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Numerical investigation of optically induced director oscillations in nematic liquid crystals

PHYSICAL REVIEW E, VOLUME 64, 02070@R)

G. Demetef and L. Kramer
Physikalisches Institut der Universit8ayreuth, D-95440 Bayreuth, Germany
(Received 24 April 2001; published 24 July 2001

We present a theoretical study of the effects induced by the passage of a linearly polarized light beam
through a thin cell of homeotropic nematic liquid crystal. The light is incident at a slightly oblique angle and
is polarized perpendicular to the plane of incidence. Experiments in this geometry have revealed a rich variety
of complex, time dependent director motion. We solve numerically the director equations for the nematic and
compare the results with existing experimental findings.
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Liquid crystals(LCs) are very interesting anisotropic op- n(r,t) can be deduced from the free energy of the nematic
tical materials that have been investigated thoroughly for dethat contains two contributions: the elastic energy of the
cades. In particular, phenomena associated with the so-callettmatic and its dielectric energy in the light wa\id. By
light-induced director reorientation in nematics have beerthis we assume that backflow effects can be absorbed into the
intensively investigated both theoretically and experimen+enormalization of the orientational viscosity constaraind
tally [1]. These phenomena occur when the intensity of theconsider only the director to be an active dynamical variable.
light incident on the LC is sufficiently large so that the ori- We also assume the director to depend only onztheordi-
enting effect of the electric field of the light overcomes thenate and for further simplicity apply the one-constant ap-
elastic forces opposing reorientation in the nematic. The simproximation to the elastic free energy, i.&;=K,=Kj3
plest of all these phenomena is the ordinary light-induced=K. The equations for the director components thus become
Freedericksz transitioiLIFT) in various geometries.

One particular geometry of light-induced director reorien- . ) €,
tation that has aroused considerable interest is the case of a YN =Kdzn+ %EkniEi—)\nk, @
linearly polarized plane wave incident on a thin cell of ho-

meotropically aligned nematic LC at a small angle(Fig.  wherek is the elastic coefficient ane,=¢|— =, the dielec-
1). .Th.e d|rect|on'of polarization is perpendlcular to the planeyic anisotropy in the optical regime(indices appearing
of incidence(ordinary wave. Experiments revealed that as yyice in a product imply summation over that index. is a

the intensity of the light is increased the director starts OSC"Lagrange multiplier that maintaimsn; =1 during the course
lating. These oscillations are at first periodic and regular, bugs time ‘and is '

at higher intensities various dynamical regimes and even a

transition to chaos can be observigd]3]. Chaotic oscilla- e

tions have been reported in only one other geometry and AzniKaini+8—a(niEi)2. (2)
only very recently{4]. A theoretical model involving a few m

discrete reorientation modes showed that in the geometr hese eguations must be auamented by the self consistenc
mentioned above one can indeed expect chaotic dynamics i q 9 y y

the system, and can even hope to observe a peculiar route E%Iatlon thati(z,1) IS a solution of Maxwell's e'quatlo'n. We
chaos through a cascade of gluing bifurcatipff Recent assume the nematic _to be_a transparent dielectric with a
experiments6—8| seem to verify some predictions of the position-dependent  dielectric tensof; ==, &; +sain;

model, but not all. In particular, there is clear experimentaIThe parameters the equations contain are the_ material param-
etersK, vy, ¢, , €5, the wavelength of the lighk,, the

evidence for the occurrence of the first gluing bifurcafi8h ) S

but no clear evidence for any further bifurcations of the Casj[h|ckness of the celL, the angle of incidencer and the
cade. Furthermore, the onset of chaos is observed to be at
much higher intensity than that predicted by theory.

In an attempt to shed light on the cause of this discrep-
ancy between the modgb] and experiment§7,8], we have
performed numerical simulations of the basic equations that
describe the system. We consider the setup depicted in Fig. 1
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*On leave from the Research Institute for Particle and Nuclear
Physics of the Hungarian Academy of Sciences, Budapest, FIG. 1. Geometry of the setup: an ordinary wave incident on a
Hungary. cell of homeotropic nematic at a slightly oblique angle.
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intensity of the lightl. From theory[5] it is clear however,
that the number of parameters that are essential to describing
qualitative behavior in the system is considerably less than
eight. First, y appears only in the constaat= yL?/m?K

that merely sets the timescale for the phenomena. Apart from
74, K appears only together with the light intensity—and
can be included in a dimensionless intensity parampter
=1/1 wherel=[7%c(s, +&,)K/L%e\/e, ] is the thresh-

old intensity for the LIFT. The dependence bn A\, ¢,

and ¢, can be simplified by introducing the parameter
=[L sirf(a)e,/ N Ve, (e, +€,)]. The equations now de-
pend only onp, «, B=¢,/e, anda. Furthermore, the ex-
plicit dependence onw is only through terms such as 1
+sir’(a), which is very weak for the angles in questios (
=<12°). So we are left with three essential parameteysk
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which can be thought of as the angle parameter, and the FIG. 2. Bifurcation diagram as a function of the dimensionless
material parameteg. This latter varies little between differ- intensity of light (p) and the angle of incidencex}. The lines are

ent materials in the optical regime.
Equations(1) and (2) together with Maxwell's equation

explained in the text.

were the starting point of our investigations. To solve this sesettingK;=K,=Kj in the model results only in slight nu-

of nonlinear partial differential equations we have used armerical differences in the parameter values at which bifurca-
implicit Crank-Nicholson finite-difference scheme which tions occur, the overall behavior is not affected. This is to be

proved to be stable and fast. To calculate the electric fieldéxpected as the dominant nonlinear terms in the model are
we solved Maxwell's equations with an adaptive Runge-those containing the electric field of the light, while the ones

Kutta algorithm. The data which the simulation producedcontaining the difference of the elastic constants contribute
were the values of the three director components at a serieery little.
of points in space at each timestep. To reduce the amount of The behavior of the system was investigated with the help
data and to obtain quantities that give better insight into thef the simulations as a function pfand«. For the material

evolution of the director, we first singled out thxeandy

parameters we used values that correspond to the chemical

components of the director. The assumption of strong anE7 that was used in the experimefn8-11] and we tookL

choring allows us to expand these componentsgg,t)
=2 pAn(D)sinmazL), n/(zt)=Z,By()sin(mnz/L). Since

=50 um. Our results can easily be carried over to any cell
thickness, however, by noting that the essential parameter is

the higher order modes are strongly damped by elasticity~L sir’(«). Figure 2 shows the curves for the first three
(see Refs[5,1]), only the amplitudes of the first few modes bifurcations on the-a plane. Curve 14 is the line of pri-
are of non-negligible magnitude so the system effectivelymary instability, where the state of homogeneous homeotro-

reduces to a finite-dimensional one.

pic orientation(the basic stajgbecomes unstable. It consists

The present simulation improves over the theoreticabf two sections, which join in a Takens-Bogdan¢iB)
model of Ref.[5] in several aspects. First, the reorientationpoint. For small angles the basic state loses stability in a
and hence, the mode amplitudes were assumed to be smallstationary bifurcatior(1), for larger angles in a Hopf bifur-
the model and a perturbation expansion was employed thagtion (1b). At the stationary instability two new symmetry
was correct to third order. Second, the smallness of the angldegenerate stationary statéiged points are created, which
of incidence was explicitly used in the model to simplify are images of each other under the transformaoyn—
formulas. These assumptions were discarded in the presenty, the symmetry of the setup. As the intensity of the light
simulation. Note that the assumption that we need to includés increased, these stationary states loose stability in a Hopf
only the first few sine modes for the director componentsbifurcation at line 2, where two symmetry degenerate limit
was used in the simulation only to reduce the amount of dataycles are createfFig. 3(@]. Line 3 is the line of the first
to store. It was not used during the calculation and its valid-gluing bifurcation. At this point, the limit cycles born in the
ity was explicitly checked when determining the number ofsecondary Hopf bifurcation are homoclinic orbits to the basic
modes to save. The assumption that we are dealing with state [Fig. 3(b)] and above it they join to form a single,

plane wave and that the director depends only orztbeor-

symmetric, double-length limit cyclgFig. 3(c)].

dinate was kept, however, and so was the assumption that This sequence of events agrees with calculations from the
flow does not play a major role in the dynamics. When solv-model. The most important difference is that the line of the
ing Maxwell's equations, we also kept the assumption thafirst gluing takes a sudden turn towards high intensities as
the director changes very slowly on the spatial scale of thehe angle is decreased, whereas the model predicts that it
wavelength of light, thus reflection within the material is remains close to the line of the Hopf bifurcation. The model
negligible. One simplification that was not used in the modellso predicts that in some range of angles around 7° the first
but was applied in the simulation was the one-constant apgluing bifurcation is followed by a cascade of further gluings
proximation for the elastic energy. We argue, however, thathat lead to a strange attrac{@,12]. In the simulation how-

this should not cause a great difference in the results, asver, we could not find this cascade of gluings.
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FIG. 4. Intermittent behavior at=9.5° andp=3.2302(a) mo-
tion projected onto thé; — B, plane.(b) The time evolution oB;.

3(e); only one of the symmetry degenerate pair is shbwn
These attractors pass closer and closer to the origin as the
intensity is increased, and eventually collide or “glue” to
create one single, symmetric strange attrajday. 3(f)]. At a
considerably higher intensity, we can see the strange attractor
disappear and give way to simple limit cycle behavior in
what appears to be a tangent bifurcation. The system shows
intermittent behavior near the transition as the motion is still
controlled by the strange attractor, but it sometimes moves
on an almost periodic orbit for considerable amounts of time
[Figs. 4a) and 4b)]. At a slightly higher intensity a stable
limit cycle comes into existence in this region of phase
space. Once this happens, it is this limit cycle that defines
long-term behavior and stochasticity is seen only as an initial
transient.
o o A detailed comparison of the experimental results of Refs.
_ gFEI,?'a?;{ dT&:;)J?J(ilgnO O'Et:)'m;tzcgf)lgzso'zc;hﬁ‘l:;Blllpl;‘g (E;ri [7,8] and our simulation done with the same parameters (
e e ’ o . =75um, a=5°) shows that for low intensities simulation
=2.4. A, andB, are dimensionless mode amplitudes characterlzmgand experiment agree qualitatively. Experiment shows that
the director orientation(see text Strange attractors on tha; . . : . : P .
B, plane at(e) p=2.554 and() p=2.56. there is a stationary reorientation of 'Fhe _d|rector betwge_n
=1 andp=1.6, and then regular oscillations whose period
Actually there is only a very small region in thea plane  increases with intensity until abopt=1.9. By comparison,
where this cascade may exist at all. There are two necessagymulation predicts the secondary Hopf bifurcation to occur
conditions for its existence, both of which concern the linearat p=1.48 and atp~1.52—1.54 there are already sizable
eigenvalues of the system around the basic $f&tg13. (We  oscillations. The period of oscillations is predicted to in-
have a discrete set of eigenvalues as the system effectiveyease as the intensity increases below the gluing, as ob-
reduces to a finite dimensional on@he basic state at this served in the experiment. The first stochastic regime ob-
point is a saddle, and) it is to have one single positive served in the experiment betwegn=1.9 and p=2 can
eigenvalue\ ; which is smaller in magnitude than the secondpresumably be identified with the vicinity of the first gluing
largest eigenvalud , (i.e., —A,>A;) and(ii) A; must be- bifurcation [8]. The simulation predicts this to be at
long to the subspace spanned{i} andA, must belongto =2.27. After this there is again a regular oscillatory regime
the subspace spanned % }. Condition(i) is violated to the  until p=2.6. After the second periodic regime, a second sto-
right of line 4 and this means that the homoclinic orbits arechastic regime was observed in the experiment between
unstable past this line. Conditidii) is violated to the right =2.6 andp=3.0, after which a regime termed “very sto-
of line 5. Thus, the small region enclosed by lines 3, 4, and £hastic” or chaotic was reported. Alas our simulations do not
is the only one where the gluing scenario may exist at all. Weshow chaos at any intensity with the above parameters. There
have scanned this region of parameter space to find it, bus one further bifurcation in the simulation at=3.6 where
our search gave a negative result. the symmetric limit cycle loses stability and two asymmetric
Nevertheless our simulations do predict complex nonlin-ones are created. This event could give rise to a stochastic
ear and chaotic behavior of the system in various parameteegime experimentally, as the system can make random
ranges. As an illustration, we consider the sequence of evenjismps between limit cycles due to noise. However, the inten-
after the first gluing bifurcation a=9.5°. The symmetric sity at which it occurs is much higher than the intensity range
limit cycle loses stability in a fourth bifurcation and two at which the second stochastic regime was observed.
symmetry degenerate, asymmetric limit cycles are born. The cause of discrepancy between the simulation and ex-
These then undergo a period doubling sequence and twegerimental observations is not clear. Several factors may
asymmetric strange attractors are creatEiys. 3d) and  contribute. One is the fact that the experiments were done
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with Gaussian beams whose spot size on the sample waygcles may coexist simultaneously, and since the system may
comparable to the sample width and were thus far from rejump from one to another due to noise, these regimes may
alizing a plane wave of infinite extension assumed in thealso appear to be stochastic in the experiment. Distinguishing
model and simulation. The other possible cause may be thiese from the truly chaotic regimes is not a simple task. It
fact that in our simulations we assumed that flow does noseems favorable to use a thin sample for the experiments, as
play a major role in the dynamics. However, the inclusion ofthe range of angles where interesting behavior may be ob-
backflow effects in a renormalized is possible only if the served (which is bounded from above by the Takens-
reorientation is not too largel4], so the equations we solve Bogdanov pointis greater when the sample is thinner.

by computer lose their validity above a certain intensity In conclusion, we can say that our simulations seem to
when the amplitudes do become large. For small angles thisonfirm the assumption that the first stochastic regime ob-
happens relatively early, for angles closer to the Takensserved in the experiment corresponds to the first gluing bi-
Bogdanov point this happens much later. Should the role ofurcation in the theoretical model of Rg6] as suggested in
flow be the main cause for discrepancy between theory anRef.[8]. However, the precise nature of the chaotic behavior
experiment, our simulations would agree better with possibl®bserved experimentally remains unclear. To clarify it, one
new experiments done at larger angles, closer to the Takengrould have to achieve better correspondence between theory
Bogdanov point. Interesting nonlinear behavior is to beand experiment. One possibility for this would be to check
found in abundance also in this regin@n example is the whether observations at larger angles correspond better to the
scenario found at =50 um anda=9.5° mentioned earligr  above theory. Another possibility is the inclusion of the finite
but its observation would be more difficult as the amplitudebeam size and/or flow in the theory. In any case, we must
of director motion is much smaller. A further complication is conclude that the understanding of these complex phenom-
the fact that in several intensity regimes complicated limitena is far from complete.
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