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We have utilized neural networks for fast evaluation of tomographic data on the MT-1M tokamak.
The networks have proven useful in providing the parameters of a nonlinear fit to experimental data,
producing results in a fraction of the time required for performing the nonlinear fit. Time required
for training the networks makes the method worth applying only if a substantial amount of data are
to be evaluated. ©1997 American Institute of Physics.@S0034-6748~97!00603-5#
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I. INTRODUCTION

Impurity injection using laser accelerated pellets1–3 and
the study of the transport of these injected impurities
been the major field of investigation in recent years on
MT-1M tokamak.4,5 In some experiments, two 16-chann
microchannel plate~MCP! cameras6 were placed at various
cross sections of the torus, one horizontally, the other ve
cally. Micro pellets of impurities were injected using a las
blow-off device vertically from below and these impuritie
emitted radiation in the soft x-ray domain as the pellets
lated in the plasma.~Figure 1 shows the experimental setup!
With various filters added, the cameras provided informat
on the distribution of the injected impurity ions in a cro
section of the torus. More precisely, each channel of th
cameras measured an integral of the radiation of the inje
impurity ions along a linear domain of the cross sectio
These signals were digitized every 10ms and thus a time
evolution of the cloud of impurity ions could be investigate
The signal on the channels of the two cameras in a typ
experiment can be seen in Fig. 2. It can be seen corresp
ing with a localized distribution around the center of t
tokamak cross section in the horizontal direction, and m
ing from the edge of the plasma toward the center in a v
tical direction. The problem is to restore the original dist
bution of impurity ions in the cross section of the torus fro
these measurements as accurately as possible.

II. THE PROBLEM OF TOMOGRAPHIC
RECONSTRUCTION

The problem of tomographic reconstruction is to reco
struct a two dimensional source function from a set of in
grals of this source function.7 Obviously, a lot of information
is lost because each channel integrates the radiation alo
line, and it is impossible to restore the original distributi
exactly. Therefore we attempted to approximate the sou
functionF(x,y) from the measurements on the channels
the cameras, which are integrals of this source function:

Mi5E F~x,y!3v i~x,y!dx dy.

The functionsv i(x,y) contain information on the measure
ment setup~geometry, etc.! and are assumed to be know
For the approximation, we used a given class of test fu
1438 Rev. Sci. Instrum. 68 (3), March 1997 0034-6748/97/6
s
e

i-
r

-

n

e
ed
.

.
al
d-

-
r-

-
-

g a

ce
f

c-

tionsF(x,y,pk) containing parameterspk . The aim is to find
the set of parameters that minimize the error function

E~pk!5( S E F~x,y;pk!3v i~x,y!dx dy2Mi D 2.
We tried to minimize the measurable difference between
original source function and the approximating functi
F(x,y;pk) belonging to a prescribed class of test function
The integrals containing the functionsv i(x,y) must be
evaluated numerically. IfF(x,y;pk) functions are linear
sums of a set of base functionswk(x,y), i.e.,

F~x,y;pk!5(
k

pk3wk~x,y!

then

E~pk!5( S (
k

pk3E wk~x,y!3v i~x,y!dx dy2Mi D 2,
i.e., the parameters can be taken out of the numerical i
grals containing the characteristics of the measurem
setup. The minimization will therefore be that of a quadra
function of the parameters, which is simple and computati
ally efficient. If an iterative minimization of the error func
tion is implemented, the integrals have to be performed o
once for each measurement setup and choice of base f
tions. Alternatively, the error function, being a quadratic on
may be minimized using a matrix inversion method.7 The
choice of a linear superposition of some base functions a
test function, however, works best if there are a larger nu
ber of measurements~integrals of the source function! than
there are base functions needed to adequately describe
source function. If the number of base functions~and hence
the number of parameters! is larger than the number of mea
surements, the conditions for minimal error will only defin
a subspace of the entire parameter space on which the m
mization takes place. This means that additional criteria h
to be added to select a point in this subspace of parame
which may complicate calculations considerably. Such cr
ria are used, for example, by maximum entropy tomograp
and minimum undulation tomography.7 In our case the prob-
lem is that there is no simple set of base functions wh
corresponds well to a localized distribution moving in t
cross section of the tokamak. We may try to use a lin
superposition of localized functions as a base~for example
we may use two-dimensional step functions!, however, for
8(3)/1438/6/$10.00 © 1997 American Institute of Physics



u
s
-

u

a
m
v
o
to

u
e

o

r
h
ue
the

a
et-
ks.
ul-
ga-
s,

e-
he
an
di-
eu-
the
om

net-
ain

is,
nge
ce
net-
t to
le
ng
of

t.
alu-
ar

net-
t a
o-
m-

h

an adequate description of the source function we need m
more than 32 base functions~the number of measurement
available!. Another natural choice would be to fit a two di
mensional Gaussian distribution to the measurements

F~x,y;pk!5
A

2psxsy
3 exp S 2

~x2x0!
2

2sx
2

2
~y2y0!

2

2sy
2 D , pkP$x0 ,y0 ,A,sx ,sy%

with parameters for the position of the center of the distrib
tion in the horizontal and vertical directions, the widths o
the distribution in the two directions, and an amplitude p
rameter. The problem is that this function contains its para
eters nonlinearly, meaning that the numerical integrals ha
to be evaluated in every step of an iterative minimization
the error function. This makes fitting nonlinear functions
tomographic data extremely inefficient and cumbersome.

III. NEURAL NETWORKS

Neural networks have recently evolved into a powerf
method of problem solving applied in a variety of fields. Th
basic idea behind neurocomputing, derived from analogies
the human brain, is to use a large number of primitive pr

FIG. 1. Experimental setup. Both the horizontal and the vertical camera
16 viewing chords each.
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cessors to evaluate data in parallel.8–10 The single processo
~or neuron! would perform a simple task of multiplying eac
of a number of input values by an internal weight val
corresponding to that input, creating a linear sum of
weighted inputs and producing some simple function~called
the transfer function! of the linear sum as its output. With
large number of neurons organized into a network, the n
work as a whole may be able to perform complicated tas
One frequently used architecture of these networks is a m
tilayered, feedforward type network called the Backpropa
tion Network. This network consists of layers of neuron
with the neurons of the first layer receiving the input~which
is an n-dimensional vector!, and each successive layer r
ceiving the output of the previous layer as its input. At t
end, the output layer of this network produces
m-dimensional output vector. The neurons within the in
vidual layers are not interconnected, i.e., the input of a n
ron of a layer consists only of the outputs of neurons of
previous layers. Thus this network realizes a mapping fr
an n-dimensional input space to anm-dimensional output
space. There are mathematical theorems to prove this
work to be a universal function approximator under cert
conditions.8

One of the most important virtues of such systems
that so called learning strategies may be utilized to cha
the weights of individual neurons to adjust the performan
of the network. These strategies can be used to teach a
work to solve a problem using examples of desired outpu
specific inputs. The Backpropagation Network is simp
enough for a straightforward learning strategy for traini
from examples to be formulated. Another important virtue
this network~and many others as well! is its resistance to
noise—its ability to perform well in a noisy environmen
Neural networks have been used for fast measurement ev
ation in plasma physics previously, including nonline
curve fitting to experimental data.11–16

IV. APPLICATION OF THE NETWORKS

The question now arises as to whether such neural
works could be trained to ‘‘guess’’ the parameters tha
conventional nonlinear curve fitting would produce on t
mographic data. In other words, we may try to find a co

ad
FIG. 2. The signal on the channels of the cameras in a typical experiment, horizontal camera on the left, vertical camera on the right.
1439Neural network tomography



ork output
FIG. 3. Performance of the neural networks and conventional curve fitting on position and amplitude parameters. On each of the figures the netw
or the results of the curve fitting are plotted on the vertical axis against the generating parameters of the samples~desired output!. Standard deviation from the
desired output is written on top. Note that the plots of the conventional fit contain only half the number of points as the neural network plots.
ne
A
di
b

us
sired
uld
hus
plicated mapping that returns the parameters that a nonli
curve fitting would produce given the tomographic data.
database of samples of the input space with correspon
desired outputs to train the networks may be obtained
1440 Rev. Sci. Instrum., Vol. 68, No. 3, March 1997
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taking two dimensional Gaussian distributions with vario
parameters, making these generating parameters the de
output, and calculating the signals that the detectors wo
measure from the knowledge of the experimental setup. T
Neural network tomography
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FIG. 4. Performance of the neural networks and conventional curve fitting on width parameters. On each of the figures the network output or the
the curve fitting are plotted on the vertical axis against the generating parameters of the samples~desired output!. Standard deviation from the desired outp
is written on top.
th
rd
M

o
y

te
ea

d
-
en
st
a
te
a
a
m
iti
ar

en
al-
rks
nel

on
con-
ith
ron
nels

set
erfor-
nce
al
e-
of
ach
also
real-
wo
data for training is readily available, and this fact makes
application of the Backpropagation Network straightforwa
This method of data evaluation was tried on the MT-1
tokamak.

The Backpropagation Networks utilized had tw
layers—one hidden and one output layer. The hidden la
neurons had a sigmoid transfer function,f (x)51/(11e2x),
which is a convenient continuous approximation of the s
function and the output neurons simply produced their lin
sum as their output. The output of the five parameters~cor-
responding to the two position, two width, and the amplitu
parameter of the Gaussian! were all scaled to be in the inter
val @0, 10#. It was found to produce better results, wh
training five networks with one output neuron each, to e
mate one parameter of the distribution rather than to tr
one with five output neurons to estimate all five parame
simultaneously. It is also possible to exploit the fact th
there is a linear dependence between the channel values
the amplitude parameter at given position and width para
eters. Since the networks should return to the same pos
and width parameters from channel values that span a l
Rev. Sci. Instrum., Vol. 68, No. 3, March 1997
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dynamic range, it is sensible to get rid of this problem wh
trying to estimate position and width parameters by norm
izing the channel values. Therefore when training netwo
to estimate the position and width parameters, the chan
values of the samples~i.e., the inputs to the networks! were
normalized so that the maximum channel value was unity
each sample. This was found to increase performance
siderably. The networks were found to function best w
around 20 hidden layer neurons. Each hidden layer neu
had 32 inputs, corresponding to the 32 measuring chan
of the cameras.

A database on which the networks were trained was
up, and a separate database was used for testing the p
mance of the networks and to compare it to the performa
of a conventional nonlinear curve fitting. This convention
algorithm consisted of calculating the error function d
scribed in Sec. II and minimizing this error as a function
the parameters using a conjugate gradient method for e
sample separately. A substantial amount of noise was
added to the channel values of the samples to simulate
istic experimental conditions. This noise consisted of t
1441Neural network tomography



moving into
FIG. 5. Results of tomographic data processed by neural networks. The position parameters can be seen to correspond to a localized distribution
the plasma from below in the vertical direction, while the amplitude parameters correspond to a sudden increase in radiation from impurity ions.
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components. One was a Gaussian distribution noise adde
each channel value, whose standard deviation was 10%
that channel value. The other was a white noise, whose
plitude was 2% of the largest channel value in the sam
Results of the comparison can be seen in Figs. 3 and 4.
left-hand side figures show how well the neural netwo
estimated the generating parameters of the samples~the de-
sired output!, while the right-hand side figures show th
same for a conventional nonlinear curve fitting. Standard
viations from the generating parameters can be seen a
top of each of the figures. It can be seen in the figures
the results for position parameters are slightly worse for
neural network estimate, while the results for amplitude
rameters are practically the same for the conventional n
linear fit and the neural networks. While the standard dev
tions for the width parameters are smaller for the neu
networks, the structure of the error is different, as the rela
error for narrow distributions is much larger for the ne
works. By changing the circumstances of learning, this
be changed, and it is possible to train the network, so that
relative error of the parameters is constant. The overall p
formance of the networks thus makes them suitable for
measurement evaluation, and the values returned by the
works may be used later as a starting point for a conventio
nonlinear fit if greater accuracy is desired, reducing ti
1442 Rev. Sci. Instrum., Vol. 68, No. 3, March 1997
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needed for convergence. It must be stressed, however,
while a conventional nonlinear fit may provide informatio
on the applicability of our chosen test functions~the error at
the end of the minimization may still be large indicating th
the chosen test function does not describe the distribu
adequetly!, the neural networks have no such capability. T
networks will provide an output whatever the input is, and
the measurements correspond to a different distribut
~e.g., one corresponding to several pellets at the same t!
the output will provide false information.

The price to be paid for utilizing neural networks lies
training the networks. Training the Backpropagation N
work involves a nasty nonlinear minimization involving
large number of parameters. This is, of course, extrem
time consuming and training networks only pay off if the
are large numbers of tomographic data to be evaluated.
computational load needed for training varies with the nu
ber of hidden layer neurons and training samples used.
the numerical minimization of the error function we tried th
conjugate gradient, and the Broyden–Fletcher–Goldfa
Shanno algorithm,17 both of which were found to work well.
A set of 2000–3000 samples to train the networks was fo
to give good results. The minimization was found to co
verge in a few hundred iterations. For 30 hidden layer n
rons and 2000 training samples, the training required 4
Neural network tomography
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days on an IBM PC compatible computer equipped with a
MHz 386 DX processor and with an arithmetic coprocess
After training, processing of the samples by the neural n
works is almost instantaneous. The nonlinear fitting o
single sample took around 1 h on thesame machine. There
fore, in our setup the computational load of training the n
works was equal to that of completing a few hundreds
conventional nonlinear fits. Since using the networks a
involves some experimenting to which the architecture
most suitable for solving a given problem, it is wise to inve
in neural network training only if the amount of tomograph
data exceeds a few times that amount. It must also be m
tioned, that a hardware implementation of these netwo
would be suitable for real-time data evaluation if desired

Real experimental data was also processed by the
works. The results on a series of tomographic data involv
a pellet injection into the plasma can be seen in Fig. 5
these experiments, aluminium pellets were injected into
plasma and there were no filters in front of the camer
From previous experiments we know that the signal com
mainly from the Al I,II,III ions, which are present in th
plasma only in the vicinity of the pellet. It can be seen th
the position parameters returned by the networks do ind
correspond to a pellet moving into the plasma from bello
while the amplitude rises sharply as the pellet enters
plasma.

In conclusion, we can say that neural networks are s
able for fast processing of tomographic data, but it is wo
investing in training such networks only if either there a
large numbers of tomographic data to be processed~which
is, however most often the case! or if real time evaluation is
needed for some reason.
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