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Influence of the backflow effect on the orientational dynamics induced by light in nematics
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We investigate the dynamical phenomena induced by a circularly polarized plane wave incident perpendicu-
larly on a homeotropically aligned nematic layer. We study theoretically the influence of the velocity field
(backflow effect on the bifurcation scenario. Whereas backflow leads to substantial quantitative changes of
secondary bifurcation thresholds, the overall bifurcation scenario remains unchanged. In the regime of uniform
precession of the director with large reorientation, an unanticipated spatial oscillation of the flow field across
the layer is found. Quantitative comparison with experimental large-aspect ratio systems is now possible.
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I. INTRODUCTION ther discontinuous transition with large hysteresis from the

- ) ) ) precession regime with small reorientation amplitude occur-
Liquid crystals(LCs) demonstrate a rich variety of inter- ying apove the LIFT to one with large reorientation. The

esting optical phenomena which have been studied interypproximate model presented could describe qualitatively
sively during the past two decades. A nematic LC behavepoth regimes of uniform director precession. The frequency
optically as a uniaxial anisotropic medium with the optical of the large-amplitude precession was found to be much
axis along the local molecular orientation described by thesmaller than the one just above the LIFT and to exhibit rapid
director n(r,t) (note thatn and -n are indistinguishabje  variations with the incident intensity reaching zero at

Furthermore, when light propagates through the nematic, itsoughly periodic intervals. The authors presented clear ex-
electric field exerts a torque on the molecules which carperimental evidence of the frequency reduction in the second
induce molecular reorientation. The director reorientationregime. The nature of the transition from one regime to the
leads to a change of the optical properties of the LC and, agther was, however, not understood in the framework of this
a consequence, the light polarization is changed as it propanodel. ) N )

gates through the layer. Such feedback between the light and More recently, Brasselet al.[6,7], identified experimen-

the nematic gives rise to interesting nonlinear dynamicaFa"_y a new continuous transition from the small-amplitude
phenomendl,2]. uniform precession state to a more complex state with a

The first (primary) instability is the so-called light- Précession-nutation type motion of the director. Recently,
induced Fréedericksz transitighlFT), where the initial di- this intermediate regime and the nature of the transitions
rector alignment becomes unstable above a certain light irpetween the different states were successfully extracted from

tensity and the director reorienfd]. One of the most se}?)gi(t)%igt\;)oe\gg? the full director dynamicfut not the
intriguing geometries is obtained when a circularly polarized However, qu:;miitative differences with the experiment re-

light wave Is incident perpendicularly ona thin,. homeotropi-main_ In the experiment, the measured onset of the
cally ""."gf‘eq layer of nemat!c cel(This is a thin layer of recession-nutation motion turns out to be about 20% lower
nematic liquid crystal sandwiched between tvyo glass plate han predicted by theory. Within the framework of the stan-
whose surfaces have been treated so as to induce a perp rd hydrodynamic description, one can think of two reasons

d|culatr_ o_rlfzntfatl(;r} otfh_the nerr:ﬁncu?:l_rregtorbat th% ?Iass'for the discrepancy. One is that in the theory, a plane-wave
nématc interface.in this case, the IS observed 1o be approximation was used, whereas in the experiment, the

weakly hysterejm, and. above threshold the molecu]es Uransversal size of the laser beam was of the order of the
dergo a collective rotatiof3] that corresponds to a uniform thickness of the layer. Actually, the ratidbetween the di-

precession of the director around the symmetry axis. Thi%meter of the beam and the width of the layer is another

effect is WeII_understood in the frame of a purely CIaSSicalbifurcation parametefin the plane-wave approximatios
(hydrodynamig¢ approach 3]. It also can be interpreted in a o) and was shown to play a crucial role on the orienta-

quantum picture as spin angular momentum transfer from thﬁonal dynamicg10]. The other reason is that in almost all

light to the medium and is called self-induced St'mUIatedtheoretical treatments developed up to now, the velocity field

“th sfg?tter;t?gﬂ].f | and . tal i tiaati fth induced by the director motion has been neglected. Indeed,
N [>], a theoretical and experimental Investigation ot e ;.o o yegrientation itself generates flow, even in the ab-

dynamical behavior of the system for the region of higher,

intensiti ed. Th thors[67 ob daf sence of external forces acting on the fluid. This is the so-
Intensities was reported. The authorsio] observed a fur- o a4 hackflow effect. To calculate it, one has to include the

equation for the velocity and consider the coupled director-

velocity equations in the framework of the well-established
*Electronic address: Dmitry.Krimer@uni-bayreuth.de hydrodynamic approacfll]. To our knowledge, backflow
"Deceased. was considered in the context of light-induced orientational
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dynamics only in[12]. That treatment is restricted to small (elast _ K1 , Ko , K 5
director reorientation where backflow can be included ina F =E(V'”) +?(n-V><n) +?(”XVX“)
renormalized(reduced orientational viscosity, which does
not capture essential features. In Sec. Ill, we will make con- 3
tact with this approximation. _ _ and the external part which is here

The aim of this article is to clarify the influence of the

backflow effect (at least in one particular geomeltry €

(exth — _ a El2
Thereby, a full theory is developed starting from the nema- F= 1677|n E[*. (4)
todynamic equations, which eventually could be used for a ] .
guantitative comparison with experiment. Here Ky, K,, andK; are, respectively, the splay, twist, and

Rigorous treatments of backflow effects have been prebend elastic constan{s1] and E is the amplitude of the
sented before in the context of electrically driven directoroptical electric field. The viscous stress tensgi”in Eq. (1)
dynamics in nematics. In particular, the Fréedericksz transitS Written in terms of the six Leslie coefficients [18],
tion in twisted nematic cell§13,14], the backflow in the
relaxation of a hybrid aligned nematic celld5], and
switch-on effects in hybrid aligned cell46] were consid- + aginAy.- (5)
ered. It turns out that in these cases the backflow leads . . .
qualitative changes of the director dynamics. Another interE(P.he syrr1nmetr|c sftrarl:n-rate t;enhserj _and the vlec_toN, Wp'd;l .
esting exampldalthough in a different contexis the influ- gives the rate of change of the director relative to the fluid,

i . are
ence of the backflow in the problem of capillary waves at

- T;)jisc: alninjnkn|Ak| + azani + aghy; N] + a4AiJ- + a5nj nkAki

nematic-isotropic interfaces. If17], the backflow was A = (d; + d)l2,
shown to play an important role on the dispersion relation of
capillary waves. N=(4+V-V)n-wXn. (6)

The paper is organized as follows. In Sec. I, we present
the theoretical framework of our problem by eliminating the Here w=(V Xv)/2 is the local fluid rotation. The Leslie co-
flow field adiabatically. This theory can be applied also toefficients satisfy the Parodi relatian,+ as=ag—as [19]. In
systems where the director is reoriented by other torquesddition, we assume incompressibility of the flttie den-
(electric, magnetic,.). In Sec. Ill, we perform the linear sity p,, is constant
stability analysis of the homeotropic state and show the in-
fluence of the backflow. The numerical method for calculat- V-v=0. (7)
ing the dynamical regimes is described in Sec. IV. In Sec. ViThe equation for the directar is
we present the bifurcation scenario for our system and com-
pare with the known scenario without backflow. Finally, our Y13 +V-V=w@X)n == 5 (yAn+h), (8)

conclusions and perspectives are summarized in Sec. V\'/vhereylzag—az is the rotational viscosity angh,= as+ as.

Some expressions appearing in the velocity-eliminated direq; ig the molecuiar field obtained from the variational deriva-
tor equations are listed in Appendix A. The equations for the; o< of the free-energy densify,

light propagation in terms of the amplitudes for the ordinary

and extraordinary waves are derived in Appendix B. oF oF JdF .
h=—=—-g|-—], i=xyz 9
éhi 07ni (?ni’j
II. THEORY It should be noted that the variational derivatives are carried

out at fixed electric field. The projection operato&ij*:@j
—-nin; in Eq. (8) ensures conservation of the normalization
The Navier-Stokes equation for the velocitgan be writ- n?=1. . ) )
ten as[11] I_f the_dlrectorn is driven by exte_rnal forceghere by an
optical field, then due to the coupling of Eqg&l) and(8) a
) macroscopic flow can appear. Such a flow that appears as a
Pl +V - V)vi == V,(pé; + mj + T;*°), (1) result of director reorientation is called backflow.

A. Basic hydrodynamic equations

wherep,, andp are the density and the pressure of the LC,

! . . : B. Adiabatic elimination of the flow field
respectively.; is the Ericksen stress tensor defined as

We will consider a nematic layer of thicknelssituated in
the (x,y) plane. All physical quantities will be assumed to

= oF ane =X,z (2)  depend or(z,t) only. Then, from the incompressibility con-
a(d;ny) dition (7) and the no-slip boundary conditions
V0L =0 (10)

where summation over doubly occurring indices is assumed.
In Eq. (2), F is the free energy density which consists of theone immediately concludes that taecomponent of the ve-
elastic part, locity vanishes,
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V= (vy(z1),0,(z1),0), (11)

sov is parallel to the plane of the layer. Moreover, all con-

vective derivatives -V vanish.

PHYSICAL REVIEW E 71, 051711(2005

wh
We may distinguish two time scales in the hydrodynamic

description: one is the director relaxation timgthe other

the momentum diffusion time,;s. which is associated with

the relaxation ofv (actually with the vorticity ofv),

ot ol
772K3, visc ‘yl .

Typically 7~1 s andr,.~10°s. Using the fact that

(12)

< 1, the Navier-Stokes equatidft) can be considerably sim-
plified as the velocity follows adiabatically the motion of the

director. Thus, the whole left-hand side of BHd) can be

neglected. In the absence xfy dependence, the only con-

tributions to Eq.(1) come fromj=z Finally, taking into
account thatr,,= m,,=0 sincedn,=d,n=0[see Eq(2)], the
following relations are obtained from E¢L):

- TUS%(z,t) = C(),

- TV, 1) = Cy(1), (13)

8P
a g,/\Vv fy Cy
LY
a=s5 [yalaz + 2as) + yi(as + 2ay)
"1
=205+ ary) (g + )],
n, 1 27:2
g=a " - iy~ as) + 2a5In; — ayy},
ny 2’}/1
1 2 2
fy=——[(axn; = azn) Ly~ azn,nyLy]. (19)

Yin;

gy andf, are obtained by interchanging the indiceandy in
the expressions fog, and f,. One can invert the matrix in
Egs.(18) and thus solve folJ, V,

(U ) _ ;(a(cy - fy) - gy(cx -0
V a2 - gxgy a(cx - fx) - gx(cy - fy)

Equations (20) still contain the unknown quantities

). (20

whereC,(t) andCy(t) are functions that do not depend an  C,(t),C,(t). They can be determined by integrating E@)

and will be fixed by the boundary conditions. The third equa-across the layer. The integrals of the left-hand side vanish
tion following from Eq.(1) can be used to find the pressure due to the boundary conditiond0). Thus a set of linear
p(z,t) but this is not of interest here. Straightforward calcu-equations forC, andC, is obtained that has the following

lations of TV from Egs.(5) lead to

2
. n nen
-T(zt) = <a2nz - a3n—x) gy — ag :] any + [2a;n3n2
zZ zZ

U
+ (a5 = a)n + (az+ ag)ni + CVAJE

Y
+ N[ 2090 + az + ae]z = C(t), (14)

whereU=4d,v, andV=4d,v,. The equation folfy7“ is obtained
from Eq.(14) by interchanging the indicesandy (note that
U andV are also interchanged

The director equation&) reduced to

Y10y + Nl (@ = yonHU — Y n\V] =Ly, (15
Y1y + L (= M)V = ynn Ul = Ly, (16)

where
Li==[&"h], i=xy (17)

is the corresponding component of the sum of the elastic an |
external(in our case opticaltorques acting on the director.

The expressions will be given later.

As a next step, we use Eq45) and(16) to eliminate the
time derivatives of the director from E¢L4). The procedure
is analogous to that used j&0] for a simpler situation. We
are left with the following equations for the velocity gradi-

entsU, V:

solution:
_ lalgy + 15y _ lalgtlglo (21)
X~ 2 Y~ 2 1
I2x|2y_|1 I2x|2y_|l
where
L L
a
|1=f 2 dZ, |2X: 2_ng2,
o &~ 00y o &~ 00y
g, f,—af
lp= | 5—dz (22
o @ —0x9y

I, andl, are obtained by interchanging the indiceandy
in the expressions fdr, andl,,, respectively.

Thus, by using Eq920)—(22), the velocity gradientt),V
can be eliminated from the director Eq45) and (16).

C. The angle representation

From here on we will use normalized tinhe»t/ 7, length
z—mzIL, and viscosity coefficientsy, — «;/y, (the same
mbols will be kept We will also introduce dimensionless
asticitiesk; =K /K3, ko=K5/Ka.

Next we introduce the representation adapted to our ge-
ometry in terms of the spherical anglégz,t) and ®(z,t)

such that(see Fig. 1
n=(sin® cos®,sin® sind,cosO). (23)

We write
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FIG. 1. Geometry of the setup: circularly polarized light inci-
dent perpendicularly on a nematic layer with the direcigiiz (ho-
meotropic state The components of the directorare described in
terms of the angle®,® (®=0 in the homeotropic state

D =Dg(t) + Py(z 1), (24)

where®,(t) does not depend onand describes a rigid ro-
tation of the director around theaxis (no distortior) while
d4(z,t) includes twist distortion. The decompositi¢?4) is
not unique in the sense that any constant can be addég to
and then subtracted frody. The key point, however, is that
&, depends on time only and can be unbounded whjas
required to remain bounded.

To derive the equation of motion f@ and®, we substi-
tute the expression for the direct(®3) into Egs.(15) and
(16) and use Eqs.20)—<22) for the velocity elimination. We
arrive at

2u? 4

00 = [1+ K~ }L(_)— i (D cos®y+D,sindy),

J111 012 O111 012
(25)

202 cos 0 4a, cot®
od = {1 + @2 ]ﬁq) + a2 (Dysindy
Jd11 11

- D, cosdy), (26)

where the unknown quantitid3;(t),D,(t) as well asu, 911,
andg;, are given in Appendix A, EQ9A1)—<(A3). Lg and

PHYSICAL REVIEW E71, 051711(2009

0= (E

2
i([Z“”“’ cos® + L sind),
o K3 x Y

LE =

L\?1
( ) (L cos® - L sind). (29

o K3
The prefactor in the external torques results from the normal-
ization.

Note that the external torque acting on the director is still
not specified, i.e., the derived director equations can be ap-
plied to other problems.

The boundary conditions o and® are(strong homeo-
tropic anchoring

®|Z=0,1T = 01 (QZCD|Z=O,7T =0 (30)
It should be noted that sometiméer simplicity), instead of
Eqg. (10), the following unrealistic boundary conditions are
used for the velocity field21]:

UlzoL = Vlz=0L =0 (31)

(stress-free boundariesOne can immediately conclude in
this case from Eq€13) that T2 -0, = Ty =0, =0, which
gives C,=C,=0 as well asD,;=D,=0. Finally, the director
equations(15) and (16) or (25 and (26) are considerably
simplified and the backflow effect manifests itself just in a
renormalization of the viscosity,;. However, such boundary
conditions cannot be realized in a real experiment.

D. The optical torque

We will consider a circularly polarized plane wave inci-
dent perpendicularly on the nematic layer. The light is polar-
ized in the plane of the laydthe (x,y) plang and propa-
gates along the positive axis (see Fig. 1. We consider the
case where the diameter of the laser beam is much larger
than the thickness of the layer. Thus we can assume that all
quantities depend only ant. Then the light inside the nem-
atic is treated as a plane wave.

Ly are the torques in the angle representation. We decom- we calculate the optical torque from Eqg), (9), and

pose the torques into their elastic and external parts,
(27)

Calculating the elastic contributions explicitly from E@8),
(9), and(17), we find

L@ :Egkzlsb +EE§XD, £®=£$Iaso+£$xl).

L5 =[1~(1~kysir? 0],

,0)?

+[1 - 2(1 - ky)sir? 0](5,9)?},

L = {[1 (1 —ky)sir? ©]sir? @4,d}.

Si? © 9z
(28)

Transforming external contributions from Cartesian to(32), p=I/I,

spherical coordinates, we obtain

(17). The electric fields obtained from Maxwell’'s equations
are written in terms of the amplitudes of the ordinary and the
extraordinary wave#\,,A., and the phase delay between
these two waves induced by the nematic slie), see
Egs. (B11). A,,A. and a(z) are determined from Egs.
(B6)—(B10). One finally finds

LE=psin 2@( ) IA?,

A .

£ =2p RAAE?]. (32
0

Herel,, \. are the squares of the indices of refraction for the

ordinary and extraordinary waves given by E88). In Egs.

is the dimensionless incident light intensity,

with the LIFT threshold intensity given by
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| _2120(8L+8a)|<3

=2 (33

/
gaVe |

wherec is the velocity of light in vacuum. The expression
(33) will be verified in the next section by showing that

=1 indeed corresponds to the linear threshold.
Thus, we have to solve the director equati¢@s) and

(26) with boundary condition$30) coupled with the ODEs

for the amplitudes of the electric field@6) with initial con-

ditions (B10). Because of isotropy in théx,y) plane, the

equations are invariant under a rotation around zhexis

(®— P+ &P). This can be seen from the fact that the torques
where §(p) satisfies the transcendental equation

given in Egs.(28) and (32) do not depend omP (only on
D).

IIl. LINEAR STABILITY ANALYSIS OF THE
BASIC STATE

We performed a linear stability analysis around the ho-
meotropic state® =0 with & undefined. When the light
propagates through the LC with homeotropic orientation, its

polarization remains unchanged and the phase delayis
zero. We linearize Eq25) in ©. The linear part ofCg is

Lo =0 +2p0|Ag|*= 0O + pO (34)

[see Eq.(B10)]. Linearization of the terms proportional to

D,,D, leads to the formula

I
D, cos®y+D,sindy= —|—2, (35

5
wherel, andlg are the integrals defined in EGA2). In this
approximation, they are given by

b

b o
ly=———— | Lgdz lsg=——— (36
2 2a2(1—b)f0 0%z 157 2(1-b) (36)

with

2 2
200 _%

b= >0, (37)

aptas—a; 7

where 7,=(a,+as—a,) /2 is an effective viscosity11]. Fi-
nally, the linearized equatiof25) has the form

b a
(1-b)d(O®)=Lg - —f Ledz. (38)
m™Jo
We look for solutions of the form
O(zt) = O(2)e™, (39)

whereo is the growth rate and we obtain from E¢34) and
(38)

0 +[p-o(1-b)]O - %Fdz[ag@ +p®]=0. (40)
0

Taking into account the boundary conditior8|,-, ,=0, Eq.
(40) is solved by

PHYSICAL REVIEW E 71, 051711(2005

TABLE |. Viscosity coefficients for the nematic 5CB &t
=26 °C (see Ahlers iM22)). ag=ay+as+as (Parodi relation

Viscosities ay ay a3 ay as
In units -0.066 -0.77 -0.042 0.634 0.624
of dyns/cn?
Normalized toy; -0.091 -1.058 -0.058 0.871 0.857
T m
®=—cos{55]+cos{<§—z>5], (41)

2b(8 - p)sin{gg] + 8(bp - é‘z)wcos{gé} =0 (42

and
_p=¢
T 1-b°

(43

(oa

Noting thatp=5=1 is a solution of Eq(42), we expand the
equation with respect té andp around this point. To lowest
order, one finds

4b(p-1)
m(1-b)+8b’

Finally, the growth raté& =/ 7 in physical units can be writ-
ten as

s=1+ (44)

~_p-1
g = Té 1 (45)
where
8 a%
é=1-11-—)b=1-0.19—"=. (46)
e 72

One can see from Eq45) that the homeotropic state
loses stability app=1. Replacingé by 1 corresponds to the
neglect of backflow. Thus, within the linear approximation,
backflow results in a renormalization of the rotational viscos-
ity y; (in fact a reduction The same expression for the
reduction factoré was found in[12] where a one-mode ap-
proximation for the director components and smallness of
the twist distortion were used. Our derivation is exact within
the linearization around the homeotropic state.

In the calculations, we took the viscosity coefficients for
the nematic 5CB(see Table )l For these parameters, the
value of £ turns out to bet¢=0.85. For(unrealistig stress-
free boundary conditionfsee Eq.(31)], one obtainsé=1
-b=0.20.

IV. SIMULATIONS

As a next step, we simulated the dynamic equations listed
at the end of Sec. Il. For this purpose, we exp&hdnd &
with respect toz in systems of orthogonal functions which
satisfy the boundary condition(80),
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0=, 0,(1V,(2, 1o} UPZ;///’T»
n=1 !

g UPS |
o upl i/ :
14 P -
D = Dy(t) + Dg(z,1) = Do(t) + > D(DU(2),  (47) 5 \ L |
n=1 : | ; ==
whereV,(z) are harmonic functions arid,(z) are the Cheby- o1 ]! \\ Nép
shev polynomials of the second kip#3], Py i ! |
ot i | |
. _sin(n+1)z P IPsE 1Py Pyl P P!
Vi@ =sinnz, - Uy(2) = sinz ' (48) 08 1 12 14 16 18 2 22 24

. . p
which are normalized as

- - FIG. 2. A/27 versusp in semilogarithmic scale. Solitlashegl
f dz\i(2)V,(2) :f dzUm(z)Un(z)sinz 7= 7_75mn_ curves correspond to stablenstablg¢ UP solutions. Gray region:

0 0 2 nonuniform precession states of the director. Dash-dotted lines in
(49) the (p5,p3) interval: nonuniform precession states of the director

when backflow is neglected. The fact thgt= p, is accidental.

After substituting the expansioit47) into Eqs.(25) and(26)
and projecting Eq(25) onto the mode®,, and Eq.(26) onto  uniform precessiofUP) state. Furthermore, the linear stabil-
®, (Galerkin methogl a set of coupled nonlinear ODEs for ity analysis of a UP state can be performed by calculating the

the mode® (1), P,(t) is obtained, eigenvalues of the Jacobian matdix=(JF;/ iX;)x=y ., Where
do = 0
dtn:gn(®1,®2, ;CDl,q)z, ), X (@1, ,N,CD]_, ,CI)M)
and
de F=0G1, ... GniF1 - Fn)-
M= F(0,0, ... ;0,0 ...), N=1,2, ... . (G Mot o
dt The preceding discussion holds only for circularly polar-

(50) ized light since for elliptical polarization the rotational in-

o . variance is broken. This considerably enriches the dynamics
The infinite set of ODEs given by Eqé50) was truncated ‘£24—26.
¢
In

and solved by a standard Runge-Kutta method. The numb the calculations, we used the known material param-

of modes was chosen such that the estimated accuracy of thea,s for the nematic E7, as[i8,9] (where the backflow was
calculated director components was better than(Mtook | included: K,;=11.09x 107 dyn, K,=5.82x 1077 dyn

ten modes on both anglesThe ODES forAo, A [Eq. (B6)] =15 97x 1077 dyn([25), n,=1.746,n,=1.522[27] (refrac-

were solved at each time step. Note that neither(B0.nor e indices of the ordinary and extraordinary light, respec-
Eq. (B6) with initial conditions (B10) contains the zeroth tively). The viscosities, which are not known for E7, were

mode®,. Thus, the ODE forby(t) does not couple back to oy e from 5CB, see Table I. The calculations were made for

Egs.(50) (as a result of isotropy a laser wavelength ok=532 nm and a layer thickness of
dd, 100 um. For these parameters=2.6 kW/cn?, 7=4.6 s.
F:go(e)l,@z, ;q)l,q)z, ) (51)

The procedure becomes more complicated compared to the V. BIFURCATION SCENARIO

case without backflow because of the appearance of the in-
tegrals(A2) that have to be evaluated at each time step.
When ®, and ®,, do not depend on [dd,/dt=d6®,/dt
=0], the angular velocitgd,/dt is a constant and the direc-
tor precesses uniformly around thexis with a frequency

This section gives an overview of the bifurcation scenario
occurring in the system. It turns out that the qualitative fea-
tures are not changed by the backfltsee[8,9] for details.
We will use the phase delay= a(z=) between the or-
dinary and the extraordinary wave induced by the whole
1 dd, layer, see Eq(B9), to characterize the output stat®.de-
fo= o dt (52)  pends or® only and is a global measure of the amplitude of
reorientation. It has a direct experimental interpretation since
In this case, the problem is significantly simplified. In fact, the quantityA/2# represents roughly the number of self-
instead of solving a system of evolution equationsdgft)  diffraction rings in the far field28].
and®,(t), we are now faced with a set of nonlinear algebraic In Fig. 2,A/27 is plotted versus the normalized intensity
equations. After solving them by a Newton-Raphson methog. The solid lines represent stable uniform precessidR)
and substitutingb, and®,, into Eq.(51), the frequencyf, of  states, while the dashed lines correspond to precession states
the uniform precession can be found. We call such a state that are unstable. The region in gray corresponds to a non-
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FIG. 3. Dimensionless precession frequerigyersusp for the
case with(upper ling and without backflow. Soliddashedl curves (b)
correspond to stabl@unstablé solutions. Inset£=f5/fy versusp,
wherefy (f3) is the precession frequency when the backflonis)

. 0.1}
included. '?/;;'}{7
uniform precessionNUP) where nutation(dA/dt+0) is s> of ‘4‘5‘\

coupled to precession. In this regime, the lower and the up-
per lines that limit the region correspond to the minimum
and maximum values taken hy during its oscillation. The -0.1}
UP lines are practically unchanged by the backflow. The

NUP region without backflow extends from, to pg (in-

cluded in Fig. 2. -0.2 . : .
The optical Fréedericksz transition occurspatl via a 02 01 3 0.1 02
subcritical Hopf-type bifurcation where the system settles to

a uniform precession state with a small reorientation ampli- FIG. 4. Typical phase portraits in they, ny) (@) and(vy,vy) (b)
tude (A ~ 7 so that®2<1, sinceL/\>1 [5]) labeled UP1. plane for the NUP regimép=1.80 at some fixed value of. The
Decreasing the intensity from the UP1 regime, the systenwajectories are plotted for the same time interval in both cases.
switches back to the unperturbed stat@ap*l:O.SS where  v,,v, are dimensionless.

a saddle-node bifurcation occurs. The trajectory in the
(ny,ny) plane is a circle, whereas in a coordinate system that
rotates with frequency, around thez axis it is a fixed point.
The time Fourier spectra of the directarand velocityv

7 . /
— N ‘ A
A \\\:4(
X
7))

n={fo,mf £ fo},

have one fundamental frequen&y. ©,, ®,, andA do not ¥ ={fo,mfy £ 2f,}. (53)
depend on time. _ ) ] _
In Fig. 3, the precession frequendy of the UP1 state In Figs. 4a) and 4b), a typical trajectory in thén,,n,)

versusp is shown for the case with and without backflow. As and (v,,vy) plane is shown ag=n/2-¢ (£=0.1) for the
expected, the backflow results in an increasé,dfecause, ~ NUP state. The reason for this somewhat arbitrary value of
effectively decreases. The ratie-f5/f, <1, wheref, (f;) is  is to have contributions from all polar modes since for the
the precession frequency when the backflowissnot in- ~ evenn, ©,sin(nz) is zero at the center of the célt=/2).
cluded, is shown by the inset in Fig. 3. It turns out th&tas ~ The trajectories in the laboratory framghown are not
a maximum neap=1.1. The maximal value is near to the closed because the direct@s the flow is characterized by
damping factoré=0.85 obtained from the linear stability two incommensurate frequencigs(precessiopandf; (nu-
analysis of the homeotropic stagee Sec. Ill, but for larger  tation). However, the directofas the flow performs a simple
intensities it decreases substantially. periodic motion with a frequenci in the frame that rotates
With further increase of the intensity, the UP1 loses stawith frequencyf, around thez axis. It should be pointed out

bility via a supercritical Hopf bifurcation ai=p, where the that the time averages af, and v, are zero(no external
director starts to nutatéNUP regime. For the NUP state, all  flow).
modes®, and ®, with n=1 are time-dependent and their ~ In some narrow region around;~2.4, the periodT
Fourier spectrum contains frequencied;, wherem is an ~ =1/f; of the NUP increases progressively with increasing
integer. The spectra of the phase delsydirectorn, and light intensity, and indeed appears to diverge logarithmically
velocity v have contributions at frequencies given by theat ps. Thus asp approachegs, the NUP limit cycle collides
simple formulas with the unstable UPS branch represented by a saddle. In

5 fact, we deal here witla homoclinic bifurcatiorof the sim-

A ={mfy}, plest type where a limit cycle collides with a saddle point
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FIG. 5. Profiles of the dimensionlesg versus normalized at _12_12 _'3 _'4 6 4‘; é 12
times when the respective spatial maximum is maximal. Long- x(Uum)

dashed line: UP1 statp=1.70. Solid line: NUP state rather close

to the homoclinic bifurcatiorfp=2.30 where one has pronounced FIG. 6. Trajectories of the fluid motion for different states of the
maxima in time. Dashed line: UP2 stdje=2.30. The dimension-  director motion. Long-dashed curve: UP1 stdte=1.70. Solid
less velocityv,=0.6 corresponds to gm/s. line: NUP state(p=2.30. Dot-dashed line: UP2 state=2.30.

having only one unstable directig@9] (all the eigenvalues N . .
have %ega)t/ive real parts except one, which is ?eal and posT‘—ﬁJl_’x(t’).dt' and y(t)?fbvy(t )dt’. The period of the fluid
tive). motion is characterized by the period of precession
At p=ps, the system switches abruptly to a uniform pre-=1/f, for UP states and by boff, and the period of nutation
cession with large reorientation amplitud®?~1 so that T;=1/f; for the NUP state. In present examplg,turns out
A>1) labeled UP2. Note that the period of precessiofyl/ to beTy=97 andTy= 1477 for the UP1 statép=1.70 and
is several orders of magnitude larger than that in the UP1 anfibr the UP2 statdp=2.30 respectively. For the NUP state
NUP regimes. Decreasing the intensity in the UP2 regime(p=2.30, we foundT,=10r andT; = 27. One can conclude
the system switches back to the UP1 regimp=ap,=1.08.  that the fluid motion differs qualitatively for three types of
It is worth noting that the unstable UP1 branéh>p,)  states. Indeed, for the UP2 state, the fluid motion develops
makes a loopnot shown in Fig. 2 and connects with the along a circle with the radius that is much larger than that for
other unstable uniform precession branch, UPS, which itselfhe UP1 state. Furthermore, in the latter case the motion is
connects with UPZsee Fig. 2 much faster. It is also qualitatively different from that for the
The phase delay\ for the UP regimes is only slightly NUP state, as is seen from Fig. 6. We thus speculate that the
different from the case without backflow. However, the re-backflow can act as a sensitive diagnostic to distinguish the
gime of nonuniform director precessiofNUP) shifts to  three types of director motion.
higher intensities. As is seen from Fig. 2, the thresholds for
the NUP and for the UP2 regimes turn out toe 1.75 and
p3=2.4 instead op,=1.45 andp;=1.75 when the backflow
is neglected8,9]. Thus the backflow leads to a quantitative  In the present article, we have examined the influence of
change of the bifurcation scenario. backflow on the director dynamics when driven by circularly
In Fig. 5, typical profiles for the velocity component  polarized light. For this purpose we have, after adiabatic
versusz (at a fixed timet wherev, has maximal amplitude elimination of the flow field, performed a linear stability
are shown for a UP1, UP2, and NUP state. One can see thahalysis around the basic state in order to assess the “linear-
the amplitude of the velocity in the NUP regime is signifi- ized viscosity reduction factor.” Then we have simulated the
cantly larger than that for the UP regimes. An interestingfull set of nematodynamic equations and demonstrated that
and, at first sight, surprising fact is that for the UP2 staje, backflow does not lead to qualitative changes in the dynami-
oscillates fairly rapidly across the cell. The reason is that theal scenario, but does lead to substantial quantitative changes
interference structure of the ordinary and the extraordinaryn the secondary bifurcation thresholds. It turns out that the
light for the UP2 states leads to an oscillating behavior of theegime of nonuniform precession shifts to higher light inten-
electric part of the torqugsee the expression fdtq in Eq.  sities by about 20% and exists in a larger interval. However,
(32)] resulting in a similar structure in,®4, which drives the  the experimental values of the thresholds p; are even
velocity field. This occurs only foA=a(7)>1, as is the smaller than that given by the theory without backflfy.
case for the UP2 states. For 2.3, one haa/27=25.5, see One is now forced to conclude that the discrepancy between
Fig. 2, and there are indeed 26 minima in the velocity field ofthe theoretical predictions and the experiment is strongly af-
Fig. 5. Since in the UP1 and NUP regimass always less fected by the fact that in the experiments the beam size was
than 2, the velocity field has only one or two extrema. not large compared to the layer thickness, as assumed in our
In Fig. 6, the typical trajectories of the fluid motion oc- theory. In fact, the beam size was of the order of the layer
curring in the(x,y) plane for the UP1, NUP, and UP2 states thickness. By using a large aspect-ratio geometry, one is now
are shown at a fixed value af=n/2-0.1, wherex(t) (after this calculationin a position to test the theoretical

VI. CONCLUSION
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framework quantitatively. This can be done by use of the 011(0) = ay+[ag— ap - 20,%]0052 0,
dye-doped nematic because the values of LIFT in this case
can be two orders of magnitude smaller than for a pure nem- 912(0) = (a5 — ayyy + 2y + yg]cosz 0)sit 0. (A3)

atic (see[30,31] and references therginThe fact that the

threshold intensity is low allows the spot size of the light to

be much larger than the thickness of the layer, thus the plane-

wave approximation assumed in the theory might be better

achieved in the experiment. Maxwell’'s equations contain the dielectric tensor that de-
We have also found an unanticipated spatial oscillation ohends on the director components

the backflow in the UP2 regime. It results from spatial oscil-

lations of the director twis#,®, which are a consequence of gjj =€, 0 T gy, (B1)

oscillations in the torque resulting from interference phe'wheresa:su—sl is the dielectric anisotropy anel, (s,) is

nomena bet.ween ordinary and extraordm:_;try light. IDOSSIbI3(he dielectric permittivity perpendiculgparalle) to n. We
the strong differences of the flow in the various states can bﬁ/rite the electric field in the forE(r,t)=1/AE(z, t)e et

observed by visualizing the flow field using small d|ssolved+c_c_], whereky=w/c is the wave number in vacuum and

tracer particles, see, e.§32]. In that case, we expect that the E(z.1) is th litude that vari lowlv in ti q
circular trajectoriegin the (x,y) plang with different rota- (Z’_)l IS the ampiitude that varies slowly In time compare
to o™ and obeys the equation

tion sign(and radius amplitudefor particles lying in differ-

APPENDIX B: EQUATIONS FOR THE LIGHT
PROPAGATION

entz positions will be especially visible for UP2 states sig- &# (E, k(2) E,
nifying the spatial oscillation across — =-— : (B2)
dz*\E, e, \Ey
where
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APPENDIX A: THE EXPRESSIONS FOR D4,D, €2z
Straightforward calculations give the following expres- We can now perform a transformation from the basise,)
sions forD,,D, needed in Eqs(25) and (26): into the local basige,,e,) where the matriM has diagonal
form [33]. In this new coordinate system, the field compo-
D. = lo(l4=15) + 1413 D. = l1(14+15) = lol3 (A1)  hents are the amplitudes of the ordinary wasgeand the
S N T transversal part of the extraordinary waig [note thatE}
. =E.~(Ee&)€,] and are given by
with
. . E -si
7| aysin 20Lg c0sDy  uLle Sindy ( K ) = ( sin® CF)SCD)(EX) . (B4)
I, = + dz, E. cos® sin® /\E,
0 2911 0111012 o _
The transversal part of the electric field expressed in the two
| JW y SN 20Lg sindy Lo cosDy | representations is
= - Z, — —
1 2011 011+ 012 E'=Eg+Eey =Ece, +Egey. (B5)
Introducing dimensionless quantities—zw/L, kg— KoL/
[T 9128in 2Dy (L is the thickness of the laygrand rewriting Eq.(B2) in
3= o O12(011+ 910) % terms ofE,, Es, under thgslowly varying .envelope approxi—_
mation (ko> 1), the equations for the ordinary and extraordi-
” nary waves can be derived,
012C0s 2Dy
e [, o
0 911(911+ 912) 5on —_ (3zq)) )\—ee'“(Z)Ae,
0
.= f” 2911+ 0o dz (A2) (0 X
5~ d .
o 011(911+ 910 I A=~ ZTAQ + (0,D) )\—Oe"“(Z)AO. (B6)
e e
Here u, 911, andg;, depend or® only, _ . _
#e Gu 912 €D Y A,,Ac are amplitudes that vary slowly withon the scalekol
w®)=a,— v,sit 0, and are defined by
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Eo= Ao, B, = Akl N (B7) 2o APl AAT = x B10
Aol = Ao = 2, Awhlo= %5, (B10)
and
where the sign in Eq(B10) defines the helicity of the inci-
_ _ _8uileate) dent light
No=€., Ae= 20’ (B8) ’ -
g, +eg,C08 0O The components of the electric field,,E, are related
with Ag, A, as follows:
z
a(z) =k J (Vhe= No)dz. (B9) |E,J?= cos ®|AJ? - sin 2b RAAGE“®] +sir? D|Ay?,
0

Here a(2) is the phase delay between the ordinary and ex- |E,|?=cosg ®[Aj>+ sin 2b RGAAE @] + sir? ®|AJ?,
traordinary waves induced by the nematic slice of thickness
z E.E; + EXE, = sin 2b(|Ac* = |A,]°)
The initial conditions for the amplitude&,, A, (normal- e | . cia®
ized to the amplitude of the incoming lighat z=0 are +2cos 2> RgAA 7] (B1l)
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