
Light-induced dynamics in nematic liquid

crystals - a fascinating world of complex

nonlinear phenomena
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Abstract

Intense laser light traversing a thin layer of nematic liquid crystal is an example
of a simple, easy to realize physical system, that shows very complex behaviour.
Light can turn the optical axis of this uniaxial medium while propagating through
it, and the dynamical behaviour that results ranges from simple orientational in-
stabilities, through low-dimensional chaotic behaviour, to spatiotemporal pattern
formation. In this paper, we review recent advances in the theoretical description of
the complex phenomena that light can induce in nematic liquid crystals. We discuss
the various approximations made in the models, their range of applicability, and
contrast their results with experimental observations. In particular, we discuss the
achievements of the plane wave approximation in various geometries, and examine
how the numerous bifurcation scenarios calculated from the models can be used
to interpret observations. We treat with special emphasis the results achieved in
the description of the strongly nonlinear regime, where experiments have revealed
interesting bifurcations and chaotic behaviour. We also discuss the mostly open
problems of transverse pattern formation and the effects that can be attributed to
the finite cross-section of the laser beam.
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1 Introduction

The optics of liquid crystals is a field whose technological importance cannot
be overestimated. It stems from the enormous range of applications where
liquid crystals are utilized for their ability to change their optical properties
quickly in response to various electric or magnetic fields, temperature gradi-
ents, etc. The interaction between laser light and liquid crystals has also been
investigated for long decades and is still an active field. It could be defined
loosely as the subset of liquid crystal optics phenomena where the light is
strong enough for its electric field to affect the liquid crystal directly, but in
doing so, the propagation properties change sufficiently to induce considerable
back-action on the light. This subset yields a great playground for the obser-
vation of various nonlinear phenomena, ensuring the continued interest from
fundamental research. Furthermore, the area also attracted attention recently
from a technological point of view in the construction of all-optical photonic
switching devices.

The basic physical origin of these phenomena can be found in several re-
view papers and monographs [1–5]. Liquid crystals are made up of elongated
molecules (rod shaped, or disc shaped), with anisotropic polarizability. In a
nematic liquid crystal phase, the molecular orientation is ordered, so the di-
electric tensor governing the propagation of light waves is also anisotropic.
The optical axis of the nematic is aligned along the local direction of the
molecular axis, called the director. If the light is strong enough, its electric
field, that exerts a torque on the molecules similar to any external field, is
able to turn the director against the elastic restoring torques. The reorienta-
tion of the director in turn changes the optical properties of the medium that
the light propagates through. A large variety of nonlinear phenomena result
from this interaction. They range from simple stationary director reorienta-
tion, (the so-called light-induced or optically induced Fréedericksz transition
- OFT for short), through relatively simple director precession and nutation,
to low-dimensional chaos and spatio-temporal pattern formation. The optical
phenomena caused by this light-induced director reorientation are sometimes
referred to as the giant optical nonlinearity of nematics [1,5].

In this paper we review the latest developments in the theoretical descrip-
tion of these complex phenomena. The emphasis is on the description of the
nonlinear domain above the optically induced Fréedericksz transition, where
a multitude of different bifurcations and dynamical regimes have been ob-
served. We discuss the various approximations that can be employed to treat
the equations, discuss their applicability and usefulness, and confront theory
with experimental results. We also discuss areas where theory has not yet ad-
vanced far enough, areas which have been treated only superficially, and thus
a lot of interesting observations remain largely unexplained. While our paper

2



is concerned with the development of theory, we are bound to include a list
(admittedly incomplete) of the most relevant experimental works that inspire,
support, validate or invalidate the efforts of theorists.

2 Basic theoretical framework

2.1 Experimental setups

The basic experimental setup that can be used to demonstrate the interaction
of nematic liquid crystals and laser light, is depicted in Fig.1 (a) and is fairly
simple. A thin cell is manufactured by enclosing a nematic between two glass
plates. The nematic layer is typically L = 10µm − 100µm thick. Since the
wavelength of the light λlight is in the visible range, this means that the layer
is much thicker than λlight. The inner sides of the enclosing glass plates are
usually treated with some surfactant chemical, that orients the molecules near
its surface, i.e. establishes the orientation of the director at the boundary. If
this definite orientation is perpendicular to the glass plates on both bound-
aries, the cell is called homeotropic, if it is parallel, the cell is called planar.
A hybrid cell is one where the chemicals enforce a perpendicular alignment
of the molecules on one boundary, but a parallel one on the other. The cell
is then irradiated with a continuous laser beam, whose light passes through
the cell. The reorientation of the molecules can be monitored by analysing the
outcoming light, as well as by using various probe beams, which are too weak
to influence the orientation of the director themselves. The most important
properties of the setup are the thickness of the nematic layer L, the mate-
rial constants of the nematic, and the properties of the incident laser beam -
angle of incidence, polarisation, intensity and the shape and diameter of the
cross-section of the beam. The incidence angle, polarisation and beam shape
are often collectively referred to as the geometry of the setup.

2.2 Basic equations

In the nematic phase, the molecules have some orientational order, but can
move about freely as in a liquid, i.e. there is no ordering of the molecular
center of mass. To describe a fluid with an orientational degree of freedom, one
uses the well established hydrodynamic theory for nematics [6,7]. The starting
point is the set of hydrodynamic equations for the nematic and Maxwell’s
equations for the propagation of light. If we assume incompressibility of the
fluid, and neglect temperature differences within the medium, the relevant
physical variables that these equations contain are the director field n(r, t),
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Fig. 1. a) The basic experimental setup. A laser light with a certain polarisation is
used to illuminate a cell of homeotropically aligned nematic. The light may have a
nonzero angle of incidence α. The plane of the cell is usually taken to be the x− y
plane, the z direction is perpendicular to it. b) A possible description of the director
using spherical angle coordinates: the polar angle Θ and the azimuthal angle Φ. c)
An alternative representation using two angle variables θ and φ.

the velocity field v(r, t) and the electric field of the light Elight(r, t). The
generalised Navier-Stokes equation for the velocity will be (see [6])

%m (∂t + v · ∇)vi = −∇j(p δij + πij + T visc
ij ) , (1)

where %m is the mass density and p is the pressure of the nematic. πij is the
Ericksen stress tensor, which is defined as

πij =
∂F

∂(∂jnk)
· ∂ink , i = x, y, z . (2)

(As usual, doubly occurring indices imply summation.) In Eq. (2) F is the
free energy density, which consists of two parts. One is the elastic part

F (elastic) =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2 (3)

and the other is the one due to external fields, which in our case contains only
the electric field of the light Elight:

F (ext) = − εa

16π
| n · Elight |2 . (4)

Here K1, K2, K3 are the splay, twist and bend elastic constants respectively
[6]. εa = ε‖ − ε⊥ is the dielectric anisotropy, the difference of the dielectric
coefficients which describe the permittivity of the medium parallel (ε‖) and
perpendicular (ε⊥) to the director. Note that ε⊥ and ε‖ depend a great deal
on frequency, so in general εa can be positive or negative as well. However for
optical frequencies, it is always positive. Any other external fields which may
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exert a torque on the director (static or low frequency electric or magnetic
fields for example) can be included in F (ext) by adding similar terms. T visc

ij in
Eq. (1) is the viscous stress tensor:

−T visc
ij = α1ninjnknlAkl + α2njNi + α3niNj + (5)

α4Aij + α5njnkAki + α6ninkAkj ,

written in terms of the six Leslie coefficients αi [8], the symmetric strain-rate
tensor Aij:

Aij = (∂ivj + ∂jvi)/2 , (6)

and the vector N, which gives the rate of change of the director relative to
the fluid:

N= (∂t + v · ∇)n− ω × n . (7)

Here ω = (∇× v)/2 is the local fluid rotation. The six Leslie coefficients are
connected by the Parodi relation α2 + α3 = α6 − α5 [9], so only five of them
are independent. As we have assumed an incompressible fluid, the density ρm

is constant and ∇ · v = 0.

The equation of motion for the director n, which is also called the torque
balance equation is

γ1(∂t + v · ∇ − ω×)n = −δ⊥ (γ2An + h) , (8)

where γ1 = α3 − α2 is the rotational viscosity and γ2 = α3 + α2. h is the
molecular field obtained from the variational derivatives of the free energy
density F :

hi =
δF

δni

=
∂F

∂ni

− ∂j

(
∂F

∂ni,j

)
, i = x, y, z . (9)

The projection operator δ⊥ij = δij −ninj in Eq. (8) ensures conservation of the
normalisation n2 = 1.

The electric field which appears in the expression for the free energy density
must be obtained by solving Maxwell’s equations for the propagation of light.
Usually we may assume a nonmagnetic material in the absence of any currents
and charges, so the equations will read:
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∇×H =
1

c
ε

∂E

∂t
, ∇ · (εE) = 0 ,

∇× E = −1

c

∂H

∂t
, ∇ ·H = 0 . (10)

These are coupled to the hydrodynamic equations, as the dielectric tensor is
given by:

εij = ε⊥δij + εaninj. (11)

Equations (1), (8) and (10) are the starting point for the theoretical treatment
of light-induced dynamical phenomena in nematics. Clearly, the electric field
of the light appears in the director equation (8) through the molecular field (9)
which contains the variational derivatives of the free energy (4). Physically,
this describes an orienting torque that acts to turn the director in the direction
of the polarisation. The expression for this light-induced torque can be found
by performing the variatonal derivatives (9) on the electric part of the free
energy (4):

Γlight =
εa

16π
(E · n)(n× E) . (12)

On the other hand, the director itself influences light propagation through
the dielectric tensor (11). Furthermore, the director equation also contains
an orienting torque due to elasticity (from the elastic part of the free energy
density) that counteracts the light-induced reorientation of the director. Fluid
flow appears in the equations, since it is coupled to the director, so director
reorientation will also induce flow even in the absence of pressure gradients.
This phenomenon is the so-called backflow.

The boundary conditions for the solution of this set of PDEs are usually
taken to be a zero velocity due to friction between the fluid and the cell wall
(the so-called no-slip condition), and a rigid orientation of the director (hard
anchoring). This latter can be obtained by suitable treatment of the glass sub-
strates, such that it ensures a rigid orientation of the molecules at the surface.
In case of weak anchoring i.e. when the director is not rigidly attached to the
surface, its orientation at the boundary can be taken into account by some
additional surface energy terms in the free energy (3). However, dynamical
phenomena induced by light appear almost exclusively in the strong anchor-
ing case, as this is when a strong interplay between light propagation and
elastic deformation takes place.

From the expression for the light induced torque (12) acting on the director it is
already evident, that a configuration where the director is perpendicular to the
polarisation vector of the light (e.g. a homeotropic orientation of the director
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and a light field polarised in the plane of the cell) is always an equilibrium.
It may be, as it happens above a certain intensity, an unstable one. This
gives rise to the primary instability observed in various geometries, the much
investigated optical Fréedericksz transition (OFT), whose threshold intensity
in the case of linearly polarised light and perpendicular incidence is given by:

IF =
π2

L2

c(ε⊥ + εa)K3

εa
√

ε⊥
. (13)

It is at this point, that the light-torque prevails over elasticity and reorients the
director. In situations where the initial director configuration is not perpendic-
ular to the polarisation of the incident light, there is no such initial instability
either, reorientation occurs smoothly as light intensity is increased. Note, how-
ever, that when εa < 0 (which is possible in the low frequency domain), the
roles of parallel and perpendicular orientation are reversed. The latter will be
stable for all field strengths and it is the former that is destabilised by the
field at a certain amplitude.

2.3 Approximations

Clearly, this complex set of partial differential equations is too general to solve
directly. However, there are a number of simplifications and approximations
that can be applied in various situations. We will discuss the most important
ones in the following. Some of these approximations are almost always valid,
some have limited validity. Usually several of them are used together.

First of all, we note that the general equations contain three timescales, which
differ by orders of magnitude. The time it takes the light to traverse the cell
τl = L/c ∼ 10−13s, the momentum diffusion time τvisc = %mL2/γ1 ∼ 10−6 s
(which is the characteristic time for the flow of the nematic) and the director
relaxation time τ = γ1L

2/π2K3 ∼ 1s (which is the characteristic time for
the turning of the director). The slow timescale of the system is set by the
orientational viscosity of the nematic, and both flow and light propagation can
be considered with the director being ”fixed”. The electric field of the light can
thus be expressed from Maxwell’s equations as a function of the instantaneous
value of n, and can be considered as a self-consistency relation or a constraint.
In a similar way, inertial terms in the Navier-Stokes equation can be neglected
and the flow of the nematic is determined entirely by the director components
and their time derivatives. This separation of the timescales applies practically
always.

On the other hand, the simplifications introduced by the separation of time-
scales still leaves us with a very complicated set of equations. The main diffi-
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culty lies in the fact that even though, Elight and v are theoretically defined
by n (and ∂tn) at every instant t, in general the relations will be compli-
cated integral relationships. So expressing them by n explicitly is not always
convenient.

2.3.1 Neglection of fluid flow

One approximation that is used very often, is neglecting the flow of the ne-
matic. Then v is no longer a dynamical variable, the Navier-Stokes equations
can be discarded and we only need to solve the director equation (8) which
will now be

γ1∂tn = −δ⊥h. (14)

h will still contain the electric fields through (4) and (9), so (14) is still coupled
to (10). This approximation simplifies the theoretical treatment a great deal,
but it is difficult to justify rigorously in most cases. Sometimes it is possible
to include flow by renormalising the rotational viscosity, but this can be done
only when reorientation is small, and a linear approximation with respect to
the reoriented director components is sufficient. The approximation is used
much more extensively, however, with the reasoning that since flow has only a
passive role (backflow), neglecting it should not cause a qualitative difference
in the predictions of a theory. There are only few works where an explicit
treatment of backflow has been attempted in the context of light-induced
director dynamics [10–12], but there are also a number of papers, where the
influence on reorientation dynamics driven by low-frequency electric fields has
been considered [13–16]. These works show that in some geometries, a theory
that neglects flow yields qualitatively different results from one that includes
flow, i.e. it predicts different bifurcations and dynamical regimes. Usually this
happens only in the strongly nonlinear regime. Then again, this is not always
the case, sometimes the bifurcation scenario is the same, only the bifurcation
thresholds are shifted by the inclusion of flow. Ultimately, including flow is
a major complication, and often, flow is not the most essential factor in the
description of the first two or three bifurcations that occur in the nonlinear
regime.

2.3.2 Plane wave approximation

Another approximation that is used often is the so-called plane wave approxi-
mation. This means that the transversal cross-section of the beam is assumed
to be much larger than the thickness of the cell, and the spatial dependence
of all physical quantities is restricted to the coordinate perpendicular to the
plane of the cell (here the z-coordinate). This approximation is (more ac-
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curately) also called the 1D approximation as only one spatial dimension is
retained. (Note, however, that a wide beam with a homogeneous intensity dis-
tribution does not automatically mean that the director orientation, or any
other physical quantity is also homogeneous in the plane of the cell at all
times. The translational symmetry in the plane may be broken spontaneously.
See section 4.2.) The plane-wave assumption yields much simpler equations.
If incompressibility is taken into account, the velocity field will be of the form
v = (vx(z, t), vy(z, t), 0) and the director equations (8) reduce to (see [11]):

γ1∂tnx + nz

[
(α2 − γ2n

2
x)∂zvx − γ2nxny∂zvy

]
=−

[
δ⊥ h

]
x

,

γ1∂tny + nz

[
(α2 − γ2n

2
y)∂zvy − γ2nxny∂zvx

]
=−

[
δ⊥ h

]
y
. (15)

The two approximations mentioned so far are most often used simultane-
ously for the description of the system. The basic equations will then re-
duce to Eqs.(15) with the left handside simplified to only the first terms. The
widespread application of the plane wave approximation is at first sight sur-
prising. Experiments are almost never performed with laser beams whose waist
size w0 is much larger than the thickness of the cell L. Also, there is clear exper-
imental evidence that at a certain point, the size and shape of the transversal
intensity distribution becomes a very important factor [17,18]. Furthermore,
there is evidence that at least in one geometry, spontaneous modulation of the
reorientation profile in the transverse plane is the generic case [19,20]. How-
ever, present results suggest that the plane wave approximation does have a
fairly large range of validity in the region L/2 < w0 < 10L. Bellow this range,
the transversal size of the laser beam is an important bifurcation parameter,
and above, transversal pattern formation is expected to take place (section 4
deals with these cases). It is notable, that most of the experiments have been
performed within the range of validity of the plane-wave approximation, and
the theoretical results compare remarkably well with observations. Thus it is
a very useful assumption with a fairly clear range of applicability.

2.3.3 Small reorientation

One of the most frequently used approximations in the study of light induced
director dynamics, is assuming the perturbation of the director to be small.
It is then possible to simplify equations by a power series expansion in terms
of the reorientation components. Unfortunately, in a lot of geometries the
reorientation becomes sizeable rather quickly above the primary instability
threshold. In these cases the real usefulness of such an expansion is limited to
the stability analysis of the initial state (i.e. finding the primary instability). In
other cases, this assumption proves useful also in the weakly nonlinear domain,
even in the description of further (secondary and higher order) bifurcations.
This approximation must be used with caution though, even when the director
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reorientation is truly small, as a power series expansion in obtaining the electric
fields can have very limited validity. To show this, it is enough to see that a very
important quantity, the phase shift between the ordinary and extraordinary
wave components in the anisotropic medium, that is given by

∆ =
2π

λlight

L∫

0

δn dz (16)

depends very sensitively on the director reorientation. Since the difference of
the index of refraction for the two light components δn has to be integrated
over a distance L À λlight, it can easily attain values of several times π even
if the reorientation itself (and thus δn) is small. For this reason, sometimes
a hybrid approach is used. Some expressions are simplified using power series
expansions, but the phase shift of the waves is calculated more precisely.

2.3.4 Mode expansions

Another form of simplification comes from the typical boundary conditions
that correspond to the experiments. The orientation of the director at the
boundaries is usually rigid - this is called strong anchoring of the director.
The spatial dependence of the director components, (or some angle variables
describing the orientation of the director) can be expanded in a series of base
functions that fit these boundary conditions. Typically trigonometric functions
are used and obviously only a discrete set of modes (those with mλm = 2L)
is allowed. Since elasticity in nematics introduces a damping of the mode
amplitudes that is proportional to k2

m (where km = 2π/λm), higher order
modes will always have a small amplitude, even in the strongly nonlinear
domain. The expansion can thus be truncated at some finite number and
one can trade the z-dependence of the director components for a few mode
amplitudes. If, additionally the 1D assumption can also be applied, one can
use the usual procedure of mode expansion and projection of the equations
onto the base functions (Galerkin method) to transform the partial differential
equations of motion into a set of nonlinear ordinary differential equations.
Investigating the solutions of ODEs is always simpler, so such an expansion is
very useful. One must take care, however, not to truncate the expansion too
early, as physically important solutions can be lost. Quite often models yield
a very rich bifurcation scenario - which promptly changes when adding more
modes or taking into account some additional factors (like flow for example).
Whenever possible, the number of modes used should be increased until a
further increase no longer affects the bifurcation scenario.

It is also notable, that even when using mode expansions is not really favourable
in some numerical solutions of the equations, mode amplitudes may charac-
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terise the evolution of the director much better than the numerical value of
the director components at any point in space. Thus, often a projection on
expansion modes follows the solution of the equations, which helps evaluation
and visualisation of the results.

The essence of this method (the usage of a few scalars instead of the ”infinite
dimensional” functions) is often executed in a more intuitive way. An educated
guess is used about the representative functional form of the reorientation with
some scalar parameters, that will become ”amplitudes”. This trial function is
then substituted into the equations of motion to obtain evolution equations
for these amplitudes. Sometimes, the trial function is not a sum with the
linear coefficients as parameters, but some nonlinear function (e.g. a Gaussian
function with the width as a parameter).

2.3.5 The one constant approximation

The elastic energy of the nematic (3) (and the terms that arise due to it in the
director equation) can be simplified a great deal by assuming all the elastic
constants to be equal K1 = K2 = K3 = K. This is known as the one-constant
approximation. Since these coefficients are material parameters that are never
equal (though sometimes they are not very different,) this approximation is
somewhat unphysical. It is also known to give incorrect results in certain
situations, especially when transverse effects are considered (see section 4).

2.3.6 Approximations in Maxwell’s equations

The most difficult point in treating dynamical phenomena induced by light in
nematics, is solving Maxwell’s equations for light propagation with a sufficient
accuracy. Dynamics in the nonlinear domain is driven by the interplay between
director reorientation induced by light, and the change in optical properties
as a result. Therefore the success or failure of a theory often depends on how
this problem is tackled.

The first thing to mention is, that since director orientation is a slowly vary-
ing function on the spatial scale of the light wavelength, the electric field can
always be separated into slowly varying envelope functions and fast expo-
nentials. For example, one very convenient method is the Geometrical Optics
Approximation (GOA), where the light is divided into ordinary and extraordi-
nary components [4,21], which propagate independently, with different phase
speeds. The polarisation of the two components depends slowly on time and
space only through the director components, but their magnitude remains the
same. The phase exponential of the extraordinary amplitude will contain the
spatially integrated index of refraction, which also depends on the director
components, so usually it is a complicated expression. One can make this ap-

11



proach more accurate by taking into account the interaction of these waves,
which is proportional to the spatial derivatives of the director components.
Another method, frequently used when the plane-wave case is considered, is
the Berreman approach for stratified media [22]. The electric and magnetic
fields of the light can be written in the form:

Elight(r, t) =
1

2
(E(z, t)ei(kxx+kyy)e−iωt + c.c.),

Hlight(r, t) =
1

2
(H(z, t)ei(kxx+kyy)e−iωt + c.c.), (17)

with the possible x − y dependence of the fields due to oblique incidence en-
tirely incorporated into the fast exponentials. It is straightforward to derive
an equation for the amplitudes E(z, t),H(z, t) from (10), or the wave equa-
tion that can be obtained from it. A vector of four independent amplitudes
describes the light field and a set of linear, first order, ordinary differential
equations governs its evolution:

dΨ̄

dz
= ik0DΨ̄, where Ψ̄T = (Ex, Hy, Ey,−Hx) (18)

The matrix D depends on the director components [4], Ez and Hz are defined
by the above four unambiguously. By calculating the eigenvalues of D, one can
separate the fast oscillations in z from the slow amplitudes.

One difficulty is apparent in both approaches: eventually, the electric field
must be calculated to obtain the torque acting on the director, and it will
be the superposition of the two waves with slowly varying amplitudes, but
different phase factors. As mentioned before, the phase difference must be
calculated very accurately, and even a small director distortion can result in a
large (several times π) phase difference between the two waves. This is really
the Achilles’s heel for all approximate calculations. An approximation of the
phase exponential (say a power series with respect to the director distortion)
usually has a very limited range of validity.

2.4 On the use of computer calculations

One final remark is in order on the use of computer calculations. Because of
the complexity of the equations, ultimately, all studies of light-induced nonlin-
ear phenomena in nematics must resort to numerical integration of equations
at one point or another. The question is mainly, what simplifications can be
incorporated into the equations, so that the solutions still resemble the be-
haviour observed in the experiments. If one can reduce the complex PDE-s
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of nematodynamics to a few explicit ODE-s for some mode amplitudes, it is
much easier to explore the behaviour of the system as the control parame-
ters are varied, because a single solution with given parameters takes much
less time than the solution of the original PDE-s. But even more important,
derivation of a ”simple” model can tell us a lot about the ingredients necessary
for the description of the interaction. For example, if flow, finite beam width,
or twist deformations of the director are neglected in the model and it still
describes the behaviour sufficiently well, we immediately have a picture on the
importance (or lack of importance) of all these factors. On the other hand,
if a transition to a new dynamical regime is not shown by the simple model,
we know that something that was left out does acquire decisive importance at
certain control parameter values.

3 Achievements of the plane-wave theory

As mentioned in the previous section, most theoretical investigations of light-
induced reorientation in nematics use the plane wave approximation. This is
especially true for works treating higher order bifurcations in the strongly
nonlinear domain. In what follows, we summarise the achievements obtained
by these theories in several geometries.

3.1 Linear polarisation, oblique incidence

One particular geometry that has been investigated a lot, is when a linearly
polarised light is incident on a cell of homeotropic nematic at a slightly oblique
angle. The light is polarised perpendicular to the plane of incidence, (it is an or-
dinary wave), and the system thus possesses inversion symmetry with respect
to this plane. (See Fig.1 (a), where the plane of incidence is the x− z plane,
and the direction of polarisation is along the y axis.) Experiments revealed
interesting oscillatory states in this geometry, both periodic and stochastic
[23–26]. Chaotic dynamics have also been found [27], and considerable effort
went into analysing this behaviour in a series of experiments [28–31].

3.1.1 Simple models

The first attempts to give a theoretical explanation [23,32] performed the lin-
ear stability of the homeotropic state as a function of the angle of incidence.
The treatments neglected flow, they considered the plane wave problem, em-
ployed a mode expansion and assumed the reorientation to be small, deriv-
ing the linearised equations of motion for the reorientation mode amplitudes.
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They showed, that as the angle of incidence grows above a certain critical
angle αTB, the primary instability (optical Fréedericksz transition) changes
from a pitchfork bifurcation to a Hopf bifurcation. (The point where the line
of a pitchfork bifurcation and a Hopf bifurcation join on a parameter plane is
called a Takens-Bogdanov point - hence the subscript TB - see also Fig.4 later
on.) Thus, one may really expect to see regular oscillations above threshold for
this geometry. It was also clear, however, that the critical angle of incidence
above which this happens, is much larger than that used in the experiments,
so the observed behaviour had to be due to higher order bifurcations.

The first serious attempt to investigate the nonlinear domain in this geom-
etry was performed along very similar lines [33,34]. The investigation ne-
glected flow, used the plane wave assumption and assumed the reorientation
to be small. It used a mode expansion to obtain reorientation mode ampli-
tudes, and, in extension of the linear treatment, included nonlinear terms
up to third order. The director was described in terms of two angles n =
(sin θ, cos θ sin ϕ, cos θ cos ϕ) [see Fig. 1 (c)] and they were expanded in terms of
sine functions as ϕ(z, t) =

∑
n An(t)sin(nπz/L), θ(z, t) =

∑
n Bn(t)sin(nπz/L).

The set of mode amplitudes (A1, .., B1, ...) were truncated, and the standard
Galerkin procedure was used to obtain a set of nonlinear ordinary differential
equations for the mode amplitudes. Clearly, one needs to keep at least three
mode amplitudes for a ”minimal model” which can possibly describe nonlinear
oscillations and chaos. The most difficult point of this analysis was to express
the electric fields of the light wave analytically with the mode amplitudes using
Maxwell’s equations. This was done using perturbation theory. The general
form of the equations obtained is:

τȦi =
∑

j

LA
ijAj +

∑

j,k

PA
ijkAjBk

+
∑

j,k,l
k≤l

QA
ijklAjBkBl +

∑

j≤k≤l

RA
ijklAjAkAl,

τ Ḃi =
∑

j

LB
ijBj +

∑

j≤k

PB
ijkAjAk +

∑

j,k,l
k≤l

QB
ijklBjAkAl

+
∑

j≤k≤l

RB
ijklBjBkBl . (19)

Inversion symmetry of the setup with respect to the x− z plane (the plane of
incidence) implies that the equations are invariant under the transformation
S : {Ai, Bi} → {−Ai, Bi}, consequently only odd powers of the Ai-s appear
in the first set of equations and only even powers in the second set. In a linear
approximation, only the Ai-s have to be taken into account, as they are the
ones responsible for the initial instability. Thus to obtain a ”minimal model”,
three modes: A1, A2, B1 have been retained. The resulting set of ODEs has
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been solved numerically, and the attracting sets that characterise the longterm
behaviour (fixed-points, limit cycles, attractors) were analysed as a function
of the two control parameters of the problem, the angle of incidence α and the
intensity of the light normalised by the OFT threshold ρ = Ilight/IOFT .

The results of this ”minimal model” were interesting and encouraging. In the
region α < αTB where the usual optical Fréedericksz transition (the primary
instability) is a pitchfork bifurcation, two new fixed points are born, which are
mutual images under the symmetry transformation S. These stationary states
lose stability at a slightly higher intensity in a (secondary) Hopf bifurcation,
leading to a pair of limit cycles (again, mutual images under S). They are
depicted on Fig. 2 a), plotted in the phase space spanned by the three ampli-
tudes {A1, A2, B1}. This result explains the regular oscillating behaviour that
was observed in the experiments for α < αTB. As the intensity is increased
further, a very interesting scenario unfolds. The size of the limit cycles in-
creases in phase space and they pass closer and closer to the origin (which is
the homogeneous homeotropic state). At this point, this is already a saddle,
not a stable fixed point. At a certain intensity ρ1, the limit cycles become ho-
moclinic trajectories to the origin [Fig. 2 b)] and above it, they merge to form
a single, double-length limit cycle, that is symmetric with respect to S, [Fig. 2
c)]. This bifurcation is called a homoclinic gluing, or a gluing bifurcation.

As the intensity increases further, this symmetric limit cycle also looses sta-
bility, and a pair of asymmetric limit cycles are created (again, mutual images
under S [Fig. 2 d)]). At a still higher intensity ρ2, these too go through a ho-
moclinic gluing bifurcation to form a quadruple-length, symmetric limit cycle
[Fig. 2 e) and f)]. This sequence of symmetry breaking bifurcations followed
by homoclinic gluings that restore the symmetry continue ad infinitum, the
length of the limit cycles doubling with each step. The bifurcation thresh-
olds ρi converge to a certain value ρ∞. Beyond this intensity, the attracting
set of the dynamics is a strange attractor in phase space (Fig. 3). The sys-
tem exhibits typical signatures of low-dimensional deterministic chaos such as
great sensitivity to initial conditions and a positive Lyapunov exponent. It
must be emphasized, that this route to chaotic behaviour through a cascade
of homoclinic gluings is very different from the well known period doubling
scenario. While it involves the birth of double-length limit cycles at a sequence
of points, the period at these bifurcations diverges, as the stable homoclinic
orbits at the bifurcation points have infinite periods. This distinct route to
chaos was analysed in several papers [35–37], but has not yet been observed
in experiment before.

The most important result of this simple model was, that the first sequence
of dynamical regimes consisting of periodic behaviour - stochastic oscillation
- periodic behaviour which was found in the experiments [27,31] could be in-
terpreted as the evolution of the system in the vicinity of the first gluing
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Fig. 2. Limit cycles in phase space of the three amplitudes {A1, A2, B1} at various
intensities as obtained from the simple model and α = 7◦. a) ρ = 1.78 two simple
limit cycles, b) ρ = 1.80875 the first gluing bifurcation, c) ρ = 1.85 double-length
limit cycle above the first gluing, d) ρ = 1.94 two double-length limit cycles after
the symmetry breaking instability, e) ρ = 1.9474 the second gluing bifurcation, f)
ρ = 1.96 quadruple-length limit cycle after the second gluing.

bifurcation. In this regime, the limit cycles which are followed by the system
during evolution pass close to the origin. Bellow the gluing, the two asymmet-
ric limit cycles are very close to each other, while above the bifurcation, two
segments of the same symmetric limit cycle are very close. So random fluctu-
ations in the experiment, which are responsible for small deviations from the
”ideal” limit cycle trajectory, make it possible for the system to jump from
one limit cycle to the other one, or from one segment of the limit cycle to
another one. Therefore one may expect to observe oscillations of the director
in the vicinity of a gluing bifurcation, but with a stochastic element as random
jumps take place. This is just what was observed, as two ”competing” modes
of oscillations. Further away from the bifurcation, the limit cycles are not close
enough to the origin for the jumps to take place, so a sequence of regular os-
cillations, stochastic oscillations and again regular oscillations are seen as the
intensity is increased. This interpretation is even more convincing if one looks
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Fig. 3. Strange attractor in a subset of the phase space of the simple model at α = 7◦

and ρ = 2.18.

at the reconstruction of the limit cycles from the experimental data [38,39],
which shows clearly that the symmetry properties of the trajectories above
and below the bifurcation change precisely as expected.

On the other hand, further bifurcations and dynamical regimes that were
found in the experiments were not possible to interpret as the continuation
of the gluing cascade. Observations showed what looked like another gluing
bifurcation, but the nature of the reconstructed orbits was different from that
of the limit cycles in the model around the second gluing bifurcation. Then
periodic behaviour, and finally an abrupt transition to chaotic behaviour were
observed. Chaos occurred at much higher intensities than in the simple model.
The simple model was generalised in a natural way to include more mode
amplitudes, but the discrepancies between theory and experiment remained.
Still, it is notable, that the simplest possible model that could be conceived
to describe the nonlinear regime, correctly predicted the first two bifurcations
above the primary one. This model was also extended to include additional
static fields, which were found to influence the behaviour of the system in
interesting ways [34].

3.1.2 Numerical solution of the director equations

To achieve better agreement with the observations, the treatment of the sim-
ple model had to be extended. The motivation was mainly to find parameter
regimes where the rare gluing cascade could be observed in the experiments.
The most obvious generalisation was to extend the treatment using higher or-
der nonlinearities. However, perturbation theory becomes far too cumbersome
to use above third order, so a numerical approach was adopted, and the di-
rector equation (14) was solved using a finite difference discretisation method
[40,41]. This approach has the advantage that nonlinearities of arbitrary order
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are retained in the director components, which is especially important when
solving Maxwell’s equations. As also noted later in [42], the primary reason
why the simple model looses its validity at fairly low intensities is, that the
perturbative solution of the light propagation equations fails at not too high
reorientation amplitudes. The numerical treatment still neglected flow, and
used the plane wave approximation.

The results obtained from this calculation were somewhat puzzling. While
the first two bifurcations above the primary instability (the secondary Hopf-
bifurcation and the first gluing bifurcation) were found to occur as in the
simple model, the full cascade of gluing bifurcations were not found at all
at any parameter values. Furthermore, chaos was found only in parameter
regions that did not correspond to the experimental setups used in [38,39,31]
This study made it clear that although higher order nonlinearities with respect
to the director components give an important contribution to the dynamics,
they are not the only essential ingredients.

3.1.3 Numerical solution of the nematodynamical equations

In further pursuit of the elusive gluing cascade, one clearly had to refine the-
ory to achieve better correspondence with observations by including either a
proper treatment of the nematic flow, or by discarding the plane wave approx-
imation. The choice was to include flow in the theory, and retain the plane
wave approximation. This was motivated by findings that the cross section of
the beam becomes an important ingredient in the nonlinear behaviour only
when its size is about half of the cell thickness (see section 4.1). The numerical
study of the full nematodynamical equations was thus performed [12] along
similar lines as the previous one. This time, the results were much closer to
the observations. The first three bifurcations (the optical Fréedericksz transi-
tion, the secondary Hopf- and the first gluing bifurcation) were found in the
simulations just as before. The lines of the primary instability and the first
gluing bifurcation on the ρ−α plane are shown in Fig. 4. They are depicted as
calculated from both simulations, (the one without flow and the one including
flow), to show the quantitative difference between the bifurcation thresholds.

However, using parameters that correspond to the experiments, the next bifur-
cation was not the second gluing found in the simple model. As the intensity
increased, the symmetric limit cycle was found to break up into the two simple
limit cycles depicted on Fig. 2 (a), in what could be called an inverse gluing (or
ungluing) bifurcation. After this second gluing bifurcation, there is periodic
behaviour until chaos appears abruptly at a certain intensity. This sequence
now is perfectly compatible with the behaviour observed in the experiments
at all intensities, apart from some quantitative differences in the bifurcation
thresholds. The calculations thus showed that flow is an important ingredient
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of the nonlinear behaviour at high intensities, and supported the assumption
that finite beamsize effects are not of qualitative importance when w0 ≈ L.

The last thing worth mentioning is, that in the calculation with flow a param-
eter region was found where the gluing cascade does exist. This region is close
to the Takens-Bogdanov point, and the bifurcation lines are nearly parallel to
the ρ axis, so they can be traversed by keeping the intensity fixed and decreas-
ing the angle of incidence. The cascade is located in a region that lies outside
the experimentally explored one, so its existence is yet to be confirmed. It is,
however, a very exciting prospect.
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Fig. 4. Bifurcation diagram on the plane of the two control parameters: the nor-
malised intensity ρ and the angle of incidence α. The solid lines 1 and 2 mark the
primary instability, where the homogeneous homeotropic orientation becomes un-
stable. At 1 the bifurcation is a stationary (pitchfork) bifurcation, at 2 a Hopf one.
The two lines connect in the Takens-Bogdanov (TB) point. The solid lines 3 and 4
mark the first gluing bifurcation and the second gluing bifurcation respectively. The
dashed lines 2’ and 3’ mark the lines of the primary Hopf bifurcation and the first
gluing bifurcation when calculated without the inclusion of flow in the equations.

3.2 Circular polarisation, perpendicular incidence

Another interesting geometry which has been studied very intensively, both
experimentally and theoretically, is where a circularly polarised light beam is
incident perpendicularly on a layer of homeotropically oriented nematic. This
geometry is interesting partly because it is one of the earliest configurations
where light induced dynamical behaviour was observed. But more importantly,
it is a geometry where relatively simple models proved to be efficient in de-
scribing some of these phenomena, and giving a simple physical picture of
their origins.

In this geometry, the OFT was found in the experiments to be a first order
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transition (i.e. a subcritical bifurcation), with a well detectable hysteresis cycle
and bistability as the light intensity was changed. Above the threshold the
molecules undergo a collective rotation [43] that corresponds to a uniform
precession of the director (see the UP1 branch of the bifurcation diagram in
Fig. 5 ). The threshold intensity is twice that needed for the linearly polarised
case. (A circularly polarised light is composed of two independent linearly
polarised ones. For any small director deviation from the initial state, only
one of these components will exert a torque on the director, because the other
will still be perpendicular to it. Since the energy the light carries is divided
evenly between the components, and one component must be intensive enough
to reorient the nematic by itself, the threshold intensity for CP light is double
that of the linearly polarised case.)

Both director precession, and the first order nature of the transition could be
explained in intuitive ways [43–45]. The precession of the director is caused
by the fact that once it reorients, the relative phase of the two linear compo-
nents that make up the circularly polarised beam changes as light propagates
through the layer. The ordinary wave will propagate at the same speed as be-
fore, but the extraordinary wave will experience a different index of refraction,
and thus propagates with a different speed. The change of the relative phase
means that light will become elliptically polarised, and the director starts turn-
ing towards the major axis of polarisation, which causes a steady precession.
The subcriticality of the transition is also due to the light becoming ellip-
tically polarised. The OFT threshold intensity for elliptically polarised light
is smaller than for circularly polarised light (see section 3.4), so once light
acquires elliptical polarisation, it can support director reorientation against
elasticity down to an intensity that is bellow the original OFT threshold. It
is worth noting, that due to isotropic symmetry of the setup in the plane of
the layer, rotating states are in fact the generic solutions that one may ex-
pect. They are also called Goldstone modes and are related to the spontaneous
breaking of the isotropic symmetry by the OFT (see e.g. [46,47]). A stationary
reoriented state would be the special case of zero frequency.

Interestingly, the steady precession of the molecules after director reorienta-
tion also has a clear ”quantum” interpretation, as being due to spin angular
momentum transfer from the light to the medium (the so-called Self-Induced
Stimulated Light Scattering [44]). To transform circularly polarised light inci-
dent on the transparent liquid crystal medium into an elliptically polarised one
that exits the cell, some photons must be scattered into an opposite helicity
state, i.e. their spin must be reversed. A constant deposition of spin angular
momentum to the medium means a constant torque acts on the director, that
balances the viscous torque arising from director motion. The energy that the
rotating molecules dissipate due to viscosity is supplied by the slight red-shift
of the scattered photons.
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3.2.1 Simple models

The peculiarities of the OFT in this geometry discussed qualitatively above
are recovered by simple models [45,48]. The key approximations these models
use are i) the plane-wave approximation and the assumption that all variables
depend on the z coordinate only, ii) flow is neglected, iii) the reorientation
is assumed to be small and iv) the slow-envelope approximation is used for
Maxwell’s equations. It is convenient to consider the problem in the usual
spherical angles Θ(z, t) and Φ(z, t) such that n = (sin Θ cos Φ, sin Θ sin Φ, cos Θ)
[see Fig. 1 (b)]. The azimuthal angle Φ = Φ0(t) + Φd(z, t) can be decomposed
into two parts, where Φ0(t) is a rigid rotation of the director around the z
axis (no distortion), and Φd is the twist distortion. The importance of this
decomposition is, that in general, Φ0 cannot be assumed to be small even if
the reorientation itself is tiny. The smallness of the reorientation implies that
the splay-bend, and the twist distortions are small, (i.e. Θ2(z, t) ¿ 1 and
|∂zΦd| ¿ 1/L respectively), but not Φ0 itself. The models also used a mode
expansion for Θ with just one sine mode (i.e. Θ ∼ sin(πz/L)) and the model
of [48] also used a one mode approximation for Φd. The models then employed
power series expansions with respect to the mode amplitudes.

As expected, these models describe very well the initial instability, the stable
precession regime and its hysteresis cycle (the UP1 branch in Fig. 5). The
model of [45], which has been derived by retaining terms up to third order
in Θ and only to the lowest order in ∂zΦd in the corresponding nonlinear
operator h from Eq. (14), goes even further. It predicts the existence of a
second precession regime (with a large reorientation amplitude) that has been
seen in the experiments. The transition is discontinuous with a large hysteresis
loop (see the UP2 branch in Fig. 5). The frequency of the precession in the
second regime was found to be at least one order of magnitude smaller than
for the first regime and to exhibit rapid variations with the incident intensity,
reaching zero at roughly periodic intervals. These properties are also recovered
from the model, which predicts the precession frequency to be

f0τ =
ρ(1− cos ∆)

2π∆
. (20)

Here ρ is the normalised intensity, and τ the director relaxation time as before.
∆ is the phase delay between the ordinary and extraordinary waves induced
by the whole layer (see section 2.3.3). This quantity is very suitable for an
overall characterisation of the magnitude of reorientation, because it is directly
measurable - ∆/2π represents the number of self diffraction rings in the far
field [49]. It is worth noting that this model describes the second regime rather
well, even though the angle Θ is large there, which actually contradicts the
initial assumption.
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Fig. 5. Bifurcation diagram of a nematic distorted by CP light, showing the phase
delay ∆/2π versus normalised intensity ρ in semi-logarithmic scale. The lines mark
the reorientation amplitude of various limit-cycle solutions. Solid (dashed) lines
mark stable (unstable) states and the gray region refers to the NUP regime.

3.2.2 Extension of the simple model

The success of the simple approximate models (in particular the agreement
with contemporary experiments) shifted attention from this geometry, until
some years later, a secondary instability between the OFT and the abrupt
transition to the largely reoriented state was observed [50]. A theory to de-
scribe this intermediate transition was attempted [51], and eventually success-
fully constructed [52,53]. For this purpose the angles Θ and Φd were expanded
in systems of orthogonal functions which satisfy the boundary conditions:
Θ =

∑∞
n=1 Θn(t) sin nz , Φd =

∑∞
n=1 Φn(t) sin(n + 1)z/ sin z. (Here z = z′π/L

a normalised coordinate.) These studies improve the simple models basically
by taking more modes to describe the reorientation angles (namely six modes
for each angle were found to be enough), and by relaxing the assumption that
the reorientation is small. Neglection of flow and the plane wave approximation
were retained. The expansions were used to obtain a set of nonlinear ODE-s for
the reorientation amplitudes Θn and Φn via the standard Galerkin method.
Since expansions of this complexity did not allow any parametric solution
of Maxwell’s equations, they were simulated dynamically with computers at
every step of the time integration.

Numerical solutions of the extended model confirmed the scenario near the
OFT. The OFT transition occurs at ρ = 1 and is subcritical. Once the director
settles to the UP1 state and the intensity is decreased, the director switches
back to the homeotropic state at some lower value of intensity ρ = ρ∗1 where
a saddle-node bifurcation occurs (see Fig. 5). For the UP1 state, the phase
delay that can be used to characterise the reorientation amplitude is ∆ ≈ π.
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The trajectory of the director in the (nx, ny) plane in the laboratory is a circle,
whereas in a frame rotating with frequency f0 around the z axis it is a fixed
point.

One should make an important remark concerning the nature of the OFT at
this point. Strictly speaking the answer to the question whether the transition
is sub- or supercritical must be obtained from a weakly nonlinear analysis. The
latter gives the following criterion [53]: the transition is supercritical (subcrit-
ical) if the coefficient C = K1/K3 − (9/4) (εa/ε||) is positive (negative). This
criterion is identical to the one derived in the case of OFT under linearly
polarised light [54]. In the calculations of [53], C turns out to be 0.154 and
the OFT is thus expected to be supercritical, which seems to contradict the
results of the simple models and observations. The precise numerical solution
shows, that the OFT is indeed supercritical in the present example but the
solution branch turns over and becomes subcritical (and unstable) already at
ρ = 1 + δρ where δρ ' 10−6, which is too small to detect.

As the intensity increases further, the UP1 state becomes unstable at an in-
tensity ρ = ρ2 where the director starts to nutate (NUP regime). This tran-
sition was identified as a supercritical Hopf bifurcation. The phase delay ∆
starts to depend on time in this regime and is represented by a gray region
in Fig. 5. (The upper and the lower lines limiting this region are the maximal
and minimal values taken by ∆ during its oscillation.) Whereas the trajectory
of the director in the laboratory frame is not closed (the motion of the direc-
tor is quasiperiodic), the director performs a simple periodic motion with a
frequency f1 in the frame that rotates with a frequency f0 around the z axis
[see Fig. 6 (a),(b)].

The NUP state in turn looses stability at ρ = ρ3 where the system jumps to a
new state of uniform precession of the director (UP2) with large reorientation
and slow precession frequency. Starting from the stable UP2 branch above ρ3

and lowering the excitation intensity, one finds a large and rather complicated
hysteresis cycle which consists of alternatively stable and unstable regions
exhibiting a series of saddle-node bifurcations (predicted also by the simple
model [45]). The system eventually switches back to the UP1 solution at ρ∗3
(see Fig. 5). The UPS branch, which is an unstable, uniform precessing state,
constitutes the separatrix between the basin of attraction of the stable UP2
and the stable NUP states (or, below ρ2, the UP1 state). In a reference frame
rotating with f0, the UPS state is a saddle point, and the transition from the
NUP regime to the UP2 state happens when the NUP limit cycle becomes
homoclinic to this saddle. Thus the transition at ρ = ρ3 is a homoclinic bi-
furcation of the simplest type where a limit cycle collides with a saddle point
having only one unstable direction [57]. Fig. 6(c,d) illustrates convergence of
the trajectory to the NUP state bellow ρ3 from various initial conditions.
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Fig. 6. (a),(b): director trajectory at ρ = 1.55. (a) Quasiperiodic behaviour in the
laboratory frame (nx, ny). (b) Periodic limit cycle in the rotating frame (nrot

x , nrot
y ).

The arrow indicates the sense of rotation when the incident light is left circularly
polarised. The sense of rotation is always opposite to that of the underlying preces-
sion [55].
(c),(d): director trajectory at ρ = 1.55 in a frame rotating with f0, showing the
instability of the UP1 and UPS solutions in the NUP regime. (c) Initial condition
near the UP1 solution. (d) Initial condition near the UPS solution. The arrows in-
dicate the sense of rotation of the corresponding trajectory when the incident light
is left circularly polarised.

All theoretical findings discussed up to now agree qualitatively with experi-
ments [53]. However, there were still quantitative discrepancies, for example,
the measured onset of the nutation-precession motion was found to be about
20% lower than predicted by theory.

3.3 The effects of flow

In an attempt to see if quantitative differences between experimental results
and theoretical predictions were due to the neglection of flow, or the plane
wave approximation, a study was performed with the inclusion of backflow [11].

24



0.7 1 1.3 1.6 1.9 2.2 2.5ρ

0.1

1

10

∆/2π

UPS
UP1

UP2

NUP

ρ1 ρ2 ρ3 ρ2 ρ3ρ3
* *

Fig. 7. Bifurcation diagram of a nematic distorted by CP light, showing the phase
delay ∆/2π versus normalised intensity ρ from two different calculations, one which
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UP solutions. Gray region: nonuniform precession states of the director. Dash-dot-
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3) interval: nonuniform precession states of the director when

backflow is neglected. The fact that ρ′3 ' ρ2 is accidental.

For this purpose the coupled director and Navier-Stokes equations have been
solved which, after adiabatic elimination of the flow field reduce to Eqs. (15).
From the linear stability analysis of the basic state follows that the threshold
for the OFT is unchanged, whereas the growth rate σ = (ρ−1)/(τξ) acquires a
”linearised viscosity reduction factor” ξ < 1 (ξ = 1 corresponds to neglection
of backflow). This factor is given by ξ = 1 − (1 − 8/π2) α2

2/η2, where η2 =
(α4 + α5−α2)/2 is an effective viscosity and αi are Leslie coefficients [6]. The
expression for ξ accidentally coincides with that obtained in [10] where a one-
mode approximation for the director components and smallness of the twist
distortion were used.

In [11] the dynamic equations for Θ and Φ (which are much more complicated
than those derived without the inclusion of flow) have been simulated by using
of the same (Galerkin) method described in Sec. 3.2.2. In Fig. 7 the results of
calculations of the phase delay for the case with and without flow are compared
with each other. It turns out that backflow does not lead to qualitative changes
in the dynamical scenario, but does lead to substantial quantitative changes in
the secondary bifurcation threshold. Namely, the onset of nutation is shifted
towards higher value of intensities by about 20% and exists in a larger interval.
As is seen from Fig. 7 the thresholds for the NUP and for the UP2 regimes
turns out to be ρ2 = 1.75 and ρ3 = 2.4 instead of ρ′2 = 1.45 and ρ′3 = 1.75
when the backflow is neglected [52,53]. It is worth noting that the precession
frequency f0 for UP1 states increases when the backflow is included. Such a
behaviour is expected because γ1 effectively decreases.
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Unfortunately, the inclusion of backflow did not diminish the quantitative
discrepancy between theory and experiment. (The experimental values of the
thresholds ρ2, ρ3 are even smaller than that given by the theory without
backflow [52,53].) One is forced to conclude that the discrepancy is mainly
due to the plane wave approximation, and to improve the correspondence
with the experiment one has to include the lateral degree of freedom.

3.4 Elliptic polarisation, perpendicular incidence

The case of an elliptically polarised (EP) light inducing the director reorien-
tation is a logical generalisation of the linearly and circularly polarised cases,
which has also been investigated in depth. EP light is characterised by the
ellipticity χ, which is related to the ratio of the minor and the major axis of
the polarisation ellipse and lies in the interval [−π/4, π/4]. The case χ = 0
(χ = ±π/4 ' ±0.785) corresponds to a linearly (circularly) polarised light.
The sign of χ determines the handedness of the polarisation (left or right),
thus it is sufficient to choose χ > 0 only. Clearly, the rotational invariance
around the z-axis for EP light is broken.

The first step, as usual, is the linear stability analysis of the unperturbed (U)
state. Again, the same assumptions i)-iv) mentioned in Sec. 3.2.1 can be used
here. In [58] the threshold intensity of the OFT for arbitrary χ was shown to
be given by the formula IEP

F = ICP
F /(1 + cos 2χ), where ICP

F is the threshold
intensity of the OFT for CP light. This is depicted by the lowest solid line in
Fig. 8 in the (χ, ρ) plane, where the intensities are normalised as ρ = I/ICP

F .

For fixed ellipticity χ and with increasing light intensity ρ the system switches
to a stationary distorted state (D) at the OFT for all ellipticities χ < π/4,
except the circular case χ = π/4. With further increase of the intensity, an
oscillating state (O) was experimentally observed [59]. The numerical analysis
[59] of the basic equations indeed predicts the existence of such a state. In a
later study, rotating states have been experimentally found [60]. A relatively
simple model was then proposed in [60] to describe all essential features of
the director dynamics for not too high values of ρ. A full numerical study was
performed in [61] to clarify the director dynamics at higher intensities, which
can not be reproduced by the simple model.

3.4.1 Simple model

The main assumptions used for the derivation of the simple model for EP
light [60] are the same as those used for the CP case, namely the plane wave
approximation without flow and the assumptions of small reorientation and
slow envelope approximation for the light (see Sec. 3.2.1). Again both the
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Fig. 8. Phase diagram of the dynamical regimes in the parameter plane (χ, ρ).
U: Undistorted state; D: stationary Distorted states; O: periodic Oscillating states;
PR: Periodic Rotating states; QPR: Quasi-Periodic Rotating states; LDS and LDO:
stationary Distorted and Oscillating states, with a large reorientation. The dashed
lines hPR, hLDS and hLDO correspond to the region of hysteresis for the PR, LDS
and LDO states, respectively. The points are experimental data extracted from [60]
for D (¥), O (◦), PR (N) and hysteretic PR (O).

polar and the twist angles were assumed to be small (Θ2 ¿ 1 and Φd ¿ 1).
All nonlinear operators were expanded with respect to these angles and only
few significant nonlinear terms were kept. Then a mode expansion for Θ and
Φ was used and only the first mode Θ1 for the polar angle was retained.
The field equations were solved iteratively using the twist angle as a small
parameter. The first iteration was taken as an approximate solution for the
field amplitudes. Finally, the problem reduced to a set of two ODEs for the
phase delay ∆ (which is proportional to Θ2

1 within this approximation) and
the zeroth mode Φ0 (which represents a rigid rotation, as before). The twist
modes Φn≥1 were assumed to follow adiabatically their steady state values and
were shown to decrease rapidly with n, so only a few of them were important.
Interestingly, if all twist modes are neglected no oscillations of the director
can be obtained. So the twist degrees of freedom are essential to induce the
nonlinear oscillations [60].

This relatively simple model was capable of predicting not only O states but
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also some other states occurring at higher intensities. In particular, it was
shown that transition from D to O states takes place via Hopf bifurcation,
while the transition from oscillation to rotation was shown to be the gluing of
two symmetrical limit cycles. The hysteresis between rotations and oscillations
at large ellipticity χ observed in the experiment [60] was also predicted by the
model.

3.4.2 Numerical study

A new interest in the problem of EP light arose after the discovery of the
quasiperiodic director rotation (QPR) for CP light and the successful theoret-
ical description of this phenomena (see Sec. 3.2, where this regime has been
called the NUP regime). This new regime appears in the CP case, if the inci-
dent intensity exceeds the one for the OFT by about 40% (calculated without
backflow). This lies already outside the region of intensities investigated in
[60]. Since in the experiment there is always a certain amount of residual el-
lipticity (i.e. it is not possible to prepare the ideal circular polarisation), it
became interesting to investigate, just how sensitive the director behaviour is
in the vicinity of this new bifurcation when mismatching from the CP case. So
the logical aim was to complete the bifurcation map in the (χ, ρ) plane. This
could not be done in the context of the simple model, as it fails for higher
intensities because i) the assumption about the smallness of the director dis-
tortion becomes incorrect and ii) higher order nonlinearities in twist terms
[∝ (∂zΦd)

2] that were neglected in the model become important. To this end,
a numerical study of the equations was performed, along similar lines as that
described in section 3.2.2.

In [61] the QPR regime for EP light was found both theoretically and experi-
mentally for the region of ellipticities close to the CP case. There, the map of
dynamical regimes from moderate to large ellipticities (0.33 ≤ χ ≤ π/4) has
been constructed that is shown in Fig. 8. (For smaller χ the map looks similar
to that obtained in the simple model of [60].) Keeping the ellipticity fixed
and increasing the intensity, these regimes appear as a well-defined sequence
of transitions as is summarised in Table I. The trajectories of the director in
various regimes are shown in Fig. 9. Above the OFT threshold several differ-
ent regimes can exist depending on the values of χ and ρ: stationary distorted
(D), oscillating (O), periodic rotating (PR), quasi-periodic rotating (QPR)
and largely reoriented states (Θ ∼ 1). The latter may be stationary distorted
(LDS), oscillating (LDO) or rotating (LR) states.

The OFT is a pitchfork bifurcation and the reoriented state is a D state (see
the filled circles in Fig. 9). This state loses its stability through a supercritical
Hopf bifurcation to an O state [curve 1 in Fig. 9(a)] characterised by a single
frequency f0. It should be noted that reflection symmetry is spontaneously
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Fig. 9. Calculated director trajectories in the (nx, ny) plane. (a) χ = 0.4: stationary
distorted state (D) at ρ = 0.72 (•); periodic oscillating state (O) at ρ = 0.76 (curve
1); periodic rotating state (PR) just above the gluing bifurcation at ρ = 0.83 (curve
2) and slightly below the transition to the largely reoriented oscillating state (LDO)
at ρ = 0.97 (curve 3); largely reoriented oscillating state at ρ = 0.98 (curve 4, see
inset). (b) χ = 0.6: stationary distorted state (D) at ρ = 0.8 (•); periodic oscillating
state (O) at ρ = 0.91 (curve 1); periodic rotating state PR1 slightly above the gluing
bifurcation at ρ = 0.917 (curve 2); periodic rotating state PR2 at ρ = 0.95 (curve 3).
(c) χ = 0.74: stationary distorted state (D) at ρ = 0.99 (•); periodic oscillating state
(O) at ρ = 0.9925 (curve 1); periodic rotating state PR1 slightly above the gluing
bifurcation at ρ = 0.9932 (curve 2); periodic rotating state PR2 slightly above the
saddle-node bifurcation at ρ = 0.9936 (curve 3, dashed line); quasi-periodic rotating
state at ρ = 1.5 (curve 4).
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broken by the first bifurcation, so in the D and O states one has two symmetry
degenerate solutions related by {nx → −nx, ny → −ny}. As ρ increases, these
two limit cycles merge in a gluing bifurcation at the origin and restore the
reflection symmetry. This leads to the appearance of a single double-length
limit cycle that corresponds to the trajectory in the PR state (curve 2 in
Fig. 9). (Note that for χ < 0.33 the rotating state is suppressed, see [61] for
more details.)

Table 1
Calculated sequence of bifurcations as a function of the ellipticity χ of the incident
light.
Ellipticity Sequence of transitions Bifurcation nature

0.33 < χ < 0.53 Unperturbed → Distorted Pitchfork

Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation Gluing

Periodic rotation → Periodic oscillation or distorted Homoclinic a

0.53 < χ < 0.72 Unperturbed → Distorted Pitchfork

Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation-1 Gluing

Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Distorted Homoclinic b

0.72 < χ < π/4 Unperturbed → Distorted Pitchfork

Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation-1 Gluing

Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Quasi-periodic rotation Supercritical Hopf

Quasi-periodic rotation → Homoclinic c

Distorted or periodic rotation

χ = π/4 Unperturbed → Periodic rotation Subcritical Hopf

Periodic rotation → Quasi-periodic rotation Supercritical Hopf

Quasi-periodic rotation → Periodic rotation Homoclinic c

a small jump of the director amplitude
b small [large] jump of the director amplitude for χ < 0.66 [χ > 0.66]
c large jump of the director amplitude

For χ > 0.53, there is an additional bifurcation between PR states (not shown
in Fig. 8 because it is very close to the gluing bifurcation). The amplitude
of the PR state occurring just above the gluing, now labeled PR1 [curve 2 in
Fig. 9(b),(c)], abruptly increases giving rise to another periodic rotating state
labeled PR2 with higher reorientation amplitude [curve 3 in Fig. 9(b),(c)]. This
is a hysteretic transition which has a double saddle-node structure separating
the PR1 and PR2 branches. (This feature was already found in the framework
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of the approximate model [60].) If the director settles in the PR2 state and the
intensity is decreased, the system switches back to the O or D state at the line
labeled hPR in Fig. 8. Note that at χ = 0.53 the two saddle nodes coalesce.

A further increase of the intensity eventually leads to a discontinuous transi-
tion via homoclinic bifurcation to LDO state (0.33 < χ < 0.45) or LDS state
(0.45 < χ < 0.72). This transition is associated with a small (large) relative
jump of the director amplitude for χ < 0.66 (χ > 0.66). If one starts from
the LDO state and the intensity ρ is decreased, the amplitude of oscillations
goes to zero leading to the LDS state (see the the hysteretic line hLDO in
Fig. 8). This LDS state, in turn, vanishes if the intensity is decreased below
the hysteretic line hLDS.

For 0.72 < χ < π/4 the PR2 state looses stability via supercritical Hopf
bifurcation (as ρ increases) and the system acquires a new frequency f1 which
leads to the QPR state [curve 4 in Fig. 9(c)]. As the intensity increases further
the QPR state undergoes a homoclinic transition to the LDS or LR state. The
latter arises only in a narrow region ∆χ ∼ 10−2 near χ = π/4 and is not
shown on Fig. 8.

The QPR regime has been observed in the experiment and was shown to exist
in a narrow region of ellipticities close to circular polarisation [61] as predicted
by theory. However, a quantitative agreement was not achieved which means
that one should refine the theory by including backflow and finite beam size
effect. One expects the dynamical scenario to remain qualitatively the same
after such refinements however, as the inclusion of flow did not change the
picture in the CP case, and the beam size proves decisive only when it is
significantly smaller than L (see section 4.1).

4 Transverse effects

4.1 The role of finite beamsize

As mentioned in section 2.3.2, most theoretical works treating light-induced
director reorientation in nematics use the plane wave approximation, where
not only the incident light, but all physical variables are assumed to be de-
pendent only on the z coordinate. An exception to this is the investigation of
the primary instability (the OFT) in various geometries, where the role of the
finite transversal intensity profile of the light has been investigated [62–65].
As it was readily noted, the transverse reorientation profile of the nematic
is able to follow the decrease of the laser beam size only to a certain point.
Elasticity prevents the reorientation profile from being too sharp, even if the
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laser spotsize is very small. Thus, as the spotsize is decreased, the width of
the reorientation profile tends to a finite value, the nematic reorients outside
the illuminated area as well. Correspondingly, the intensity required to induce
the transition grows, because a narrow region of light-induced torque must
keep balance with the elastic torques of a more extended region of director
distortion. This effect is sometimes termed the transverse non-locality of ne-
matics. The mathematical difficulties of including the transversal coordinates
were already evident in these first studies. Instead of the 1+1D PDE-s that
we have to start with in the plane wave theory, we are confronted with a full
3+1D PDE problem.

In the context of light induced dynamical behaviour, investigations on the
effects of finite beamsize have not been performed until very recently. This is
at first surprising, as experiments in this field have always been performed with
”narrow” beams, whose transverse size was the same order of magnitude as
the cell thickness, and not with ”wide” beams, whose transverse size would be
much larger. Besides the mathematical difficulties, this situation was no doubt
due to the fact that considerable progress has been made in understanding
these phenomena using the plane wave theory, so transverse effects appeared
to be of less importance.

A novel approach was adopted recently in a series of experiments, where the
influence of the finite beam size on the dynamical behaviour of a nematic has
been investigated systematically. These studies uncovered a lot of interesting
phenomena and the need for a proper theory describing finite beamsize effects
became evident. The studies also proved however, that finite beamsize effects
are not of decisive importance until at least one transverse dimension of the
laser beam is significantly smaller than the cell thickness.

4.1.1 Circular beam profile

One series of studies investigated the well known director precession phenom-
ena induced by perpendicularly incident, circularly polarised light [18,66,67]
(see also section 3.2). In these studies, the ratio of the Gaussian beam width
to the cell thickness δ = w0/L was a new control parameter, in addition to
the normalised intensity of the incident light. In particular, the series of bi-
furcations were investigated at several values of δ as the light intensity was
increased. It was found, that when the beam width is significantly smaller than
the cell thickness (at δ = 0.37 in [18]), new dynamical regimes can be seen,
among them even some stochastic ones, which is unusual for this geometry.
(The nature of these regimes however, was not identified clearly.) The reason
for this change of dynamics was also not clear in these works, but several pos-
sible causes have been speculated on. One idea, was that the so-called walk-off
is to blame, i.e. the relative displacement of the ordinary and extraordinary
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beams during propagation within the liquid crystal medium. This question
was investigated further in a theoretical model [66]. The theory, which in-
cluded δ as a control parameter, used some fairly artificial assumptions, for
example the incident intensity was assumed to be a step-function in the trans-
verse plane, and director reorientation was assumed to be dependent only on
z. Nevertheless, a critical value for δ was found (about 0.2− 0.3 depending on
L), bellow which the bifurcation diagram changes compared to the plane wave
case. However, the model never recovered the secondary Hopf bifurcation that
leads to the NUP regime, so in the limit of large δ (the true plane wave case)
it does not yield the correct bifurcation diagram. Therefore, while one cannot
exclude that walk-off can be important in some situations, no real dynamical
models support this idea reliably at the moment.

In another work, a simple model has been devised using coupled rotators that
are driven by the light [67]. While admittedly a toy model, it did reveal an
interesting result, namely that if δ > 0.7, the rotators are all synchronised,
i.e. the behaviour of the system is exactly the same as for the infinite plane
wave case. On the other hand, this toy model neglected effects such as the
twist deformations of the director, which are known to be important in this
geometry for the description of the secondary instability (the Hopf bifurcation
to the NUP regime, see section 3.2.2).

4.1.2 Elliptical beam profile

Another set of studies investigated the OFT in geometries where the laser
beam was incident perpendicularly upon the nematic cell and the transverse
profile of the beam was made highly elliptical. The intensity distribution could
thus be characterised by two width parameters wx and wy, corresponding to
the beam waist size in the directions of the major and minor axis of the
intensity profile ellipse. While one was always the same order of magnitude as
the cell thickness, the other was usually about ten times smaller than the larger
one (wx = 100µm, wy = 10µm were typical values). For linearly polarised
light, there is an additional control parameter that can be changed easily, the
angle β between the direction of the incident polarisation and the direction of
the major axis of the intensity distribution ellipse. The two width parameters
wx and wy were not really control parameters, as they cannot be changed
easily in the experiment. Nevertheless, the profile ellipticity µ = wx/wy ∼ 10
was noted and may well prove essential for characterising the interaction.

Observations in this geometry revealed interesting dynamical regimes. Using
linearly polarised light, oscillatory behaviour was found above a secondary
bifurcation in [68]. The oscillations were initially regular, then became more
irregular as the intensity was increased. Similar observations were published
in [69], and clear experimental evidence of on-off intermittency in the director
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rotation was also found for a similar setup using circularly polarised light [17].

The first qualitative theoretical explanations of these phenomena were pub-
lished along with the observations. They were probably inspired by the appeal-
ingly simple explanation of self induced stimulated light scattering in terms of
photon spin deposition in the nematic (see section 3.2). They showed [68–70],
that beam shape ellipticity is, in itself, a source of an additional torque on
the director. This torque is absent for circularly symmetric beams, and can
be attributed to the transfer of orbital angular momentum from the light to
the nematic. Furthermore, this torque is present for elliptically shaped laser
beams even if the light is unpolarised, and also if the light carries, on the
average, zero orbital angular momentum. The important ingredient was found
to be the breaking of the azimuthal symmetry. These works thus suggested
that the complex behaviour observed was due to some sort of competition
between spin and orbital angular momentum transfer. They were however,
rather qualitative arguments.

The first attempt to derive a ”simple” working model from the basic equations
that could account for the complex dynamical behaviour, arrived at a set of
nonlinear ODE-s for six scalar variables that describe the director orienta-
tion dynamics [71] when light is polarised linearly. It used a fairly restrictive
family of functions to describe the director orientation. A single polar angle
amplitude θ0 was used for the magnitude of the reorientation, whose x−y de-
pendence was assumed to be elliptical in shape, with a Gaussian cross-section
having two independent width parameters θ1 and θ2. The angle γ between the
major axis of the reorientation ellipse and that of the intensity ellipse was also
a dynamical variable. The azimuthal orientation was described by two vari-
ables, the average orientation φ0 and the twist amplitude φ1. The azimuthal
orientation was thus assumed to be homogeneous in the cell plane. Clearly,
this set of variables constitutes one of the simplest possible models (which
shows the mathematical difficulty that is encountered in this problem).

The study neglected flow, used the GOA for the light propagation problem,
and also neglected the distortion of the intensity ellipse (thus excluding the
spatial displacement of the ordinary and extraordinary beams i.e. walk-off
from the model). It also assumed reorientation to be small and used a power
series expansion with respect to θ0, but the phase shift between ordinary and
extraordinary light was calculated exactly. The most interesting property of
this study was, that it explicitly expressed the interaction terms that are
due to light spin change and to light orbital angular momentum change in
the director equations. The calculations (and the corresponding experiments)
were done with a highly distorted beam: L = 50µm, w1 = 178µm, w2 = 12µm,
i.e. µ = wx/wy = 15!

The results of this model were intriguing. It predicted multistability above
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the OFT threshold, at points where a balance is achieved between the spin
and the orbital angular momentum deposition. The experimental results in
parameter space were somewhat ”coarse” for a complete verification of this
prediction, but the agreement between theory and measurement was notable.
The model also reproduced the regular oscillatory behaviour of the director
above a certain light intensity, but irregular or chaotic oscillations observed in
certain regions of the intensity and β were not found. It was also noted, that
without the inclusion of director twist φ1 even the regular oscillations were not
reproduced. Interestingly enough, oscillations in the model were also absent if
the one constant approximation was utilised in the description of the elastic
energy of the nematic.

The above model was generalised slightly to treat circularly polarised light
[72]. This time, oscillating and rotating states were found in the model, and
a gluing bifurcation was identified to take place between them. The experi-
ment published alongside does not contradict this, but is not decisive enough
to confirm the suggested scenario either. The on-off intermittency observed
however, (and also found in [17]) was not predicted by the model, suggesting
that it is, after all, slightly oversimplified to encompass the dynamics of the
strongly nonlinear domain.

4.1.3 Questions on finite beamsize effects

It is difficult to present a clear picture in the case of finite beamsize effects, the
problems they pose seem to be mostly open. It is clear, that a comprehensive
theory is still missing, that existing models are too oversimplified to grasp
every essential detail and reproduce the complex dynamical behaviour seen
in the experiments. The fact that one model neglects certain features of the
interaction (e.g. walk-off or twist deformations), that the other model shows to
be of decisive importance, adds to the confusion. It is also quite possible, that
different features of the interaction become important in different geometries.
It is, however quite remarkable, that whatever the geometry, at least one
transverse size of the beam must be significantly smaller than the cell thickness
(w < L/2). Without this, no novel dynamical regimes have been seen.

4.2 Transverse pattern formation

It was already mentioned in the introductory sections, that the plane wave
approximation used in the description of light induced dynamics in nematics
is more appropriately called the 1D approximation, as all physical variables
are assumed to depend only on z. It is well known from the theory of ex-
tended nonlinear systems however, that a spatially homogeneous state may
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loose stability to a finite wavelength perturbation, leading to pattern forma-
tion. Then the dependence of the physical variables in the transverse plane
develops spontaneously. Thus even if the light illuminating the cell is truly an
infinite plane wave, spontaneous pattern formation may take place. (In the
course of any linear stability analysis that investigates the stability of some
stationary state, one considers spatially periodic perturbations. The wave vec-
tor ~k of the mode whose time exponent becomes positive first as some control
parameter is varied, is called the critical wave vector ~kc. If this is zero, i.e. the
critical wavelength is infinite, the bifurcation is said to be spatially homoge-
neous. If ~kc 6= 0, i.e. the critical wavelength is finite, it is said to be spatially
inhomogeneous.)

There are several indications that instabilities, which spontaneously break the
transverse symmetry are to be expected in the case of light induced dynam-
ics in nematics. On the one hand, periodic patterns are known to develop in
the static (low frequency) electric field or magnetic field induced Fréedericksz
transition if the elastic constants are sufficiently different [73,74]. On the other
hand, homoclinic bifurcations, which occur in several geometries in light in-
duced director dynamics, are known to generate spatial instabilities. In fact
any, almost homoclinic cycle is generically unstable in a spatiotemporal insta-
bility, which is either a phase instability, or a finite wavelength period doubling
instability [75]. Thus very complicated behaviour (probably spatio-temporal
chaos) is expected to occur in the vicinity of these homoclinic bifurcations, if
we consider a truly infinite plane wave illumination, but allow transversal spa-
tial dependence. Despite this, there are few theoretical papers that treat this
subject. The reasons are that on the one hand, exploring the precise nonlinear
behaviour in the spatially extended case is prohibitively difficult, and on the
other, that there are no experimental works that even come close to realizing
the plane wave limit, so there are no observations to contrast with theory.

Despite the difficulties, a limited amount of effort did go into exploring trans-
verse pattern formation. In [19], the simple models of director dynamics in
two geometries were generalised by adding a slow x − y dependence of the
mode amplitudes, and exploring the effects. In the case of a linearly polarised,
obliquely incident light, it was noted that the primary bifurcation (the OFT)

is always a homogeneous bifurcation (i.e. ~kc = 0), both when it is a pitchfork
bifurcation (line 1 in Fig. 4) and when it is a Hopf one (line 2 in Fig. 4). In
this second regime, a weakly nonlinear analysis was also performed, and the
coefficients of the relevant complex Ginzburg-Landau equations were derived
[77]. The linear dispersion parameter turned out to be zero, and the nonlinear
dispersion parameter was in a regime where stable plane wave and spiral so-
lutions are possible [76]. The linear stability of the stationary distorted state
above the primary pitchfork bifurcation was also re-examined in the vicinity
of the secondary Hopf-bifurcation. It was shown, that this bifurcation is ho-
mogeneous only if all the elastic constants are equal K1 = K2 = K3. This is
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a novelty compared to the magnetic [73], and the electric [74] field induced
Fréedericksz transition, where there is a lower limit to K1/K2 and K1/K3

bellow which ~kc = 0.

The spatially extended version of the simple model in the oblique incidence
geometry [19] was also used to investigate nonlinear behaviour of the system
as it neared the first gluing bifurcation (still within the range of validity of the
simple model). As foreseen, before reaching the gluing bifurcation, the system
reaches a turbulent state [78]. Surprisingly, this was found to be generated by
so-called retracting fronts [79], which suppress perturbations in the vicinity of
an unstable state.

The linear stability of the stationary distorted state in the linearly polarised,
obliquely incident geometry was also analysed more precisely using numerical
methods [20]. This time not pure, but dye-doped nematics were considered.
The reason was, that for pure nematics, one needs a very large laser to in-
duce the OFT and the dynamical behaviour above it over a substantial area
of the cell, as the required intensities are large. On the other hand, similar ef-
fects have been observed in dye-doped nematics, where the required intensity
can be over two orders of magnitude smaller. As dyes have non-negligible ab-
sorption, this also had to be taken into account. While the equations become
more cumbersome, including absorption finally leads only to some quantitative
changes, namely raises bifurcation thresholds by a few percent. In the analysis,
the exact reorientation profiles were calculated first, then their stability was
investigated with respect to spatially periodic perturbations (proportional to
exp[i(qx+py)]). The neutral surface was calculated and its minimum, the first
mode that destabilises the stationary state was found. (The neutral surface is
defined as the values of the intensity ρ(p, q) where the real part of the time
exponent belonging to a perturbation with wavenumber (p, q) vanishes.) An
example of the neutral surface plot is shown in Fig. 10. As for the previous
study, a finite wavelength instability was found for the generic case, ~kc was
zero only if the elastic constants were equal. Since this secondary bifurcation
is a Hopf-instability, one thus expects to see travelling waves above threshold.

The results obtained confirmed that the bifurcation is always inhomogeneous
unless the elastic constants are all equal. The magnitude of the critical wave
vector was also calculated as a function of the ratios K1/K3 and K2/K3,
which characterise the elastic anisotropy. It was found that as the anisotropy
increases (i.e. as the ratios decrease), the magnitude of the critical wavevector
also increases. For the materials typically used in the experiments investigating
light-induced director dynamics, the order of magnitude for |~kc| ∼ 0.1/L. This
means that to observe pattern formation, the laser beam spotsize should be
about 100 times wider than the cell thickness!

Besides uncovering novel phenomena, these studies were very useful in marking

37



–0.2

0

0.2

–0.2 0 0.2

c pq ,( )c

p

q

Fig. 10. Contour plot of the neutral surface as a function of the wave vector compo-
nents p and q calculated for α = 11◦. (p and q are measured in units of 1/L.) The
minimum of the surface yields the critical wave vector components qc = 0.11/L and
pc = −0.06/L.

the upper limit of the laser spot size, where the plane wave (or 1D) approx-
imation may be used to model director dynamics. Clearly, if the spot size is
about w0 ≤ 10L, the dependence of the physical quantities on the transversal
coordinate will be suppressed, and the plane wave approximation will be valid.

Another interesting result also came to light, when the general analysis [20,55]
allowing x − y dependence of the reorientation was used to investigate the
perpendicular incidence (α = 0) limit. This is the geometry of the classical
OFT induced by linearly polarised light, which has always been analysed by
assuming that the director reorientation remains in the plane spanned by
the original homeotropic orientation and the direction of polarisation (the
y − z plane). Although in the α = 0 case, the external symmetry breaking
in the x direction vanishes, so the reorientation is initially really along the y
direction, it turned out that the OFT is shortly followed by another stationary
instability. This spontaneously breaks the reflection symmetry with respect
to x and precedes the secondary Hopf bifurcation. It is shown by point A in
Fig. 11. It is also seen from this figure, that the secondary pitchfork bifurcation
is destroyed in the case of oblique incidence, which can be interpreted as an
imperfect bifurcation with respect to the angle α [55,56].

5 Various generalisations

As mentioned in the introduction, nematics driven by intensive light are an
excellent playground for observing various nonlinear phenomena, because the
experimental realization is fairly simple and inexpensive. It is also easy to
generalise the simple system by including various static fields, adding further
light fields, or modulating the light intensity in time. This allows the study of
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Fig. 11. Profiles of the director components nx, ny versus ρ at some z inside the layer
(not at the middle). Solid and dashed lines correspond to α = 0◦ and α = 0.5◦ re-
spectively. ρth is the threshold intensity of the OFT, calculated for a nematic doped
with dye. It is greater than unity because of light absorption (see [20] for details).
Point A is a pitchfork bifurcation to a stationary state with broken x-reflection
symmetry (α = 0◦).

various topics in nonlinear dynamics such as periodic forcing, chaos control,
and more. The range of possibilities is very wide, this section contains just a
few examples that have been investigated.

5.1 Cholesteric nematic mixtures

One such example is the study of cholesteric-nematic mixtures with initial
homeotropic orientation in the field of circularly polarised light. These mix-
tures are obtained by doping a nematic liquid crystal with chiral molecules
(a cholesteric liquid crystal) that can induce a helix structure of the director
profile [6]. This helical structure is characterised by a pitch p (or a wavevec-
tor q = 2π/p) that can be either positive or negative, distinguishing between
right- and left-handed helices. It is worth noting that these mixtures have been
widely used in the realization of twisted cells for liquid crystal displays that
are usually made in planar geometry. For this reason, only a few studies were
devoted to the case of homeotropic alignment which is nevertheless interesting
because of the incompatibility between a bulk homeotropic alignment and the
helix formation. In fact, the bulk homeotropic orientation is stable for small
values of |q| while it is unstable above a threshold value, q ∗, where a helix
structure is formed. In spatially extended systems this leads to the formation
of twisted domains, which can be eventually quenched by applying a suitable
electric field [80,81].

The theory for cholesteric-nematic mixtures is the straightforward extension of
the theory for pure nematics described in the previous sections. To generalise
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to a chiral nematic case, one has to add a chiral part to the elastic free energy
density F

(elastic)
chol = F (elastic) + qK2(n · ∇ × n) , where F (elastic) is given by

Eq. (3). Then, the intrinsic helical structure induced by the chiral dopant is
taken into account by writing the twist angle Φ as Φchol(z, t) = Φ(z, t)+k2qz ,
where k2 = K2/K3 and Φ(z, t) is the twist angle for a pure nematic introduced
in Sec. 3.2.1.

In [82–84] the reorientation of the director induced by linearly and/or circu-
larly polarised light impinging at normal incidence onto a cholesteric-nematic
sample with homeotropic anchoring conditions has been studied. It was shown,
that the initial homeotropic alignment is unstable above a threshold value,
Ith, which is a function of q and is smaller than for the q = 0 case. For CP
light the expression for the threshold is given by ρth = 1 − q̃ 2k2

2 [84], where
q̃ = qL/π. For LP light, ρth was shown to satisfy the transcendent equation

ρth = (4k2
2 q̃

2/πδ) · tan(πδ/2), where δ =
√

2(ρth + 2k2q̃2) [83]. As is seen, q
enters quadratically in the above expressions, i.e. the decrease of the OFT
threshold is insensitive to the sign of q, as expected. The nature of the OFT
and the director reorientation was demonstrated to depend significantly on
the relative helicity of the light field and the chiral mixture. Denoting by CP+

[CP−] the case of a circular polarisation with same [opposite] helicity to the
one of the material and by LP the case of linearly polarised excitation, one
can mention for instance the two following points: i) a large optical bistability
observed for LP light when |q| is large enough and ii) the reorientation for
CP− is similar to the one of LP light with q = 0.

In [82] the numerical solution for LP light near the OFT for different values
of q was found. It was shown, that the OFT might be of first-order with hys-
teresis, even when for zero doping it is of second order. In [83] an approximate
solution for the director components near the OFT under the assumption of
small distortion was derived. In [84] the authors extended the model beyond
the small distortion region by numerically integrating the torque equations
both for stationary (LP light) and for time dependent (CP light) cases. In
particular, the model confirmed the birefringence freezing effect [83] which
refers to the fact that the optically induced phase delay between ordinary and
extraordinary waves remains about π over a relatively wide range of intensi-
ties above the OFT. However, it was unable to reproduce other experimental
observations [84] like the secondary transition to a largely distorted state or
the bistability loop.

In [85], a detailed theoretical study of the optical reorientation induced by CP
light in chirally doped nematics has been done. The competition between an
intrinsic helical pattern (owing to the chiral dopant) and an extrinsic helical
pattern (owing to the light) was shown to be at the origin of the complex
behaviour. This mechanism might be described as follows. Angular momentum
deposited into the sample when light propagates through it leads to a twist
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Fig. 12. Bifurcation diagram of a cholesteric-nematic mixture distorted by CP light,
showing the phase delay ∆/2π versus normalised intensity ρ for different wavevectors
q̃. The lines mark the reorientation amplitude of various limit-cycle solutions. (a)
q̃ = −1.235, (b) q̃ = −0.9, (c) q̃ = 0 and (d) q̃ = 0.7. The solid (dashed) lines are
stable (unstable) states and the gray regions refer to precession-nutation regimes.

distortion, which can be called a light induced spiral. This spiral can be of the
same or opposite helicity as the one induced by the chiral dopant. In the latter
case this might lead to an unwinding of the intrinsic helical structure. It should
be noted, that here we discuss those values of q which are lower than the critical
value q̃ ∗ = 1/k2 for CP light. (Above this value the homeotropic alignment
is destabilised in favour of a twisted structure already without light.) In the
calculations of [85] q̃ ∗ turns out to be 2.74 that corresponds to the critical
pitch of the spiral p ∗ = 0.73 L i.e. it is of the order of the thickness of the
layer.

An approximate model, which is capable of describing the state of uniform
director precession (the UP state, see Sec. 3.2.2) and is the straightforward
generalisation of the approximate model developed in [45] (see section 3.2.1),
has been proposed in [85]. The OFT was found to be continuous if q̃ < q̃c and
discontinuous in the opposite case. The value of q̃c turned out to be small and
was found to be q̃c ∼ 5.8 × 10−3 in [85]. In addition, optical bistability was
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predicted in the vicinity of the continuous OFT for small values of | q̃ |.

Then the full numerical study was also performed in [85] which yielded the
whole bifurcation scenario taking place for right- and left-handed circular po-
larisations. The bifurcations that have been previously observed for CP light
were recovered. In particular, the nature of the bifurcation to a large reori-
ented state, the intermediate dynamical regimes and instabilities experienced
by the system were demonstrated to depend strongly on q, as is shown in
Fig. 12. Note that Fig. 12(c) corresponds to the case of a pure nematic and
coincides with Fig. 5 from Sec. 3.2.2. Interestingly, nutation-precession states
(NUP states) introduced in Sec. 3.2.2 exist only in a finite window of the
chiral parameter q̃1 < q̃ < q̃2, where q̃1 ' −1.17 and q̃2 ' 0.53. Two typi-
cal examples are shown in Fig. 12(b),(c). It should be noted that inside this
window there are one or more intervals of ρ where the NUP states exist. We
refer the interested reader to [85] for further details. The bifurcation scenarios
outside this window are shown in Fig. 12(a),(d). As one sees from Fig. 12(a),
where q̃ = −1.235, the birefringence freezing effect takes place approximately
for 1.25 < ρ < 2.0. On the contrary, for q̃ > q̃2, it does not occur as illus-
trated by Fig. 12(d) where q̃ = 0.7. If one starts from the UP state above the
OFT and the intensity ρ is increased, a discontinuous transition to a largely
reoriented state with hysteresis takes place in both cases, but for q̃ < q̃1 the
hysteresis loop is much wider. In fact, these results describe qualitatively the
observations reported in [84] both for the CP+ and CP− geometries.

In [85] only qualitative agreement between theory and experiment was found.
For instance, the numerical values of the bifurcation thresholds turned out to
be quite different. The reason for that could be, as before, due to the use of
a finite beam size in the experiment whereas the theory assumed an infinite
plane wave.

5.2 Chaos control

Another example of a slightly more general system is one where an additional
laser beam also traverses the nematic, in addition to the primary beam that
induces nonlinear dynamics. This beam can be weak compared to the first
one, yet if its field does exert some torque on the molecules, the effect on the
dynamical scenario can be considerable. It has been shown in [89], that the
chaotic behaviour induced by linearly polarised, obliquely incident light can
be controlled effectively using an additional beam of orthogonal linear polari-
sation, whose intensity may be as low as 10− 100 times smaller than that of
the primary laser beam. This additional beam can stop periodic oscillations,
stabilise periodic orbits within the chaotic regime or induce whole new dynam-
ical behaviour, depending on the intensity of the primary beam. The simple
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models derived for this geometry were generalised to include this second beam
[90]. The processes of orbit stabilisation and the novel dynamical regimes were
then studied in detail using the generalised model.

5.3 Periodic forcing

Another interesting direction of study is examining the response of a nematic
driven by light with a periodically modulated intensity near a Hopf bifurcation
[86]. As was described in Sec. 3.2, for a constant intensity CP light the OFT
leads to a regime where the director precesses uniformly (UP1 regime), and
this state looses stability in a Hopf bifurcation, which leads to a quasiperiodic
regime of director precession-nutation (NUP regime). In a coordinate system
rotating with the precession frequency f0, the mode amplitudes acquire a time
dependence at this bifurcation, with a new frequency f1 appearing associated
with the nutation. In the geometry with obliquely incident, linearly polarised
light (see Sec. 3.1) the system settles to a stationary distorted state (fixed
point) above the OFT (for angles of incidence not too far from perpendicu-
lar). A further increase of the intensity leads to a secondary supercritical Hopf
bifurcation. The response of the system to a periodic modulation of the inten-
sity with frequency f and amplitude dρ, depends on whether the ratio f/f1

will be a rational or an irrational number and is expected to have an Arnold’s
tongue structure in the (f1/f, dρ) plane [87,88]. In [86] one particular tongue
f1/f = 2/1 was reconstructed for both cases by simulating the system of
ODEs for the mode amplitudes. It was found both theoretically and experi-
mentally that outside this tongue, the response of the system is quasiperiodic
for small forcing amplitudes dρ. For moderate to large forcing amplitudes,
a lot of different interesting phenomena occurred, among which the route to
chaos through a cascade of period doubling bifurcations and windows of regu-
lar behavior inside the chaotic region were found. Fortunately the tongue, as
well as the region of period-doubling bifurcations followed by a chaotic region
turned out to be wide in the (f1/f, dρ) plane, so an experimental observation
turned out to be possible.

6 Summary and outlook

In this paper, we have presented an overview of recent advances in under-
standing the complex nonlinear phenomena that arise when a cell of nematic
liquid crystal is irradiated by strong laser light. Interesting nonlinear dynam-
ics have been observed in this system for light intensities above the optically
induced Fréedericksz transition threshold, for several geometries (linearly po-
larised light with oblique incidence, circularly and elliptically polarised light
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with perpendicular incidence). Our focus was on the recent progress made in
modelling and understanding these dynamical phenomena. We have listed the
various approximations that can be used in solving the set of equations that
describe the system - the nematodynamical equations for the liquid crystal,
coupled to Maxwell’s equations for the propagation of light. We have sum-
marised the most important results obtained from various theoretical calcu-
lations, and contrasted the dynamical regimes of the calculations with those
observed in the experiments. These comparisons yield valuable insight as to
which features of the interaction are important to consider in a theory. In a
few cases, surprisingly simple models are successful in recovering a consider-
able part of the bifurcation scenario. In other cases, this is not so, and only
an extensive numerical calculation is able to produce results that are in agree-
ment with observations. In some cases, even the flow of the nematic (which is
almost always neglected in theories) can be shown to play a considerable part
in shaping the dynamical landscape. Another major complication is the use
of very narrow beams, which yields new, interesting and largely unexplained
results.

As probably evident from the previous sections, light induced dynamical phe-
nomena in nematics are extremely diverse, and still present a large number
of open problems to solve. The most interesting problems on the side of fun-
damental research at the moment seem to be associated with finite beamsize
effects. This is an area where a number of recent observations still await proper
explanation, while new experiments are being performed. On the other hand,
phenomena in this field seem to be finding their way to technological applica-
tions. One example is the construction of all-optical photonic switching devices
using nematics [91], and more will probably follow soon.
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