected as the dominant nonlinear terms in the model
those containing the electric field of the light, while the on
containing the difference of the elastic constants contrib
very little.

The behavior of the system was investigated with the h
of the simulations as a function ofr anda. For the material
parameters we used values that correspond to the chem
E7 that was used in the experiments@9–11# and we tookL
550 mm. Our results can easily be carried over to any c
thickness, however, by noting that the essential paramet
k;L sin2(a). Figure 2 shows the curves for the first thre
bifurcations on ther-a plane. Curve 1-1b is the line of pri-
mary instability, where the state of homogeneous homeo
pic orientation~the basic state! becomes unstable. It consis
of two sections, which join in a Takens-Bogdanov~TB!
point. For small angles the basic state loses stability i
stationary bifurcation~1!, for larger angles in a Hopf bifur-
cation (1b). At the stationary instability two new symmetr
degenerate stationary states~fixed points! are created, which
are images of each other under the transformationS:y→
2y, the symmetry of the setup. As the intensity of the lig
is increased, these stationary states loose stability in a H
bifurcation at line 2, where two symmetry degenerate lim
cycles are created@Fig. 3~a!#. Line 3 is the line of the first
gluing bifurcation. At this point, the limit cycles born in th
secondary Hopf bifurcation are homoclinic orbits to the ba
state @Fig. 3~b!# and above it they join to form a single
symmetric, double-length limit cycle@Fig. 3~c!#.

This sequence of events agrees with calculations from
model. The most important difference is that the line of t
first gluing takes a sudden turn towards high intensities
the angle is decreased, whereas the model predicts th
remains close to the line of the Hopf bifurcation. The mod
also predicts that in some range of angles around 7° the
gluing bifurcation is followed by a cascade of further gluin
that lead to a strange attractor@5,12#. In the simulation how-
ever, we could not find this cascade of gluings.

FIG. 2. Bifurcation diagram as a function of the dimensionle
intensity of light (r) and the angle of incidence (a). The lines are
explained in the text.
1-2
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Actually there is only a very small region in ther-a plane
where this cascade may exist at all. There are two neces
conditions for its existence, both of which concern the line
eigenvalues of the system around the basic state@12,13#. ~We
have a discrete set of eigenvalues as the system effect
reduces to a finite dimensional one.! The basic state at thi
point is a saddle, and~i! it is to have one single positive
eigenvalueL1 which is smaller in magnitude than the seco
largest eigenvalueL2 ~i.e., 2L2.L1) and~ii ! L1 must be-
long to the subspace spanned by$Bi% andL2 must belong to
the subspace spanned by$Ai%. Condition~i! is violated to the
right of line 4 and this means that the homoclinic orbits a
unstable past this line. Condition~ii ! is violated to the right
of line 5. Thus, the small region enclosed by lines 3, 4, an
is the only one where the gluing scenario may exist at all.
have scanned this region of parameter space to find it,
our search gave a negative result.

Nevertheless our simulations do predict complex non
ear and chaotic behavior of the system in various param
ranges. As an illustration, we consider the sequence of ev
after the first gluing bifurcation ata59.5°. The symmetric
limit cycle loses stability in a fourth bifurcation and tw
symmetry degenerate, asymmetric limit cycles are bo
These then undergo a period doubling sequence and
asymmetric strange attractors are created@Figs. 3~d! and

FIG. 3. Projection of limit cycles on theA12B1 plane fora
59.5° and ~a! r52.0, ~b! r52.0885, ~c! r52.11, and ~d! r
52.4. A1 andB1 are dimensionless mode amplitudes characteriz
the director orientation~see text!. Strange attractors on theA1

2B1 plane at~e! r52.554 and~f! r52.56.
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3~e!; only one of the symmetry degenerate pair is show#.
These attractors pass closer and closer to the origin as
intensity is increased, and eventually collide or ‘‘glue’’ t
create one single, symmetric strange attractor@Fig. 3~f!#. At a
considerably higher intensity, we can see the strange attra
disappear and give way to simple limit cycle behavior
what appears to be a tangent bifurcation. The system sh
intermittent behavior near the transition as the motion is s
controlled by the strange attractor, but it sometimes mo
on an almost periodic orbit for considerable amounts of ti
@Figs. 4~a! and 4~b!#. At a slightly higher intensity a stable
limit cycle comes into existence in this region of pha
space. Once this happens, it is this limit cycle that defi
long-term behavior and stochasticity is seen only as an in
transient.

A detailed comparison of the experimental results of Re
@7,8# and our simulation done with the same parametersL
575mm, a55°) shows that for low intensities simulatio
and experiment agree qualitatively. Experiment shows t
there is a stationary reorientation of the director betweer
51 andr51.6, and then regular oscillations whose peri
increases with intensity until aboutr51.9. By comparison,
simulation predicts the secondary Hopf bifurcation to occ
at r51.48 and atr'1.52– 1.54 there are already sizab
oscillations. The period of oscillations is predicted to i
crease as the intensity increases below the gluing, as
served in the experiment. The first stochastic regime
served in the experiment betweenr51.9 and r52 can
presumably be identified with the vicinity of the first gluin
bifurcation @8#. The simulation predicts this to be atr
52.27. After this there is again a regular oscillatory regim
until r52.6. After the second periodic regime, a second s
chastic regime was observed in the experiment betweer
52.6 andr53.0, after which a regime termed ‘‘very sto
chastic’’ or chaotic was reported. Alas our simulations do n
show chaos at any intensity with the above parameters. T
is one further bifurcation in the simulation atr53.6 where
the symmetric limit cycle loses stability and two asymmet
ones are created. This event could give rise to a stocha
regime experimentally, as the system can make rand
jumps between limit cycles due to noise. However, the int
sity at which it occurs is much higher than the intensity ran
at which the second stochastic regime was observed.

The cause of discrepancy between the simulation and
perimental observations is not clear. Several factors m
contribute. One is the fact that the experiments were d

g

FIG. 4. Intermittent behavior ata59.5° andr53.2302~a! mo-
tion projected onto theA12B1 plane.~b! The time evolution ofB1.
1-3
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with Gaussian beams whose spot size on the sample
comparable to the sample width and were thus far from
alizing a plane wave of infinite extension assumed in
model and simulation. The other possible cause may be
fact that in our simulations we assumed that flow does
play a major role in the dynamics. However, the inclusion
backflow effects in a renormalizedg is possible only if the
reorientation is not too large@14#, so the equations we solv
by computer lose their validity above a certain intens
when the amplitudes do become large. For small angles
happens relatively early, for angles closer to the Take
Bogdanov point this happens much later. Should the role
flow be the main cause for discrepancy between theory
experiment, our simulations would agree better with poss
new experiments done at larger angles, closer to the Tak
Bogdanov point. Interesting nonlinear behavior is to
found in abundance also in this regime~an example is the
scenario found atL550mm anda59.5° mentioned earlier!
but its observation would be more difficult as the amplitu
of director motion is much smaller. A further complication
the fact that in several intensity regimes complicated lim
.
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cycles may coexist simultaneously, and since the system
jump from one to another due to noise, these regimes m
also appear to be stochastic in the experiment. Distinguish
these from the truly chaotic regimes is not a simple task
seems favorable to use a thin sample for the experiment
the range of angles where interesting behavior may be
served ~which is bounded from above by the Taken
Bogdanov point! is greater when the sample is thinner.

In conclusion, we can say that our simulations seem
confirm the assumption that the first stochastic regime
served in the experiment corresponds to the first gluing
furcation in the theoretical model of Ref.@5# as suggested in
Ref. @8#. However, the precise nature of the chaotic behav
observed experimentally remains unclear. To clarify it, o
would have to achieve better correspondence between th
and experiment. One possibility for this would be to che
whether observations at larger angles correspond better to
above theory. Another possibility is the inclusion of the fin
beam size and/or flow in the theory. In any case, we m
conclude that the understanding of these complex phen
ena is far from complete.
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