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We investigate the dynamical phenomena induced by a circularly polarized plane wave incident perpendicu-
larly on a homeotropically aligned nematic layer. We study theoretically the influence of the velocity field
sbackflow effectd on the bifurcation scenario. Whereas backflow leads to substantial quantitative changes of
secondary bifurcation thresholds, the overall bifurcation scenario remains unchanged. In the regime of uniform
precession of the director with large reorientation, an unanticipated spatial oscillation of the flow field across
the layer is found. Quantitative comparison with experimental large-aspect ratio systems is now possible.
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I. INTRODUCTION

Liquid crystalssLCsd demonstrate a rich variety of inter-
esting optical phenomena which have been studied inten-
sively during the past two decades. A nematic LC behaves
optically as a uniaxial anisotropic medium with the optical
axis along the local molecular orientation described by the
director nsr ,td snote thatn and −n are indistinguishabled.
Furthermore, when light propagates through the nematic, its
electric field exerts a torque on the molecules which can
induce molecular reorientation. The director reorientation
leads to a change of the optical properties of the LC and, as
a consequence, the light polarization is changed as it propa-
gates through the layer. Such feedback between the light and
the nematic gives rise to interesting nonlinear dynamical
phenomenaf1,2g.

The first sprimaryd instability is the so-called light-
induced Fréedericksz transitionsLIFTd, where the initial di-
rector alignment becomes unstable above a certain light in-
tensity and the director reorientsf1g. One of the most
intriguing geometries is obtained when a circularly polarized
light wave is incident perpendicularly on a thin, homeotropi-
cally aligned layer of nematic cell.sThis is a thin layer of
nematic liquid crystal sandwiched between two glass plates,
whose surfaces have been treated so as to induce a perpen-
dicular orientation of the nematic director at the glass-
nematic interface.d In this case, the LIFT is observed to be
weakly hysteretic, and above threshold the molecules un-
dergo a collective rotationf3g that corresponds to a uniform
precession of the director around the symmetry axis. This
effect is well understood in the frame of a purely classical
shydrodynamicd approachf3g. It also can be interpreted in a
quantum picture as spin angular momentum transfer from the
light to the medium and is called self-induced stimulated
light scatteringf4g.

In f5g, a theoretical and experimental investigation of the
dynamical behavior of the system for the region of higher
intensities was reported. The authors off5g observed a fur-

ther discontinuous transition with large hysteresis from the
precession regime with small reorientation amplitude occur-
ring above the LIFT to one with large reorientation. The
approximate model presented could describe qualitatively
both regimes of uniform director precession. The frequency
of the large-amplitude precession was found to be much
smaller than the one just above the LIFT and to exhibit rapid
variations with the incident intensity reaching zero at
roughly periodic intervals. The authors presented clear ex-
perimental evidence of the frequency reduction in the second
regime. The nature of the transition from one regime to the
other was, however, not understood in the framework of this
model.

More recently, Brasseletet al. f6,7g, identified experimen-
tally a new continuous transition from the small-amplitude
uniform precession state to a more complex state with a
precession-nutation type motion of the director. Recently,
this intermediate regime and the nature of the transitions
between the different states were successfully extracted from
a theory involving the full director dynamicssbut not the
velocity fieldd f8,9g.

However, quantitative differences with the experiment re-
main. In the experiment, the measured onset of the
precession-nutation motion turns out to be about 20% lower
than predicted by theory. Within the framework of the stan-
dard hydrodynamic description, one can think of two reasons
for the discrepancy. One is that in the theory, a plane-wave
approximation was used, whereas in the experiment, the
transversal size of the laser beam was of the order of the
thickness of the layer. Actually, the ratiod between the di-
ameter of the beam and the width of the layer is another
bifurcation parametersin the plane-wave approximationd
→`d and was shown to play a crucial role on the orienta-
tional dynamicsf10g. The other reason is that in almost all
theoretical treatments developed up to now, the velocity field
induced by the director motion has been neglected. Indeed,
director reorientation itself generates flow, even in the ab-
sence of external forces acting on the fluid. This is the so-
called backflow effect. To calculate it, one has to include the
equation for the velocityv and consider the coupled director-
velocity equations in the framework of the well-established
hydrodynamic approachf11g. To our knowledge, backflow
was considered in the context of light-induced orientational
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dynamics only inf12g. That treatment is restricted to small
director reorientation where backflow can be included in a
renormalizedsreducedd orientational viscosity, which does
not capture essential features. In Sec. III, we will make con-
tact with this approximation.

The aim of this article is to clarify the influence of the
backflow effect sat least in one particular geometryd.
Thereby, a full theory is developed starting from the nema-
todynamic equations, which eventually could be used for a
quantitative comparison with experiment.

Rigorous treatments of backflow effects have been pre-
sented before in the context of electrically driven director
dynamics in nematics. In particular, the Fréedericksz transi-
tion in twisted nematic cellsf13,14g, the backflow in the
relaxation of a hybrid aligned nematic cellsf15g, and
switch-on effects in hybrid aligned cellsf16g were consid-
ered. It turns out that in these cases the backflow leads to
qualitative changes of the director dynamics. Another inter-
esting examplesalthough in a different contextd is the influ-
ence of the backflow in the problem of capillary waves at
nematic-isotropic interfaces. Inf17g, the backflow was
shown to play an important role on the dispersion relation of
capillary waves.

The paper is organized as follows. In Sec. II, we present
the theoretical framework of our problem by eliminating the
flow field adiabatically. This theory can be applied also to
systems where the director is reoriented by other torques
selectric, magnetic,…d. In Sec. III, we perform the linear
stability analysis of the homeotropic state and show the in-
fluence of the backflow. The numerical method for calculat-
ing the dynamical regimes is described in Sec. IV. In Sec. V,
we present the bifurcation scenario for our system and com-
pare with the known scenario without backflow. Finally, our
conclusions and perspectives are summarized in Sec. VI.
Some expressions appearing in the velocity-eliminated direc-
tor equations are listed in Appendix A. The equations for the
light propagation in terms of the amplitudes for the ordinary
and extraordinary waves are derived in Appendix B.

II. THEORY

A. Basic hydrodynamic equations

The Navier-Stokes equation for the velocityv can be writ-
ten asf11g

rms]t + v · = dvi = − = jspdi j + pi j + Tij
viscd, s1d

whererm and p are the density and the pressure of the LC,
respectively.pi j is the Ericksen stress tensor defined as

pi j =
]F

]s] jnkd
]ink i = x,y,z, s2d

where summation over doubly occurring indices is assumed.
In Eq. s2d, F is the free energy density which consists of the
elastic part,

Fselastd =
K1

2
s= ·nd2 +

K2

2
sn·=3nd2 +

K3

2
sn3=3nd2

s3d

and the external part which is here

Fsextd = −
«a

16p
un ·Eu2. s4d

Here K1, K2, and K3 are, respectively, the splay, twist, and
bend elastic constantsf11g and E is the amplitude of the
optical electric field. The viscous stress tensorTij

visc in Eq. s1d
is written in terms of the six Leslie coefficientsai f18g,

− Tij
visc = a1ninjnknlAkl + a2njNi + a3niNj + a4Aij + a5njnkAki

+ a6ninkAkj. s5d

The symmetric strain-rate tensorAij and the vectorN, which
gives the rate of change of the director relative to the fluid,
are

Aij = s]iv j + ] jvid/2,

N = s]t + v · = dn − v 3 n. s6d

Herev=s=3vd /2 is the local fluid rotation. The Leslie co-
efficients satisfy the Parodi relationa2+a3=a6−a5 f19g. In
addition, we assume incompressibility of the fluidsthe den-
sity rm is constantd,

= ·v = 0. s7d

The equation for the directorn is

g1s]t + v·=− v3dn = − d='sg2A=n + hd, s8d

whereg1=a3−a2 is the rotational viscosity andg2=a3+a2.
h is the molecular field obtained from the variational deriva-
tives of the free-energy densityF,

hi =
dF

dni
=

]F

]ni
− ] jS ]F

]ni,j
D, i = x,y,z. s9d

It should be noted that the variational derivatives are carried
out at fixed electric fieldE. The projection operatordi j

'=di j
−ninj in Eq. s8d ensures conservation of the normalization
n2=1.

If the directorn is driven by external forcesshere by an
optical fieldd, then due to the coupling of Eqs.s1d and s8d a
macroscopic flow can appear. Such a flow that appears as a
result of director reorientation is called backflow.

B. Adiabatic elimination of the flow field

We will consider a nematic layer of thicknessL situated in
the sx ,yd plane. All physical quantities will be assumed to
depend onsz,td only. Then, from the incompressibility con-
dition s7d and the no-slip boundary conditions

uvuz=0,L = 0 s10d

one immediately concludes that thez component of the ve-
locity vanishes,
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v = „vxsz,td,vysz,td,0…, s11d

so v is parallel to the plane of the layer. Moreover, all con-
vective derivativesv ·= vanish.

We may distinguish two time scales in the hydrodynamic
description: one is the director relaxation timet, the other
the momentum diffusion timetvisc which is associated with
the relaxation ofv sactually with the vorticity ofvd,

t =
g1L

2

p2K3
, tvisc =

rmL2

g1
. s12d

Typically t,1 s andtvisc,10−6 s. Using the fact thattvisc
!t, the Navier-Stokes equations1d can be considerably sim-
plified as the velocity follows adiabatically the motion of the
director. Thus, the whole left-hand side of Eq.s1d can be
neglected. In the absence ofx, y dependence, the only con-
tributions to Eq.s1d come from j =z. Finally, taking into
account thatpxz=pyz=0 since]xnk=]ynk=0 fsee Eq.s2dg, the
following relations are obtained from Eq.s1d:

− Txz
viscsz,td = Cxstd,

− Tyz
viscsz,td = Cystd, s13d

whereCxstd andCystd are functions that do not depend onz
and will be fixed by the boundary conditions. The third equa-
tion following from Eq.s1d can be used to find the pressure
psz,td but this is not of interest here. Straightforward calcu-
lations ofTxz

visc from Eqs.s5d lead to

− Txz
viscsz,td = Sa2nz − a3

nx
2

nz
D]tnx − a3

nxny

nz
]tny + f2a1nx

2nz
2

+ sa5 − a2dnz
2 + sa3 + a6dnx

2 + a4g
U

2

+ nxnyf2a1nz
2 + a3 + a6g

V

2
= Cxstd, s14d

whereU=]zvx andV=]zvy. The equation forTyz
visc is obtained

from Eq.s14d by interchanging the indicesx andy snote that
U andV are also interchangedd.

The director equationss8d reduced to

g1]tnx + nzfsa2 − g2nx
2dU − g2nxnyVg = Lx, s15d

g1]tny + nzfsa2 − g2ny
2dV − g2nxnyUg = Ly, s16d

where

Li = − fd='hgi, i = x,y s17d

is the corresponding component of the sum of the elastic and
externalsin our case opticald torques acting on the director.
The expressions will be given later.

As a next step, we use Eqs.s15d ands16d to eliminate the
time derivatives of the director from Eq.s14d. The procedure
is analogous to that used inf20g for a simpler situation. We
are left with the following equations for the velocity gradi-
entsU, V:

Sgx a

a gy
DSU

V
D + S fx

fy
D = SCx

Cy
D , s18d

where

a =
nxny

2g1
fg2sa2 + 2a3d + g1sa5 + 2a1d

− 2sg2
2 + a1g1dsnx

2 + ny
2dg,

gx = a
nx

ny
−

1

2g1
hfg1sa2 − a5d + 2a2

2gnz
2 − a4g1j,

fx =
1

g1nz
fsa2nz

2 − a3nx
2dLx − a3nxnyLyg. s19d

gy and fy are obtained by interchanging the indicesx andy in
the expressions forgx and fx. One can invert the matrix in
Eqs.s18d and thus solve forU, V,

SU

V
D =

1

a2 − gxgy
SasCy − fyd − gysCx − fxd

asCx − fxd − gxsCy − fyd
D . s20d

Equations s20d still contain the unknown quantities
Cxstd ,Cystd. They can be determined by integrating Eqs.s20d
across the layer. The integrals of the left-hand side vanish
due to the boundary conditionss10d. Thus a set of linear
equations forCx andCy is obtained that has the following
solution:

Cx =
I1I3y + I3xI2y

I2xI2y − I1
2 , Cy =

I1I3x + I3yI2x

I2xI2y − I1
2 , s21d

where

I1 =E
0

L a

a2 − gxgy
dz, I2x =E

0

L gy

a2 − gxgy
dz,

I3x =E
0

L gyfx − afy
a2 − gxgy

dz. s22d

I2y and I3y are obtained by interchanging the indicesx andy
in the expressions forI2x and I3x, respectively.

Thus, by using Eqs.s20d–s22d, the velocity gradientsU ,V
can be eliminated from the director Eqs.s15d and s16d.

C. The angle representation

From here on we will use normalized timet→ t /t, length
z→pz/L, and viscosity coefficientsai →ai /g1 sthe same
symbols will be keptd. We will also introduce dimensionless
elasticitiesk1=K1/K3, k2=K2/K3.

Next we introduce the representation adapted to our ge-
ometry in terms of the spherical anglesQsz,td and Fsz,td
such thatssee Fig. 1d

n = ssinQ cosF,sinQ sinF,cosQd. s23d

We write
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F = F0std + Fdsz,td, s24d

whereF0std does not depend onz and describes a rigid ro-
tation of the director around thez axis sno distortiond while
Fdsz,td includes twist distortion. The decompositions24d is
not unique in the sense that any constant can be added toF0
and then subtracted fromFd. The key point, however, is that
F0 depends on time only and can be unbounded whileFd is
required to remain bounded.

To derive the equation of motion forQ andF, we substi-
tute the expression for the directors23d into Eqs.s15d and
s16d and use Eqs.s20d–s22d for the velocity elimination. We
arrive at

]tQ = F1 +
2m2

g11 + g12
GLQ −

4m

g11 + g12
sD1 cosFd + D2 sinFdd,

s25d

]tF = F1 +
2a2

2 cos2 Q

g11
GLF +

4a2 cotQ

g11
sD1 sinFd

− D2 cosFdd, s26d

where the unknown quantitiesD1std ,D2std as well asm, g11,
and g12 are given in Appendix A, Eqs.sA1d–sA3d. LQ and
LF are the torques in the angle representation. We decom-
pose the torques into their elastic and external parts,

LQ = LQ
selastd + LQ

sextd, LF = LF
selastd + LF

sextd. s27d

Calculating the elastic contributions explicitly from Eqs.s3d,
s9d, ands17d, we find

LQ
selastd = f1 − s1 − k1dsin2 Qg]z

2 Q −
sin 2Q

2
hs1 − k1ds]zQd2

+ f1 − 2s1 − k2dsin2 Qgs]zFd2j,

LF
selastd =

1

sin2 Q

]

]z
hf1 − s1 − k2dsin2 Qgsin2 Q]zFj.

s28d

Transforming external contributions from Cartesian to
spherical coordinates, we obtain

LQ
sextd = S L

p
D2 1

K3
sLx

sextd cosF + Ly
sextd sinFd,

LF
sextd = S L

p
D2 1

K3
sLy

sextd cosF − Lx
sextd sinFd. s29d

The prefactor in the external torques results from the normal-
ization.

Note that the external torque acting on the director is still
not specified, i.e., the derived director equations can be ap-
plied to other problems.

The boundary conditions onQ andF aresstrong homeo-
tropic anchoringd

uQuz=0,p = 0, u]zFuz=0,p = 0. s30d

It should be noted that sometimessfor simplicityd, instead of
Eq. s10d, the following unrealistic boundary conditions are
used for the velocity fieldf21g:

uUuz=0,L = uVuz=0,L = 0 s31d

sstress-free boundariesd. One can immediately conclude in
this case from Eqs.s13d that uTxz

viscuz=0,L= uTyz
viscuz=0,L=0, which

gives Cx=Cy=0 as well asD1=D2=0. Finally, the director
equationss15d and s16d or s25d and s26d are considerably
simplified and the backflow effect manifests itself just in a
renormalization of the viscosityg1. However, such boundary
conditions cannot be realized in a real experiment.

D. The optical torque

We will consider a circularly polarized plane wave inci-
dent perpendicularly on the nematic layer. The light is polar-
ized in the plane of the layerfthe sx ,yd planeg and propa-
gates along the positivez axis ssee Fig. 1d. We consider the
case where the diameter of the laser beam is much larger
than the thickness of the layer. Thus we can assume that all
quantities depend only onz,t. Then the light inside the nem-
atic is treated as a plane wave.

We calculate the optical torque from Eqs.s4d, s9d, and
s17d. The electric fields obtained from Maxwell’s equations
are written in terms of the amplitudes of the ordinary and the
extraordinary wavesAo,Ae, and the phase delay between
these two waves induced by the nematic sliceaszd, see
Eqs. sB11d. Ao,Ae, and aszd are determined from Eqs.
sB6d–sB10d. One finally finds

LQ
sextd = r sin 2QSle

lo
D2

uAeu2,

LF
sextd = 2r

le

lo
RefAeAo

!eiaszdg. s32d

Herelo,le are the squares of the indices of refraction for the
ordinary and extraordinary waves given by Eq.sB8d. In Eqs.
s32d, r= I / Ic is the dimensionless incident light intensity,
with the LIFT threshold intensity given by

FIG. 1. Geometry of the setup: circularly polarized light inci-
dent perpendicularly on a nematic layer with the directorn0iz sho-
meotropic stated. The components of the directorn are described in
terms of the anglesQ ,F sQ=0 in the homeotropic stated.
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Ic =
2p2

L2

cs«' + «adK3

«a
Î«'

, s33d

wherec is the velocity of light in vacuum. The expression
s33d will be verified in the next section by showing thatr
=1 indeed corresponds to the linear threshold.

Thus, we have to solve the director equationss25d and
s26d with boundary conditionss30d coupled with the ODEs
for the amplitudes of the electric fieldsB6d with initial con-
ditions sB10d. Because of isotropy in thesx,yd plane, the
equations are invariant under a rotation around thez axis
sF→F+dFd. This can be seen from the fact that the torques
given in Eqs.s28d and s32d do not depend onF sonly on
]zFd.

III. LINEAR STABILITY ANALYSIS OF THE
BASIC STATE

We performed a linear stability analysis around the ho-
meotropic stateQ=0 with F undefined. When the light
propagates through the LC with homeotropic orientation, its
polarization remains unchanged and the phase delayaszd is
zero. We linearize Eq.s25d in Q. The linear part ofLQ is

LQ = ]z
2Q + 2rQuAe0u2 = ]z

2Q + rQ s34d

fsee Eq.sB10dg. Linearization of the terms proportional to
D1,D2 leads to the formula

D1 cosFd + D2 sinFd = −
I2

I5
, s35d

whereI2 and I5 are the integrals defined in Eq.sA2d. In this
approximation, they are given by

I2 = −
b

2a2s1 − bdE0

p

LQdz, I5 =
pb

a2
2s1 − bd

s36d

with

b =
2a2

2

a4 + a5 − a2
=

a2
2

h2
. 0, s37d

whereh2=sa4+a5−a2d /2 is an effective viscosityf11g. Fi-
nally, the linearized equations25d has the form

s1 − bd]tsQd = LQ −
b

p
E

0

p

LQdz. s38d

We look for solutions of the form

Qsz,td = Qszdest, s39d

wheres is the growth rate and we obtain from Eqs.s34d and
s38d

]z
2Q + fr − ss1 − bdgQ −

b

p
E

0

p

dzf]z
2Q + rQg = 0. s40d

Taking into account the boundary conditionsuQuz=0,p=0, Eq.
s40d is solved by

Q = − cosFp

2
dG + cosFSp

2
− zDdG , s41d

wheredsrd satisfies the transcendental equation

2bsd2 − rdsinFp

2
dG + dsbr − d2dp cosFp

2
dG = 0 s42d

and

s =
r − d2

1 − b
. s43d

Noting thatr=d=1 is a solution of Eq.s42d, we expand the
equation with respect tod andr around this point. To lowest
order, one finds

d = 1 +
4bsr − 1d

p2s1 − bd + 8b
. s44d

Finally, the growth rates̃=s /t in physical units can be writ-
ten as

s̃ =
r − 1

tj
, s45d

where

j = 1 −S1 −
8

p2Db = 1 − 0.19
a2

2

h2
. s46d

One can see from Eq.s45d that the homeotropic state
loses stability atr=1. Replacingj by 1 corresponds to the
neglect of backflow. Thus, within the linear approximation,
backflow results in a renormalization of the rotational viscos-
ity g1 sin fact a reductiond. The same expression for the
reduction factorj was found inf12g where a one-mode ap-
proximation for the director components and smallness of
the twist distortion were used. Our derivation is exact within
the linearization around the homeotropic state.

In the calculations, we took the viscosity coefficients for
the nematic 5CBssee Table Id. For these parameters, the
value of j turns out to bej.0.85. Forsunrealisticd stress-
free boundary conditionsfsee Eq.s31dg, one obtainsj=1
−b.0.20.

IV. SIMULATIONS

As a next step, we simulated the dynamic equations listed
at the end of Sec. II. For this purpose, we expandQ andF
with respect toz in systems of orthogonal functions which
satisfy the boundary conditionss30d,

TABLE I. Viscosity coefficients for the nematic 5CB atT
=26 °C ssee Ahlers inf22gd. a6=a2+a3+a5 sParodi relationd.

Viscosities a1 a2 a3 a4 a5

In units
of dyn s/cm2

−0.066 −0.77 −0.042 0.634 0.624

Normalized tog1 −0.091 −1.058 −0.058 0.871 0.857
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Q = o
n=1

`

QnstdVnszd,

F ; F0std + Fdsz,td = F0std + o
n=1

`

FnstdUnszd, s47d

whereVnszd are harmonic functions andUnszd are the Cheby-
shev polynomials of the second kindf23g,

Vnszd = sinnz, Unszd =
sinsn + 1dz

sinz
, s48d

which are normalized as

E
0

p

dzVmszdVnszd =E
0

p

dzUmszdUnszdsin2 z=
p

2
dmn.

s49d

After substituting the expansionss47d into Eqs.s25d ands26d
and projecting Eq.s25d onto the modesQn and Eq.s26d onto
Fn sGalerkin methodd, a set of coupled nonlinear ODEs for
the modesQnstd, Fnstd is obtained,

dFn

dt
= GnsQ1,Q2, . . . ;F1,F2, . . . d,

dQn

dt
= FnsQ1,Q2, . . . ;F1,F2, . . . d, n = 1,2, . . . .

s50d

The infinite set of ODEs given by Eqs.s50d was truncated
and solved by a standard Runge-Kutta method. The number
of modes was chosen such that the estimated accuracy of the
calculated director components was better than 1%swe took
ten modes on both anglesd. The ODEs forAo,Ae fEq. sB6dg
were solved at each time step. Note that neither Eq.s50d nor
Eq. sB6d with initial conditions sB10d contains the zeroth
modeF0. Thus, the ODE forF0std does not couple back to
Eqs.s50d sas a result of isotropyd,

dF0

dt
= G0sQ1,Q2, . . . ;F1,F2, . . . d. s51d

The procedure becomes more complicated compared to the
case without backflow because of the appearance of the in-
tegralssA2d that have to be evaluated at each time step.

When Qn and Fn do not depend ont fdFn/dt=dQn/dt
=0g, the angular velocitydF0/dt is a constant and the direc-
tor precesses uniformly around thez axis with a frequency

f0 =
1

2p

dF0

dt
. s52d

In this case, the problem is significantly simplified. In fact,
instead of solving a system of evolution equations forFnstd
andQnstd, we are now faced with a set of nonlinear algebraic
equations. After solving them by a Newton-Raphson method
and substitutingFn andQn into Eq.s51d, the frequencyf0 of
the uniform precession can be found. We call such a state a

uniform precessionsUPd state. Furthermore, the linear stabil-
ity analysis of a UP state can be performed by calculating the
eigenvalues of the Jacobian matrixJij =s]Fi /]x jdx=xUP

, where

x = sQ1, . . . ,QN,F1, . . . ,FMd

and

F = sG1, . . . ,Gn;F1, . . . ,Fnd.

The preceding discussion holds only for circularly polar-
ized light since for elliptical polarization the rotational in-
variance is broken. This considerably enriches the dynamics
f24–26g.

In the calculations, we used the known material param-
eters for the nematic E7, as inf8,9g swhere the backflow was
not includedd: K1=11.09310−7 dyn, K2=5.82310−7 dyn,
K3=15.97310−7 dyn f25g, ne=1.746,no=1.522f27g srefrac-
tive indices of the ordinary and extraordinary light, respec-
tivelyd. The viscosities, which are not known for E7, were
taken from 5CB, see Table I. The calculations were made for
a laser wavelength ofl=532 nm and a layer thickness of
100 mm. For these parametersIc.2.6 kW/cm2, t.4.6 s.

V. BIFURCATION SCENARIO

This section gives an overview of the bifurcation scenario
occurring in the system. It turns out that the qualitative fea-
tures are not changed by the backflowsseef8,9g for detailsd.

We will use the phase delayD;asz=pd between the or-
dinary and the extraordinary wave induced by the whole
layer, see Eq.sB9d, to characterize the output state.D de-
pends onQ only and is a global measure of the amplitude of
reorientation. It has a direct experimental interpretation since
the quantityD /2p represents roughly the number of self-
diffraction rings in the far fieldf28g.

In Fig. 2,D /2p is plotted versus the normalized intensity
r. The solid lines represent stable uniform precessionsUPd
states, while the dashed lines correspond to precession states
that are unstable. The region in gray corresponds to a non-

FIG. 2. D /2p versusr in semilogarithmic scale. Solidsdashedd
curves correspond to stablesunstabled UP solutions. Gray region:
nonuniform precession states of the director. Dash-dotted lines in
the sr28 ,r38d interval: nonuniform precession states of the director
when backflow is neglected. The fact thatr38.r2 is accidental.
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uniform precessionsNUPd where nutationsdD /dtÞ0d is
coupled to precession. In this regime, the lower and the up-
per lines that limit the region correspond to the minimum
and maximum values taken byD during its oscillation. The
UP lines are practically unchanged by the backflow. The
NUP region without backflow extends fromr28 to r38 sin-
cluded in Fig. 2d.

The optical Fréedericksz transition occurs atr=1 via a
subcritical Hopf-type bifurcation where the system settles to
a uniform precession state with a small reorientation ampli-
tude sD,p so thatQ2!1, sinceL /l@1 f5gd labeled UP1.
Decreasing the intensity from the UP1 regime, the system
switches back to the unperturbed state atr=r1

* .0.88 where
a saddle-node bifurcation occurs. The trajectory in the
snx,nyd plane is a circle, whereas in a coordinate system that
rotates with frequencyf0 around thez axis it is a fixed point.
The time Fourier spectra of the directorn and velocityv
have one fundamental frequencyf0. Qn, Fn, and D do not
depend on time.

In Fig. 3, the precession frequencyf0 of the UP1 state
versusr is shown for the case with and without backflow. As
expected, the backflow results in an increase off0 becauseg1
effectively decreases. The ratioj= f0

! / f0,1, wheref0 sf0
!d is

the precession frequency when the backflow issis notd in-
cluded, is shown by the inset in Fig. 3. It turns out thatj has
a maximum nearr=1.1. The maximal value is near to the
damping factorj.0.85 obtained from the linear stability
analysis of the homeotropic statessee Sec. IIId, but for larger
intensities it decreases substantially.

With further increase of the intensity, the UP1 loses sta-
bility via a supercritical Hopf bifurcation atr=r2 where the
director starts to nutatesNUP regimed. For the NUP state, all
modesQn and Fn with nù1 are time-dependent and their
Fourier spectrum contains frequenciesmf1, wherem is an
integer. The spectra of the phase delayD, director n, and
velocity v have contributions at frequencies given by the
simple formulas

D̃ = hmf1j,

ñ = hf0,mf1 ± f0j,

ṽ = hf0,mf1 ± 2f0j. s53d

In Figs. 4sad and 4sbd, a typical trajectory in thesnx,nyd
and svx,vyd plane is shown atz=p /2−, s,=0.1d for the
NUP state. The reason for this somewhat arbitrary value ofz
is to have contributions from all polar modes since for the
evenn, Qn sinsnzd is zero at the center of the cellsz=p /2d.
The trajectories in the laboratory framesshownd are not
closed because the directorsas the flowd is characterized by
two incommensurate frequenciesf0 sprecessiond and f1 snu-
tationd. However, the directorsas the flowd performs a simple
periodic motion with a frequencyf1 in the frame that rotates
with frequencyf0 around thez axis. It should be pointed out
that the time averages ofvx and vy are zerosno external
flowd.

In some narrow region aroundr3<2.4, the periodT
=1/ f1 of the NUP increases progressively with increasing
light intensity, and indeed appears to diverge logarithmically
at r3. Thus asr approachesr3, the NUP limit cycle collides
with the unstable UPS branch represented by a saddle. In
fact, we deal here witha homoclinic bifurcationof the sim-
plest type where a limit cycle collides with a saddle point

FIG. 3. Dimensionless precession frequencyf0 versusr for the
case withsupper lined and without backflow. Solidsdashedd curves
correspond to stablesunstabled solutions. Inset:j= f0

! / f0 versusr,
wheref0 sf0

!d is the precession frequency when the backflow issnotd
included.

FIG. 4. Typical phase portraits in thesnx,nyd sad andsvx,vyd sbd
plane for the NUP regimesr=1.80d at some fixed value ofz. The
trajectories are plotted for the same time interval in both cases.
vx,vy are dimensionless.
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having only one unstable directionf29g sall the eigenvalues
have negative real parts except one, which is real and posi-
tived.

At r=r3, the system switches abruptly to a uniform pre-
cession with large reorientation amplitudesQ2,1 so that
D@1d labeled UP2. Note that the period of precession 1/f0
is several orders of magnitude larger than that in the UP1 and
NUP regimes. Decreasing the intensity in the UP2 regime,
the system switches back to the UP1 regime atr=r3

* .1.08.
It is worth noting that the unstable UP1 branchsr.r2d
makes a loopsnot shown in Fig. 2d and connects with the
other unstable uniform precession branch, UPS, which itself
connects with UP2ssee Fig. 2d.

The phase delayD for the UP regimes is only slightly
different from the case without backflow. However, the re-
gime of nonuniform director precessionsNUPd shifts to
higher intensities. As is seen from Fig. 2, the thresholds for
the NUP and for the UP2 regimes turn out to ber2=1.75 and
r3=2.4 instead ofr28=1.45 andr38=1.75 when the backflow
is neglectedf8,9g. Thus the backflow leads to a quantitative
change of the bifurcation scenario.

In Fig. 5, typical profiles for the velocity componentvx
versusz sat a fixed timet wherevx has maximal amplituded
are shown for a UP1, UP2, and NUP state. One can see that
the amplitude of the velocity in the NUP regime is signifi-
cantly larger than that for the UP regimes. An interesting
and, at first sight, surprising fact is that for the UP2 state,vx
oscillates fairly rapidly across the cell. The reason is that the
interference structure of the ordinary and the extraordinary
light for the UP2 states leads to an oscillating behavior of the
electric part of the torquefsee the expression forLF in Eq.
s32dg resulting in a similar structure in]zFd, which drives the
velocity field. This occurs only forD=aspd@1, as is the
case for the UP2 states. Forr=2.3, one hasD /2p.25.5, see
Fig. 2, and there are indeed 26 minima in the velocity field of
Fig. 5. Since in the UP1 and NUP regimesD is always less
than 2p, the velocity field has only one or two extrema.

In Fig. 6, the typical trajectories of the fluid motion oc-
curring in thesx,yd plane for the UP1, NUP, and UP2 states
are shown at a fixed value ofz=p /2−0.1, wherexstd

=e0
t vxst8ddt8 and ystd=e0

t vyst8ddt8. The period of the fluid
motion is characterized by the period of precessionT0
=1/ f0 for UP states and by bothT0 and the period of nutation
T1=1/ f1 for the NUP state. In present example,T0 turns out
to beT0.9t andT0.147t for the UP1 statesr=1.70d and
for the UP2 statesr=2.30d respectively. For the NUP state
sr=2.30d, we foundT0.10t andT1.2t. One can conclude
that the fluid motion differs qualitatively for three types of
states. Indeed, for the UP2 state, the fluid motion develops
along a circle with the radius that is much larger than that for
the UP1 state. Furthermore, in the latter case the motion is
much faster. It is also qualitatively different from that for the
NUP state, as is seen from Fig. 6. We thus speculate that the
backflow can act as a sensitive diagnostic to distinguish the
three types of director motion.

VI. CONCLUSION

In the present article, we have examined the influence of
backflow on the director dynamics when driven by circularly
polarized light. For this purpose we have, after adiabatic
elimination of the flow field, performed a linear stability
analysis around the basic state in order to assess the “linear-
ized viscosity reduction factor.” Then we have simulated the
full set of nematodynamic equations and demonstrated that
backflow does not lead to qualitative changes in the dynami-
cal scenario, but does lead to substantial quantitative changes
in the secondary bifurcation thresholds. It turns out that the
regime of nonuniform precession shifts to higher light inten-
sities by about 20% and exists in a larger interval. However,
the experimental values of the thresholdsr2,r3 are even
smaller than that given by the theory without backflowf9g.
One is now forced to conclude that the discrepancy between
the theoretical predictions and the experiment is strongly af-
fected by the fact that in the experiments the beam size was
not large compared to the layer thickness, as assumed in our
theory. In fact, the beam size was of the order of the layer
thickness. By using a large aspect-ratio geometry, one is now
safter this calculationd in a position to test the theoretical

FIG. 5. Profiles of the dimensionlessvx versus normalizedz at
times when the respective spatial maximum is maximal. Long-
dashed line: UP1 statesr=1.70d. Solid line: NUP state rather close
to the homoclinic bifurcationsr=2.30d where one has pronounced
maxima in time. Dashed line: UP2 statesr=2.30d. The dimension-
less velocityvx.0.6 corresponds to 4mm/s.

FIG. 6. Trajectories of the fluid motion for different states of the
director motion. Long-dashed curve: UP1 statesr=1.70d. Solid
line: NUP statesr=2.30d. Dot-dashed line: UP2 statesr=2.30d.
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framework quantitatively. This can be done by use of the
dye-doped nematic because the values of LIFT in this case
can be two orders of magnitude smaller than for a pure nem-
atic ssee f30,31g and references thereind. The fact that the
threshold intensity is low allows the spot size of the light to
be much larger than the thickness of the layer, thus the plane-
wave approximation assumed in the theory might be better
achieved in the experiment.

We have also found an unanticipated spatial oscillation of
the backflow in the UP2 regime. It results from spatial oscil-
lations of the director twist]zF, which are a consequence of
oscillations in the torque resulting from interference phe-
nomena between ordinary and extraordinary light. Possibly
the strong differences of the flow in the various states can be
observed by visualizing the flow field using small dissolved
tracer particles, see, e.g.,f32g. In that case, we expect that the
circular trajectoriesfin the sx,yd planeg with different rota-
tion sign sand radius amplituded for particles lying in differ-
ent z positions will be especially visible for UP2 states sig-
nifying the spatial oscillation acrossz.
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APPENDIX A: THE EXPRESSIONS FOR D1,D2

Straightforward calculations give the following expres-
sions forD1,D2 needed in Eqs.s25d and s26d:

D1 =
I2sI4 − I5d + I1I3

I5
2 − I3

2 − I4
2 , D2 =

I1sI4 + I5d − I2I3

I5
2 − I3

2 − I4
2 , sA1d

with

I1 =E
0

p Ha2 sin 2QLF cosFd

2g11
+

mLQ sinFd

g11 + g12
Jdz,

I2 =E
0

p Ha2 sin 2QLF sinFd

2g11
−

mLQ cosFd

g11 + g12
Jdz,

I3 =E
0

p g12 sin 2Fd

g11sg11 + g12d
dz,

I4 = −E
0

p g12 cos 2Fd

g11sg11 + g12d
dz,

I5 =E
0

p 2g11 + g12

g11sg11 + g12d
dz. sA2d

Herem, g11, andg12 depend onQ only,

msQd = a2 − g2 sin2 Q,

g11sQd = a4 + fa5 − a2 − 2a2
2gcos2 Q,

g12sQd = sa5 − a2g2 + 2fa1 + g2
2gcos2 Qdsin2 Q. sA3d

APPENDIX B: EQUATIONS FOR THE LIGHT
PROPAGATION

Maxwell’s equations contain the dielectric tensor that de-
pends on the director components

«i j = «'di j + «aninj , sB1d

where«a=«i−«' is the dielectric anisotropy and«' s«id is
the dielectric permittivity perpendicularsparalleld to n. We
write the electric field in the formEsr ,td=1/2fEsz,tde−ivt

+c.c.g, wherek0=v /c is the wave number in vacuum and
Esz,td is the amplitude that varies slowly in time compared
to v−1 and obeys the equation

]2

]z2SEx

Ey
D = −

k0
2

«zz
MSEx

Ey
D , sB2d

where

M = S «xx«zz− «xz
2 «xy«zz− «xz«yz

«xy«zz− «xz«yz «yy«zz− «yz
2 D

in case of perpendicular incidence. Thez component of the
electric field can be found from the following relation:

Ez = −
«xzEx + «yzEy

«zz
. sB3d

We can now perform a transformation from the basissex,eyd
into the local basisseo,ee

'd where the matrixM has diagonal
form f33g. In this new coordinate system, the field compo-
nents are the amplitudes of the ordinary waveEo and the
transversal part of the extraordinary waveEe

' fnote thatEe
'

=Ee−sEeezdezg and are given by

SEo

Ee
' D = S− sinF cosF

cosF sinF
DSEx

Ey
D . sB4d

The transversal part of the electric field expressed in the two
representations is

E' = Exex + Eyey = Ee
'ee

' + Eoeo. sB5d

Introducing dimensionless quantitiesz→zp /L, k0→k0L /p
sL is the thickness of the layerd, and rewriting Eq.sB2d in
terms ofEo, Ee' under theslowly varying envelope approxi-
mationsk0@1d, the equations for the ordinary and extraordi-
nary waves can be derived,

]zAo = − s]zFdÎle

lo
eiaszdAe,

]zAe = −
s]zledAe

4le
+ s]zFdÎlo

le
e−iaszdAo. sB6d

Ao,Ae are amplitudes that vary slowly withz on the scalek0
−1

and are defined by
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Eo = Aoe
ik0Îloz, Ee' = Aee

ik0e0
zdz8Îlesz8d sB7d

and

lo = «', le =
«'s«a + «'d

«' + «a cos2 Q
, sB8d

aszd = k0E
0

z

sÎle − Îloddz. sB9d

Here aszd is the phase delay between the ordinary and ex-
traordinary waves induced by the nematic slice of thickness
z.

The initial conditions for the amplitudesAo,Ae snormal-
ized to the amplitude of the incoming lightd at z=0 are

uAe0u2 = uAo0u2 =
1

2
, Ae0Ao0

! = ±
i

2
, sB10d

where the sign in Eq.sB10d defines the helicity of the inci-
dent light.

The components of the electric fieldEx,Ey are related
with Ae,Ao as follows:

uExu2 = cos2 FuAeu2 − sin 2F RefAeAo
!eiaszdg + sin2 FuAou2,

uEyu2 = cos2 FuAou2 + sin 2F RefAeAo
!eiaszdg + sin2 FuAeu2,

ExEy
! + Ex

!Ey = sin 2FsuAeu2 − uAou2d

+ 2 cos 2F RefAeAo
!e−iaszdg. sB11d
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