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Pattern-forming instability induced by light in pure and dye-doped nematic liquid crystals

D. O. Krimer, G. Demeter,* and L. Kramer
Physikalisches Institut der Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 1 February 2002; published 24 September 2002!

We study theoretically the instabilities induced by a linearly polarized ordinary light wave incident at a small
oblique angle on a thin layer of homeotropically oriented nematic liquid crystal with special emphasis on the
dye-doped case. The spatially periodic Hopf bifurcation that occurs as the secondary instability after the
stationary Freedericksz transition is analyzed.
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I. INTRODUCTION

Liquid crystals ~LCs! are known to demonstrate a ve
rich variety of interesting optical phenomena that have b
studied intensively during the last two decades. A nem
LC behaves optically as a uniaxial anisotropic medium w
the optical axis along the local molecular orientation d
scribed by the directorn(r ,t). Moreover, when light propa
gates through the nematic, its electric field exerts a torque
the molecules that can induce molecular reorientation. W
there is only an ordinary wave in the LC~polarization per-
pendicular to the plane containing the optical axis and w
vector!, the initial distribution of the director becomes u
stable when the intensity of light reaches a certain criti
value. This is the so-called light induced Freedericksz tr
sition ~LIFT!. The director reorientation leads to a change
birefringence and, as a consequence, the polarizatio
changed as light propagates through the layer@1,2#.

It is known @3,4# that a periodic equilibrium configuratio
of the nematic director can appear in a thin-film LC in t
magnetic or electric field induced Freedericksz transition
der certain conditions. Our work is devoted to the search
analogous phenomena in the LIFT of nematic LCs includ
the dye-doped case. We will show that the Hopf bifurcat
that occurs as a secondary bifurcation after the LIFT le
indeed to a periodic pattern, although the mechanism is h
quite different ~see the Conclusions!. Doping is important
because the LIFT threshold of a dye-doped nematic can b
two orders of magnitude smaller than for a pure nematic. T
nature of this anomalously low threshold was the subjec
numerous studies~see@5,6#, and references therein!. The fact
that the threshold intensity is low allows the spot size of
light to be much larger than the thickness of the layer, thu
large aspect ratio system can be realized.

This paper is organized as follows. In Sec. II we pres
the theoretical description of our problem. In Sec. III w
perform the linear stability analysis of the homeotropic st
that gives the threshold for the LIFT. The numerical meth
of calculating the stationary distorted state is described
Sec. IV. Finally, in Sec. V, we do the linear stability analys
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of the stationary distorted state with respect to general p
turbations in the plane of the nematic layer.

II. THEORETICAL MODEL

We consider a linearly polarized plane wave incident a
small oblique angleb0 on a layer of dye-doped nematic LC
that has initially homeotropic alignment~see Fig. 1!. The
light is polarized along they axis, i.e., we deal with an ordi
nary wave. Strong anchoring of the nematic at the bou
aries of the layer is assumed. The optical torque acting on
director is given by t5(je f f/16p)(n•E* )(n3E)1c.c.,
where E is the amplitude of the optical electric field,je f f
5«a1z. «a5« i2«' is the dielectric anisotropy and«'(« i)
is the dielectric permittivity~at optical frequency! perpen-
dicular ~parallel! to n. z phenomenologically describes th
effect of certain dye dopants (je f f5«a in a pure LC! and can
be both positive and negative and depends on dye conce
tion, molecular structures of both the host and the dye m
rials, on the wavelength of light, and on the temperat
@5,6#. Obviously, the electrical part of the free energy w
contain the same factorje f f . The density of the free energ
of the dye-doped nematic LC is thus assumed in the form

F5Felastic2
je f f

16p
un•Eu2, ~1!

where Felastic5(K1/2)(“•n)21(K2/2)(n•“3n)21(K3/2)
3(n3“3n)2 is the standard Frank free energy density a
K1 ,K2 ,K3 are, respectively, the splay, twist, and bend elas
constants of the LC@7#.

r
n-

FIG. 1. Geometry of the setup: linearly polarized light along t
y direction incident at angleb0 on a nematic LC layer with the
directorn0iz ~homeotropic state!. The components of the directorn
are described in terms of the anglesu,w (u5w50 in the homeo-
tropic state!.
©2002 The American Physical Society07-1
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We first assume that the director components depend
on z,t. We introduce the anglesu(z,t) andw(z,t) ~see Fig.
1! so thatn5(sinu,cosu sinw,cosu cosw). Using the stan-
dard variational principle@1# and taking the dissipation func
tion in the formR5(g/2)ṅ2, whereg is an effective rota-
tional viscosity, the equations of motion foru(z,t) and
w(z,t) can be derived.

In addition we need Maxwell’s equations to determine
electric field. These equations contain the complex dielec
tensor that depends on the director components

« i j 5~«'1 ig'!d i j 1~«a1 iga!ninj . ~2!

In Eq. ~2! ga5g'2g i , whereg' andg i are the imaginary
parts of the dielectric permittivity forE perpendicular and
parallel ton, respectively. They describe the absorption
fect by the dye, so they vanish in pure LCs. The magn
anisotropy at optical frequencies can be neglected. Since
components of the dielectric tensor depend on thez coordi-
nate only, we may use the stratified medium approach
describing wave propagation@2#. We write the electric and
magnetic fields in the formE(r ,t)5 1

2 @E(z,t)eis0k0xe2 ivt

1c.c.#,H(r ,t)5 1
2 @H(z,t)eis0k0xe2 ivt1c.c.#, where k0

5v/c is the wave number in vacuum ands05sin(b0). Here
E(z,t),H(z,t) are amplitudes that vary slowly in time com
pared tov21 and obey the equation

dC̄

dz
5 ik0DC̄, ~3!

where

C̄5S Ex

Hy

Ey

2Hx

D ~4!

and

D~z!5S 2
«xzs0

«zz
12

s0
2

«zz
2

«yz s0

«zz
0

«xx2
«xz

2

«zz
2

«xz s0

«zz
«xy2

«xz «yz

«zz
0

0 0 0 1

«xy2
«xz «yz

«zz
2

«yz s0

«zz
«yy2

«yz
2

«zz
2s0

2 0

D .

~5!

The z component of the electric field can be found from t
following relation:

Ez52
s0

«zz
Hy2

«xz

«zz
Ex2

«yz

«zz
Ey . ~6!

We will examine the caseje f f.0 so that the preferred ori
entation corresponds to the director parallel to the elec
field niE. Since in our geometry initiallyn'E, the homeo-
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tropic state will cease to be stable above some critical int
sity of the incident light. The reorientation of the LC leads
modification of the electric field polarization inside the L
owing to the fact that it becomes an inhomogeneous an
tropic medium.

III. STABILITY ANALYSIS OF THE HOMEOTROPIC
STATE

We first perform the linear stability analysis of the home
tropic state (u5w50). The linearized equation of motio
for w(z,t) has the following simple form:

g] tw5K3]z
2w1

~«a1z!

16p
~2uE0yu2w1E1z* E0y1E1zE0y* !.

~7!

HereE0y is the y component of the electric field amplitud
for the undistorted nematic~homeotropic orientation! and
E1z is thez component of the field that is caused by nema
reorientation~calculated to the first order inw). It is easily
seen that in the undistorted LC the light maintains its pol
ization inside the layer, so that we have only one nonz
component of the electric fieldE0y(z)5E0eikzz, where kz

5kRe1 ikIm.k0A«'2s0
21 ig'k0 /(2A«'2s0

2) „terms of
the order of@g' /(«'2s0

2)#2 in kz are neglected becaus
g'!«'… and E0 is the amplitude of the incident electri
field. In the linear approximationu remains zero. Straight
forward calculations yield the following equation forE1z(z)
from Eqs.~3!–~6!:

@«'1«a1 i ~ga1g'!#
d2E1z

dz2
1k0

2~«'1 ig'!

3@«'1«a2s0
21 i ~ga1g'!#E1z1k0

2~«a1 iga!

3~«'1 ig'!wE0y1~«a1 iga!
d2~wE0y!

dz2
50. ~8!

Substituting E1z(z) into Eq. ~8! in the form E1z(z)
5E(z)eikzz and taking into account thatk0L@1 (L is the
width of the layer!, a first-order ordinary differential equa
tion for E(z) can be derived. Keeping in mind thatE1z(0)
50 we eventually obtain from Eqs.~7! and~8! the following
integro-differential equation forw:

t
]w~z,t !

]t
5S L

p D 2]2w~z,t !

]z2
1rH S pk

L D
3E

0

zFc cosS pk

L
~z82z! D1sinS pk

L
~z82z! D G

3e(p/L)jk(z82z)w~z8,t !dz81w~z,t !J e22kImz,

~9!

wherec,j,k, andt are parameters defined as
7-2
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c52
«a

2g'23«a«'g'12ga«'
2 22ga«'«a

2~«a1«'!«a«'

,

j5
2ga«'

2 23«a«'g'2«a
2g'

2~«a1«'!«a«'

,

k5
L

p

s0
2«ak0

2A«'~«'1«a!
, t5

gL2

p2K3

.

In the parameters defined above only the linear terms
ga ,g' were kept (ga ,g'!1). The parametert is the char-
acteristic time of the director motion andr5I /I c , whereI is
the intensity of the incident light andI c is defined as

I c5
p2

L2

c~«'1«a!K3

«aA«'h
, h5~«a1z!/«a . ~10!

I c coincides with the threshold intensity of the LIFT for
pure nematic (h51,g'5g i50) at perpendicular incidenc
@2#. Then Eq.~9! reduces to the one obtained in Ref.@8#.

We use a two-mode expansion with respect toz for the
angle w with the boundary conditionsw(z50)5w(z5L)
50: w(z,t)5A1(t)sin(pz/L)1A2(t)sin(2pz/L), where A1
andA2 are time-dependent amplitudes. This is motivated
the fact that the distorted state is asymmetric with respec
the center of the layer because of absorption and the pe
bation of the light polarization inside the layer. Therefore
have to include at least one mode that is symmetric and
mode that is antisymmetric with respect to the center of
layer. After projecting Eq.~9! onto the trial functions we
have a system of two equations for the modesA1 andA2 ,

t
dA1

dt
5L11A11L12A2 , t

dA2

dt
5L21A11L22A2 , ~11!

where the elements of the matrixLi j depend on materia
parameters and the control parametersr and k ~which is
proportional tos0

2). We look for solutions proportional to
exp(st), wheres is the growth rate. The procedure of deri
ing Li j is straightforward but the expressions for these e
ments are too long to be presented here.

The stability diagram in the (k,r) plane can now be cal
culated for any given material parameters of the LC. As
example we consider the nematic 5CB~pentylcyanobiphe-
nyl! doped with the dye AD1~anthraquinone derivative 1! at
0.1% concentration. We used the following values
material parameters at the temperatureT524°: ao
542 cm21,no51.53,ae5190 cm21,ne51.71 ~absorption
coefficients and refractive indices of the ordinary and
traordinary light, respectively!, l5633 nm ~wavelength of
laser!, z558 @6#, g50.845 dyn s/cm2,K150.64
31026 dyn,K250.4231026 dyn,K350.8631026 dyn @9#;
the calculations are made for a layer of 50mm thickness. For
these parametersI c533.21 W/cm2,t52.49 s. It is easy to
show the following relations:g'.aono /k0 ,ga.(aene

2aono)/k0 ,«'.no
2 ,«a.ne

22no
2

„neglecting terms of the
order of @g' /(«'2s0

2)#2
….
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- FIG. 2. ~a! Stability diagram of the homeotropic and stationa
distorted states in the (k,r) plane.H is the region of the homeo
tropic state. SD is the region of the stationary distorted st
bounded toward larger by the secondary Hopf bifurcation~dash-
dotted line!. TB is the Takens-Bogdanov point.~b! Solid and dashed
lines correspond to those in~a!. The dot-dashed lines are obtaine
when the absorption effect is neglected.~c! The secondary instabil-
ity for small angles of incidence. PointsA andB show the instabili-
ties of the stationary distorted state for perpendicular incidence
the light with nx(z)50 andnx(z)Þ0 correspondingly.
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The stability diagram is depicted in Fig. 2~a!. The solid
line corresponds to a stationary bifurcation@Re(s)5Im(s)
50# and the dashed one corresponds to a Hopf bifurca
of the homeotropic state@Re(s)50,Im(s)Þ0#. These lines
divide the (k,r) plane into a stable and an unstable region
the homeotropic alignment. They join in a so-called Take
Bogdanov point where det(L)5Tr(L)50.

There are two differences compared to the case of a p
LC. First, the enhancement of the orientational optical n
linearity described by the parameterz leads to a ‘‘renormal-
ization’’ of the threshold intensity@see Eq.~10!#. @However,
since Fig. 2~a! is plotted with the renormalized thresho
intensity, this does not change the appearance of the stab
diagram.# Second, the absorption gives rise to the attenua
of the field inside the nematic. This results in a shift of t
line of primary instability to the region of higher intensitie
as is shown in Fig. 2~b!. From this figure one can see th
quantitative difference between the case when the absorp
is neglected~dot-dashed lines! and when the absorption i
taken into account~solid and dashed lines!. Note that the
critical intensity r th for perpendicular incidence thus be
comes larger than 1.

It must be noted that we supposed that the nemati
maintained at constant temperature. Actually, due to the p
ence of the absorbing dye, the nematic will be heated by
light @10#. We have estimated the maximum temperature
ference occurringinsidethe nematic 5CB doped with the dy
AD1 from the steady-state heat conductivity equation~one-
dimensional since we considered a plane wave!. For the
range of intensitiesI 5302100 W/cm2 this difference was
found to be no more than a few Kelvins. Thus we can usu
neglect the temperature dependence of the material pa
eters and we took them to be constant across the layer.

IV. STATIONARY DISTORTED STATE

After the homeotropic state looses stability via a statio
ary bifurcation~at not too large angle of incidence!, the di-
rector settles in a stationary distorted state. One obtains
stationaryz-dependent reorientation of the director by var
tion of the free energy density~1! with n defined in terms of
the anglesu,w. This gives us two ordinary second-order d
ferential equations foru(z) andw(z) ~now these angles ca
be of arbitrary magnitude!. We will not display them here
because they are long and are obtained straightforwardl

These equations contain the field components that o
Maxwell’s equations~3!. It is convenient to write Eq.~3!
using the Oldano formalism@11#. Following @12# we write
the matrixD @see Eq.~5!# asD5D01Dz(z), where

D05S 0 12
s0

2

e'1ea

0 0

e' 0 0 0

0 0 0 1

0 0 e'2s0
2 0

D ~12!

ande'5«'1 ig' ,ea5«a1 iga . The matrixDz contains the
z-dependent anglesu andw. It is convenient to introduce a
03170
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representation in terms of eigenfunctions ofD0. The eigen-
value problemD0ā i5ai ā i is solved by the eigenvalues

a252a15Ae'2s0
2,

a452a35A~e'1ea2s0
2!e'

e'1ea
, ~13!

and eigenvectors

ā1,25S 0

0

71/a2

1

D , ā3,45S 7a4 /e'

1

0

0

D . ~14!

We introduce the metric tensor

M5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D ~15!

to define a scalar product between these vectors. With su
metric the eigenvectors are orthogonal to one anoth
ā i

TMā j5d i j Ni , whereNi is the ‘‘norm’’ of vector ā i . The

matrix D0 is expressed by means of the vectorsā i as D0

5( i(ai /Ni)ā i ā i
TM. The four vectorsā i give the polariza-

tion of four ‘‘proper’’ waves that propagate inside the lay
without changing their state of polarization in the case
homeotropic alignment. The magnitudes ofai give the indi-
ces of refraction of these waves. Two of these vect
ā1 (ā2) correspond to backward~forward! propagating or-
dinary waves and the other twoā3 (ā4) correspond to back-
ward ~forward! propagating extraordinary waves. The cont
bution of the backward waves is negligibly small because
dielectric properties of the nematic change little on the s
tial scale of the wavelength@12#. Thus we can expandC̄(z)
as follows:

C̄~z!5b2~z!eik0a2zā21b4~z!eik0a4zā4 ~16!

and write Eq. ~3! in terms of the amplitudesb2(z) and
b4(z) ,

db2

dz
5

ik0

N2
@P22~z!b21b4e2 ik0(a22a4)zP24~z!#,

db4

dz
5

ik0

N4
@P44~z!b41b2e2 ik0(a42a2)zP42~z!#, ~17!

where Pk j(z)5āk
TMDz(z)ā j are the matrix elements ofDz

between the eigenvectors

P225
eae' cos~u!2sin~w!2

a2
2@e'1ea cos~u!2cos~w!2#

,

P245P425
@a4 sin~u!2cos~u!cos~w!s0#sin~w!cos~u!ea

a2@e'1ea cos~u!2cos~w!2#
,

7-4
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P445
ea@$a4 sin~u!22sin~2u!cos~w!s0%~e'1ea!a41e's0

2$cos~u!2cos~w!221%#

e'~e'1ea!@e'1ea cos~u!2cos~w!2#
. ~18!
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The advantage of the system~17! is that we now have
only two equations for the ‘‘slow’’ amplitudesb2(z) and
b4(z). So, we have a system of coupled ordinary differen
equations foru(z),w(z),b2(z), and b4(z) with boundary
conditions uuz50,L5wuz50,L50, and initial conditions
b2uz505A0 ,b4uz5050. HereA0 can be related to the nor
malized intensityr defined in the preceding section:A0

5A8p3(«a1«')(«'2s0
21 ig')r/(«a«'h).

The system of ‘‘nematic and field’’ equations~with
boundary conditions! is invariant under the transformatio
@u,w,Ex ,Ey#→@u,2w,Ex ,2Ey# owing to the reflection
symmetry with respect to they direction. Since the primary
instability breaks this symmetry, two different distorte
states exist, which are mutual images under this transfor
tion. For perpendicular incidence of the light there is an
ditional reflection symmetry with respect to thex direction
and, as a consequence, the system of equations is
invariant under the transformation @u,w,Ex ,Ey#→
@2u,w,2Ex ,Ey#.

The system of equations can only be solved numerica
For this purpose we introduced the new variab
du/dz,dw/dz to transform our set of equations to a syste
of six first-order equations, which was solved by the sho
ing method. To guarantee that we obtain the solution wh
originates from the homeotropic state we started with int
sities only slightly above the threshold. Then, we increaser
slightly and used the values ofdu/dzuz50 ,dw/dzuz50 ob-
tained in the previous step as an initial guess. This proced
allowed us to derive the profilesu(z),w(z),b2(z), andb4(z)
for any k andr above threshold.

The director and field distributions forr52.0 and b0
511° (k50.375) are shown in Figs. 3 and 4. In the follow
ing section we will show that fork50.375 the stationary
distorted state becomes unstable atrc52.01, thus these

FIG. 3. Profiles of the director componentsnx ,ny for the sta-
tionary distorted state atr52.0 andb0511° (k50.375).
03170
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figures represent the state slightly below the second
instability.

V. STABILITY ANALYSIS OF THE STATIONARY
DISTORTED STATE

Next we have performed a linear stability analysis of t
distorted stationary state with respect to spatially perio
perturbations in the plane of the nematic layer. We write

n5n0~z!1dn~x,y,z,t !5n0~z!1dn~z!est1 i (qx1py),

C̄5C̄01C̄15 (
k52,4

~bk~z!1dbk~z!est1 i (qx1py)!eik0akzāk ,

~19!

wheredn and dbk are small spatially periodic perturbatio
with wave numbersq andp; s is the growth rate.

From the equationn251 follows that n0•dn50. Thus
there are only two independent components ofdn. We ob-
tained two linear equations fordnx(z) anddny(z) that con-
tain dnx(z),dny(z) itself, their z derivatives up to second
order anddb2,4(z) with complicated coefficients dependin
on the stationary distorted staten0(z),b2,4(z). Also, we de-
composed the matrixD ~see ~5!! as D5D01Dz(z)
1D1(dn), where the matricesD0 ,Dz(z) correspond to the
stationary state and were defined in the preceding sec
and the matrixD1(dn) depends linearly ondn. After linear-
ization of Eq.~3! the equations fordb2,4 can be obtained,

FIG. 4. Distortion of the field components inside the nema
layer for the stationary distorted state (r52.0,b0511°). Ez is
small compared toEx ,Ey and is not depicted;E0 is the amplitude
of the incident electric field.
7-5
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d~db2~z!!

dz
5

ik0

N2
~db2P221db4eik0(a42a2)zP241b2P22

(1)

1b4eik0(a42a2)zP24
(1)!,

d~db4~z!!

dz
5

ik0

N4
~db2eik0(a22a4)zP241db4P44

1b2eik0(a22a4)zP24
(1)1b4P44

(1)!, ~20!

wherePk j
(1)5āk

TMD1ā j are the matrix elements ofD1 with
respect to the eigenvectors~14! and thePk j were defined in
Eq. ~18!.

We have linearized the Eq.~3! substitutingc in the form
~19!. In principle we should have started from Maxwell
equations because the field perturbations containx,y depen-
dence. However, this is a very good approximation beca
the corrections are of the orderq/k0 ,p/k0!1.

To solve the eigenvalue problem fors we expand
dnx,y(z),db2,4(z) with respect toz in systems of functions
which satisfy the boundary conditions~Galerkin method!.
For dn the boundary conditions arednx,yuz50,L50, thus we
write dn5(kAk sin(pkz/L). Clearly the boundary condition
for the perturbations of the field amplitudes aredb2,4uz50
50. One can see that atz50,L the right-hand side of the
system~20! vanishes so one also hasd(db2,4)/dzuz50,L50.
Therefore we used the expansiondb5(nBn sin2@pnz/(2L)#.
This set of functions is complete but not orthogonal. We ha
to truncate these expansions to a finite number of mode

We have solved the eigenvalue problem numerically
find the neutral surfacer0(q,p) ~for given angleb0) which
is defined by the condition Re@s(q,p)#50. The number of
Galerkin modes was chosen such that the accuracy of
calculated eigenvalues was better than 0.1%~we took six
modes fordn and forty modes fordb). The minimum of this
surface gives the critical intensityrc5minq,p r0(q,p) and the
critical wave vector (qc ,pc). SinceVc5Im(s) turned out to
be nonzero at the minimum, the instability corresponds t
Hopf bifurcation. The branch of the secondary Hopf instab
ity is depicted as the dash-dotted line in Fig. 2~a! and for
small angles of incidence in Fig. 2~c!. It is interesting to note
the following tendencies: as the incident angleb0 increases
the critical intensity also increases, but the director and fi
deformations at the secondary instability decrease.

The dimensionless Hopf frequencyVct (t is defined in
Sec. III! versusk is shown in Fig. 5. Figure 6 shows
typical contour plot of the neutral surfacer0(q,p). The point
(qcL,pcL) in this figure is the minimum of the surface an
as is seen the bifurcation is inhomogeneous with some c
cal vector (qc ,pc)Þ0W . This means that traveling waves a
expected to appear.rc is only slightly below the homoge
neous thresholdr0(q50,p50), which was calculated be
fore for the pure LC@12,13#.

As was pointed out in Sec. IV, for nonzerob0 there are
two symmetry-degenerate stationary distorted states. Cle
the two neutral surfaces are related by changingp to 2p and
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the critical wave vectors will be (qc ,pc) and (qc ,2pc).
Thus two different traveling waves with critical vecto
(qc ,6pc) can be realized depending on which stationa
state will be selected after the homeotropic state loses st
ity.

An interesting situation arises in the limit of normal inc
dence. One might expect that forb0→0 the wave number
qc→0, since in this limit the external symmetry breaking
the x direction vanishes. However, this turned out not to
the case. The reason is that then another stationary instab
that spontaneously breaksx-reflection symmetry intervene
the primary and the Hopf bifurcation. For the parameters
our computation one hasr th51.11,rc151.13 @point A in
Fig. 2~c!# andrc251.17 @point B in Fig. 2~c!#. One now has
four symmetry-degenerate states and consequently four
eling waves with critical wave vectors (6qc ,6pc). In some

FIG. 5. Dimensionless Hopf frequencyVct for the secondary
instability versusk. PointsA and B are the Hopf frequencies a
pointsA andB depicted in Fig. 2~c!.

FIG. 6. Contour lines for the surfacer(p,q) correspond tob0

511° (k50.375). The critical intensity isrc52.01 with the criti-
cal wave vector (qcL,pcL)5(0.11,20.06); r0(q50,p50)2rc

51.531023.
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further investigations we have changed the ratios betw
the elastic constants keeping other material parameters
stant and saw the following tendency: the larger the ani
ropy of the constants, the deeper the minimum of the surf
becomes and the larger the magnitudes of the critical w
numbers@see Figs. 7~a!, 7~b!#. The absolute error of the di
mensionless critical wave numbersqcL,pcL depicted in this
figure is less than 1022. In the one-constant approximatio
the bifurcation is homogeneous (qc ,pc50) for anyk. This
latter can be easily proved analytically. Perturbation the
can be used to investigateq,p dependence of the critica
eigenvalue of an arbitrary stationary state. The calculati
shows, that the perturbation of the eigenvalue is;p21q2.

From Figs. 7~a!, 7~b! one can see thatqcL,pcL;0.1. This
means that the period of the structure 2p/qc ,2p/pc;60L
50.3 cm. Thus in an experiment the spot size of the li
must be rather large in order to observe the traveling wa

Finally we remark on the behavior of the system in t
nonlinear regime above the Hopf bifurcation. This syst
without transverse degrees of freedom has been studied
tensively, and various regimes of complex behavior ha
been discovered. The bifurcation studied in this work ma
the transition to simple periodic oscillations in the syste

FIG. 7. Critical wave numbersqc ,pc versusK2 /K3 for different
ratiosK1 /K3 (b0511°).
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without transverse degrees of freedom, which is the first s
towards complex behavior. In models@12,13# and simula-
tions @14#, a gluing bifurcation was found above the secon
ary Hopf instability, which is a homoclinic bifurcation tha
restores the symmetry broken by the Freedericksz transit
This gluing bifurcation was recently observed experiment
@15#. After this first gluing, complex nonlinear behavior an
eventually chaos was observed in both theory, simulation
experiment@16#. An analogous gluing bifurcation should ex
ist also in the case of the spatially extended system.

The behavior of the system in the vicinity of this gluin
bifurcation can, however, be radically different from wh
was observed in the experiment@15#. In the spatially con-
strained system~i.e., the director oscillation induced by
narrow beam as observed in the experiments! one observes
stochastic behavior in the vicinity of the first gluing only a
a consequence of experimental noise. It has been sho
however@17# that any spatially extended system, which po
sesses a homogeneous limit cycle~which is stable with re-
spect to homogeneous perturbations! becomes unstable as
approaches a homoclinic bifurcation. This instability is eith
a phase instability, or a finite-wavelength period-doubli
instability. On these grounds one can expect to observe v
complicated behavior~probably spatiotemporal chaos! in our
system already at the threshold intensity of the first glui
As opposed to the previous case, this would be true de
ministic chaos, not merely stochasticity due to noise.

VI. CONCLUSION

We have found the threshold of the LIFT for the home
tropic state and the threshold of the secondary instability
the stationary distorted state in a nematic LC, including
dye-doped case, for different incident angles of the light.
particular, we have demonstrated that the stationary disto
state loses stability in an inhomogeneous Hopf bifurcat
with some nonzero critical wave number that leads to
formation of traveling waves in the plane of the layer.

Our result demonstrates a general feature of Hopf bif
cations in spatially extended systems with broken reflect
symmetry, as is the case in the LIFT-distorted state. Exc
for special cases, such as those where the reflection sym
try can be restored by going into a moving frame, the neu
surface exhibits the signature of the broken symmetry. C
sequently, atqc5pc50 the neutral surface does not have
stationary point and thus cannot have a minimum. This g
eral feature was apparently first noted in the context
reaction-diffusion systems@18#.
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