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We investigate the director oscillations of a homeotropically aligned nematic liquid crystal that are generated
by cw laser radiation incident at a slightly oblique angle. The full nematodynamic equations are solved
numerically, and it is shown that the inclusion of backflow leads to a qualitative change of the theoretical
bifurcation scenario at moderate to high intensities. Very good correspondence is achieved with recent obser-
vations. The route to chaos via a sequence of homoclinic gluing bifurcations, whose existence was suggested
by simple models, but doubted by recent calculations and experiments, is shown to exist in a parameter region
unexplored by experiments.
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Nematic liquid crystals �nematics� have been found to ex-
hibit a great variety of interesting optic phenomena, in par-
ticular, those associated with the so-called light-induced di-
rector reorientation. Nematics are optically anisotropic
materials, their local optical properties �the direction of the
optical axis� are determined by the orientation of the director.
The electric field of the light wave, on the other hand, exerts
a torque on the director, so that intense light can alter the
optical properties of the medium it propagates through. This
leads to a great variety of nonlinear optical responses of the
nematic �see Ref. �1��.

In some cases, the interaction of light and nematic leads
to persistent motion of the director. Such a case is when a
layer of homeotropically aligned nematic �i.e., the director
aligned perpendicular to the layer� is illuminated by a cw
laser beam with a small, oblique angle of incidence and a
linear polarization that is perpendicular to the plane of inci-
dence �ordinary wave� �Fig. 1�. Experiments revealed that
the initial oscillations grow more complex as the light inten-
sity is increased, eventually turning chaotic �2,3�. A rela-
tively simple model, derived using perturbation theory �4�,
was successful in identifying the first few bifurcations of the
system. It suggested that the system takes an uncommon
route to chaos through a cascade of homoclinic gluing bifur-
cations �5�. This was very encouraging, as no experimental
system was known to exhibit such behavior. Recent experi-
ments �6� made clear that the accuracy of the model is
limited—the first gluing bifurcation could be observed, but
not a sequence of gluings. A numerical study of the equations
was performed �7� and it concluded that the system does not
exhibit a cascade of gluing bifurcations. However, consider-
able discrepancy between its results and those of the experi-
ments remained—most notably, using the parameters that

corresponded to the experimental setups of �3,6�; no chaos
was found in the simulation at any intensity.

Two major approximations may limit the applicability of
both models �4� and simulations �7�. One is that light was
considered to be an infinite plane wave, while the experi-
ments were, in fact, performed with laser beams whose trans-
verse size w0 was about the same as the thickness of the layer
L. However, in recent experiments, where the role of the
finite beam size was investigated �in a different geometry�, it
was shown that the bifurcation scenario changes only if
w0 /L�0.5−0.3 �8�, so this approximation seems to be justi-
fied. The second approximation is that the flow of the nem-
atic was neglected. In nematic, the director motion is coupled
to flow, so any physical effect that reorients the director also
induces flow. This is the so-called backflow effect �9�. While
having a subordinate role, backflow has been found to quali-
tatively change the dynamical behavior of the director in
electrically driven reorientation �10� and shift bifurcation
thresholds in director dynamics induced by circularly polar-
ized light �11�. To the lowest order, backflow can be consid-
ered in a theory by renormalizing the rotational viscosity �1
�11,12�, but this approach is valid only if reorientation is
small.

In an attempt to bring the theory and experiment closer
and to gain insight into the importance of the backflow effect
in this geometry, we have performed a numerical study of the
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FIG. 1. Geometry of the setup: an ordinary wave incident on a
cell of homeotropic nematic at a slightly oblique angle.
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full set of nematodynamic equations that include both direc-
tor motion and fluid flow. In the absence of temperature gra-
dients and assuming an incompressible fluid, these consist of
the Navier-Stokes equation for the velocity field and the
equation for the director �9�. �Heating of the nematic by the
laser is negligible, even though intensity is high, as the cell is
thin, absorption is small, and heat diffuses out quickly.� As-
suming that the incident light is an infinite plane wave, and
all physical quantities depend only on the z coordinate, the
Navier-Stokes equation reduces to

�m�tvi = − �zTiz
visc, i = x,y . �1�

Incompressibility and only the z dependence together implies
vz=0. �m is the mass density and Tij

visc are components of the
viscous stress tensor that are algebraic expressions of the
director components and the velocity gradients. The director
equations will reduce to

�1�tnx + nz���2 − �2nx
2��zvx − �2nxny�zvy� = − hx

�,

�1�tny + nz���2 − �2ny
2��zvy − �2nxny�zvx� = − hy

�, �2�

where h� is the perpendicular molecular field whose compo-
nents can be obtained by taking the variational derivatives of
the free energy, hi=�F /�ni, and projecting this vector to a
plane perpendicular to n. F consists of the elastic free energy
and the energy the nematic acquires in the electric field of
the light due to anisotropic polarizability �1�. nz can be ob-
tained from nini=1. For the electric fields we must solve
Maxwell’s equations with the z-dependent dielectric tensor
�ij =���ij +�aninj.

The material parameters the equations contain are
K1 ,K2 ,K3 �splay, twist, and bend elastic constants�, �i �six
Leslie viscosities, of which only five are independent and
which also define �2=�3+�2 and the rotational viscosity
�1=�3−�2�, and �� ,�a �dielectric constant and dielectric
anisotropy�. In addition, the thickness of the cell L
and the wavelength of the light � are needed. The two
control parameters of the theory are the angle of incidence
of the light � and the normalized intensity �= I / IF.
�IF=�2c���+�a�K3 / �L2�a

���� is the threshold intensity for
the light-induced Fréedericksz transition at normal
incidence.�

This system of PDEs contains two characteristic times-
cales: the momentum diffusion time �visc=�mL2 /�1, which is
associated with the relaxation of v, and the characteristic
timescale of the director motion �=�1L2 /�2K3. Since typi-
cally ��1 s and �visc�10−6 s, the velocity follows adiabati-
cally the motion of the director, so the inertial terms in Eq.
�1� can be neglected. Thus the components of the stress ten-
sor do not depend on z and Eq. �1� can be used to eliminate
v from the director Eq. �2� �11,13�. We then have two
coupled equations for nx , ny. These will be integrodifferen-
tial equations however, due to the elimination procedure and
to Maxwell’s equations, integrals of functions of nx , ny will
enter. They can be solved numerically using spatial discreti-
sation and standard ODE solving techniques.

We have explored the behavior of the system as a function
of � and �. We assume v=0 and nx ,ny =0 �strong anchoring
of the director� at the boundaries. In the calculations we
used the known material parameters for the nematic E7,
which was used in the experiments �3,6�, K1=11.09
	10−12 N, K2=5.82	10−12 N, K3=15.97	10−12 N �14�,
��=2.25, and �a=0.76 �Merck data sheet�. The viscosities,
which are not known for E7, were taken from the
nematic 5CB at 26 °C: �1=−6.6	10−3,
�2=−7.7	10−2, �3=−4.2	10−3, �4=6.34	10−2, and
�5=6.24	10−2 �all in units of N s/m2� �15�. Furthermore,
�=514.5 nm and most calculations were done using
L=50 
m �some used L=75 
m for comparison with �6��.
The data which the simulation produced were values of nx
and ny at a series of points in space at each timestep. Bound-
ary conditions permit writing these components as
nx�z , t�=�mAm�t�sin�m�z /L� ,ny�z , t�=�mBm�t�sin�m�z /L�.
Clearly, 	Ai ,Bi=0
 corresponds to homogeneous homeotro-
pic orientation �the basic state�. Since higher order modes are
strongly damped by elasticity �see �1,4��, only the first few
amplitudes are important, so the system effectively reduces
to a finite-dimensional one. By calculating these amplitudes,
we reduced the amount of data to store and obtained quanti-
ties that give better insight into the dynamics. They describe
the evolution of the director as motion in a low-dimensional
phase space and they make it easy to look for various attract-
ing sets. It is important to note that the system is symmetric
with respect to inversion of the y axis: S :y→−y. In terms of
the amplitudes, this corresponds to S : 	Ai ,Bk
→ 	Ai ,−Bk
 and
implies that all fixed points, limit cycles, etc. are either in-
variant under S, or appear in pairs that are symmetric conju-
gates of each other.

Figure 2 shows the most important bifurcation lines on
the �� ,�� plane and Fig. 3 depicts some limit cycles at
�=5° and various intensities for L=50 
m. Line 1-2 is the
line of primary instability, where the basic state becomes
unstable �this is the light-induced Fréedericksz transition�. It
consists of two sections, which join in a Takens-Bogdanov

FIG. 2. Bifurcation diagram as a function of the dimensionless
intensity � and angle of incidence �. The lines are explained in the
text. �TB=3.12, �TB=10.21°.
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point �TB�. For small angles the basic state loses stability in
a pitchfork bifurcation �line 1�, for larger angles in a Hopf
bifurcation �line 2�. At the pitchfork instability, two new sta-
tionary states �fixed points� are created �mutual images under
S�. As � is increased, they lose stability in a secondary Hopf
bifurcation �not shown in Fig. 2�, where two, symmetry-
degenerate limit cycles are created �see Fig. 3�a�, dashed
lines�. Line 3 in Fig. 2 is the line of the first gluing bifurca-
tion. At this point, the limit cycles are homoclinic orbits to
the basic state, which is now a saddle �Fig. 3�a�, solid lines�
and above the gluing they join to form a single, symmetric,
double-length limit cycle �Fig. 3�b��. This is not a period
doubling bifurcation however, as the period diverges as the
bifurcation is approached. As � is increased, the symmetric
limit cycle again becomes homoclinic to the basic state at a
certain � �line 4, Fig. 2�. Above this, it breaks up into two
asymmetric limit cycles �Fig. 3�c��. These, however, are ”in-
terlaced,” i.e., one loop passes through the other in phase
space. Above this bifurcation, there is a great variety of com-
plex and eventually chaotic behavior to be found, but the
precise scenario depends on �. At �=5° a strange attractor
appears abruptly �Fig. 3�d��.

To assess the importance of backflow, we can compare
these results with those obtained in �7�, where backflow was
neglected. The sequence of the first three bifurcations is the
same in both cases, but bifurcation thresholds can differ con-
siderably. In Fig. 2, the dashed lines 2�b� and 3�b� depict the
lines of the primary Hopf- and the first-gluing bifurcation
respectively, as calculated without flow. �The line of the
pitchfork instability �line 1� is unaffected.� The Takens-
Bogdanov point is also shifted considerably. The line of the
second-gluing bifurcation �where the symmetric limit cycle
breaks up as the intensity is increased� does not exist in the
calculation without the flow, and neither does the chaotic
behavior found at high intensities and ��8.5°. Thus, we can
say that the flow acquires decisive importance near the first-
gluing bifurcation.

This sequence of bifurcations, and director behavior be-
tween them corresponds exactly to the various regimes found

in the experiments. In �3� stationary reorientation was ob-
served up to �=1.41 after the primary instability, above
which an oscillatory state was found up to �=2.19. By com-
parison, with the same parameters �L=50 
m and �=5°� our
simulation showed that the pitchfork instability, which leads
to a distorted stationary state, is followed by the secondary
Hopf bifurcation at �H=1.31. Above this we have a pair of
limit cycles. In �3� an intermittent regime was observed be-
tween �=2.19–2.4, where the director was found to switch
randomly between oscillation and rotation about the laser
incidence plane. In the simulation one can identify this as the
vicinity of the first-gluing bifurcation that occurs at
�g1=2.42. Random fluctuations in the experiment cause the
intermittent switching between the two limit cycles as the
system approaches the gluing. Then a rotation of the director
was observed between �=2.4–2.81, which, in the simulation,
corresponds to motion along the double-length, symmetric
limit cycle born in the first gluing. Between �=2.81 and 2.92
a second intermittent regime of director oscillation and rota-
tion was observed, which can be interpreted as the vicinity of
the second-gluing bifurcation at �g2=3.52 in our calculation.
The oscillatory regime observed between �=2.92 and 3.65
corresponds to periodic motion along one of the asymmetric
limit cycles above the second gluing in the simulation. Fi-
nally, chaotic oscillation was observed in the experiment
above �=3.65, while we have a strange attractor in our cal-
culation above �chaos=4.375.

A similar sequence of bifurcations was observed in �6�
�with L=75 
m and �=5°�, where a reconstruction of the
attractors in phase space from the experimental data provides
even more convincing proof that the various limit cycles and
bifurcations follow each other in the same sequence as in our
calculations. First stationary reorientation was between �=1
and 1.6 �simulation: �H=1.47�, then an oscillatory regime up
to �=1.9. Between �=1.9 and 2.0 the system was seen to
switch randomly between two oscillatory states �simulation:
�g1=2.36�. Another periodic regime was observed between
�=2.0 and 2.6, after which the vicinity of another gluing
bifurcation was seen. This was not well resolved though and
above �=3.0, chaotic oscillations were found. In our simu-
lations �g2=3.31 and �chaos=4.12. Above the second gluing
the two limit cycles are not as well separated as below the
first gluing, so random transitions between them may be
present in the experiment due to noise even below the onset
of true chaos. We note that the bifurcation thresholds ob-
tained in our simulations lie mostly within 10–25 % of the
experimental values, which is fairly good, taking into ac-
count that the exact viscosities of the material were not
known.

An important question is the possible existence of the full
cascade of gluing bifurcations leading to chaos, which would
make this system unique from the point of view of the basic
chaos theory. Scanning the �-� plane, we have indeed lo-
cated a region where this sequence of events takes place,
however, it is quite far from the parameters that the experi-
ments were performed with.

Figure 4 shows the first steps of the sequence. As bifur-
cation lines are nearly parallel to the � axis in this region,
they are traversed by keeping the intensity fixed at �=2.9
and decreasing the angle of incidence. After the pitchfork-

FIG. 3. Limit cycles at �=5° and various intensities: �a�
�=2.1 �dashed lines� and �=2.426 �solid lines�, �b� �=3.0, �c�
�=3.8 �both solid and dashed lines�, and �d� �=4.4.
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and the secondary Hopf-bifurcations, we have a pair of limit
cycles �dashed lines in Fig. 4�a�� and at �=10.408° we have
the first gluing bifurcation �solid line in Fig. 4�a��. The sym-
metric, double-length limit cycle �solid line in Fig. 4�b�� then
loses stability and two asymmetric limit cycles are born
�dashed line in Fig. 4�b�, only one of the pair is shown.�
These two merge in the next gluing to make a quadruple-

length symmetric limit cycle �Fig. 4�c��. The series of
symmetry-breaking instabilities followed by gluings that re-
store the symmetry continues and we eventually have a
strange attractor �Fig. 4�d��. Clearly, experimental detection
of the scenario is challenging, as the range of angles and the
director reorientation is small. Furthermore, there is a great
variety of complex behavior in this region close to the
Takens-Bogdanov point and bifurcation lines lie close to
each other. However, taking a thinner sample should improve
the chances of detection, as the angle between successive
bifurcations and reorientation can both grow considerably.

In conclusion, our simulations prove that to describe dy-
namical behavior of nematic excited by the light correctly,
one has to include a proper treatment of backflow. The
present simulations show perfect qualitative correspondence
with existing experimental observations at all intensities, and
fairly good quantitative agreement. This proves that the flow
does play an important role in the dynamical behavior at
moderate to high intensities, causing a significant change of
the bifurcation scenario. An agreement with observations
also seems to justify neglect of finite beamsize effects in this
geometry for w0�L, similar to �8�. Furthermore, the uncom-
mon route to chaos via a sequence of homoclinic gluing-
bifurcations, whose existence was doubted by experiments
and recent calculations �7� was also found, in a parameter
region unexplored by experiment.
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