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We have utilized neural networks for fast evaluation of tomographic data on the MT-1M tokamak.
The networks have proven useful in providing the parameters of a nonlinear fit to experimental data,
producing results in a fraction of the time required for performing the nonlinear fit. Time required
for training the networks makes the method worth applying only if a substantial amount of data are
to be evaluated. €1997 American Institute of PhysidsS0034-674807)00603-3

I. INTRODUCTION tionsF(x,y,py) containing parameters, . The aim is to find

o . _ the set of parameters that minimize the error function
Impurity injection using laser accelerated peftefsand

the study of the transport of these injected impurities has
been the major field of investigation in recent years on the

4,5 i - . L .
MT'thtOkaTa:(' '\I/Incsléome expgrlmentsl, th 16 chgnnel We tried to minimize the measurable difference between the
microchannel platé ) cameraswere placed at various original source function and the approximating function

Cross sgctions of the t.orus,.c_)ne horizqn_tally, the.other Vertii:(x,y;pk) belonging to a prescribed class of test functions.
cally. Micro pellets qf impurities were injected using a Ifa,serThe integrals containing the functions;(x,y) must be
bonv—off de\./IC.e vgrtlcally from below aqd these impurities evaluated numerically. fF(x,y;p,) functions are linear
emlttgd radiation in t_he soft x-ray domain as the pellets aby < of a set of base functiong(x.y), i.e.,

lated in the plasmgFigure 1 shows the experimental sejup.
With various filters added, the cameras provided informatiorI:
on the distribution of the injected impurity ions in a cross
section of the torus. More precisely, each channel of these
cameras measured an integral of the radiation of the injecte@j‘en
impurity ions along a linear domain of the cross section.

These signals were digitized every 48 and thus a time E(pk)=z
evolution of the cloud of impurity ions could be investigated.

The signal on the channels of the two cameras in a typicdle., the parameters can be taken out of the numerical inte-
experiment can be seen in Fig. 2. It can be seen CorrespongraJS containing the characteristics of the measurement
ing with a localized distribution around the center of theSetup. The minimization will therefore be that of a quadratic
tokamak cross section in the horizontal direction, and movfunction of the parameters, which is simple and computation-
ing from the edge of the plasma toward the center in a verally efficient. If an iterative minimization of the error func-
tical direction. The problem is to restore the original distri- tion is implemented, the integrals have to be performed only
bution of impurity ions in the cross section of the torus fromonce for each measurement setup and choice of base func-

these measurements as accurately as possible. tions. Alternatively, the error function, being a quadratic one,
may be minimized using a matrix inversion metHod@he

choice of a linear superposition of some base functions as a
II. THE PROBLEM OF TOMOGRAPHIC test function, howevgr, works best if there are a I:_;lrger num-
RECONSTRUCTION ber of measurementéntegrals of the source functipthan
there are base functions needed to adequately describe the
The problem of tomographic reconstruction is to recon-source function. If the number of base functiqasd hence
struct a two dimensional source function from a set of intethe number of parameters larger than the number of mea-
grals of this source functiohObviously, a lot of information  surements, the conditions for minimal error will only define
is lost because each channel integrates the radiation alongaasubspace of the entire parameter space on which the mini-
line, and it is impossible to restore the original distribution mization takes place. This means that additional criteria have
exactly. Therefore we attempted to approximate the sourc® be added to select a point in this subspace of parameters,
function ®(x,y) from the measurements on the channels ofwhich may complicate calculations considerably. Such crite-
the cameras, which are integrals of this source function: ria are used, for example, by maximum entropy tomography
and minimum undulation tomograpfyn our case the prob-
Mi:j ®(X,y) X wi(X,y)dx dy. lem is that there is no simple set of base functions which
corresponds well to a localized distribution moving in the
The functionsw;(x,y) contain information on the measure- cross section of the tokamak. We may try to use a linear
ment setup(geometry, et¢.and are assumed to be known. superposition of localized functions as a baf® example
For the approximation, we used a given class of test funcwe may use two-dimensional step functipnisowever, for

2
E(p=2 (f F(X,y; P X oi(x,y)dx dy—M;| .

(x,y;pk):Ek PIX @k(X,Y)

2
Ek pkxf er(XY) X wi(x,y)dx dy—M; |,
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cessors to evaluate data in parafiel’ The single processor
(or neuron would perform a simple task of multiplying each
of a number of input values by an internal weight value
corresponding to that input, creating a linear sum of the
weighted inputs and producing some simple funciicalled

the transfer functionof the linear sum as its output. With a
large number of neurons organized into a network, the net-
work as a whole may be able to perform complicated tasks.
One frequently used architecture of these networks is a mul-
tilayered, feedforward type network called the Backpropaga-
tion Network. This network consists of layers of neurons,
with the neurons of the first layer receiving the ingwhich

is an n-dimensional vectgr and each successive layer re-
ceiving the output of the previous layer as its input. At the
end, the output layer of this network produces an

FIG. 1. Experimental setup. Both the horizontal and the vertical camera hafi1-dimensional output vector. The neurons within the indi-

16 viewing chords each.

vidual layers are not interconnected, i.e., the input of a neu-
ron of a layer consists only of the outputs of neurons of the

an adequate description of the source function we need mudpevious layers. Thus this network realizes a mapping from
more than 32 base functiorfthe number of measurements an n-dimensional input Space to am-dimensional outp.ut
available. Another natural choice would be to fit a two di- Space. There are mathematical theorems to prove this net-

mensional Gaussian distribution to the measurements

(X_Xo)2
FIXYip =5 X exp| ———
xYy X
(Y—Yo)?
T o052 | pkE{XO’YO:A’Ux’Uy}
y

work to be a universal function approximator under certain
conditions®

One of the most important virtues of such systems is,
that so called learning strategies may be utilized to change
the weights of individual neurons to adjust the performance
of the network. These strategies can be used to teach a net-
work to solve a problem using examples of desired output to

with parameters for the position of the center of the distribu-SPecific inputs. The Backpropagation Network is simple
tion in the horizontal and vertical directions, the widths of €nough for a straightforward learning strategy for training
the distribution in the two directions, and an amplitude pa-from examples to be formulated. Another important virtue of
rameter. The problem is that this function contains its paramthis network(and many others as welis its resistance to
eters nonlinearly, meaning that the numerical integrals havBoise—its ability to perform well in a noisy environment.

to be evaluated in every step of an iterative minimization ofNeural networks have been used for fast measurement evalu-

the error function. This makes fitting nonlinear functions toation in plasma physics previously, including nonlinear

tomographic data extremely inefficient and cumbersome.

IIl. NEURAL NETWORKS

Neural networks have recently evolved into a powerful

curve fitting to experimental dafa-®

IV. APPLICATION OF THE NETWORKS

The question now arises as to whether such neural net-

method of problem solving applied in a variety of fields. Theworks could be trained to “guess” the parameters that a
basic idea behind neurocomputing, derived from analogies afonventional nonlinear curve fitting would produce on to-
the human brain, is to use a large humber of primitive pro-mographic data. In other words, we may try to find a com-
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FIG. 2. The signal on the channels of the cameras in a typical experiment, horizontal camera on the left, vertical camera on the right.
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FIG. 3. Performance of the neural networks and conventional curve fitting on position and amplitude parameters. On each of the figures the network output
or the results of the curve fitting are plotted on the vertical axis against the generating parameters of the(dasm@doutpyt Standard deviation from the
desired output is written on top. Note that the plots of the conventional fit contain only half the number of points as the neural network plots.

plicated mapping that returns the parameters that a nonlineéaking two dimensional Gaussian distributions with various
curve fitting would produce given the tomographic data. Aparameters, making these generating parameters the desired
database of samples of the input space with correspondingutput, and calculating the signals that the detectors would
desired outputs to train the networks may be obtained byneasure from the knowledge of the experimental setup. Thus
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FIG. 4. Performance of the neural networks and conventional curve fitting on width parameters. On each of the figures the network output or the results of
the curve fitting are plotted on the vertical axis against the generating parameters of the sdegited outpyt Standard deviation from the desired output
is written on top.

data for training is readily available, and this fact makes thelynamic range, it is sensible to get rid of this problem when
application of the Backpropagation Network straightforward.trying to estimate position and width parameters by normal-
This method of data evaluation was tried on the MT-1Mizing the channel values. Therefore when training networks
tokamak. to estimate the position and width parameters, the channel
The Backpropagation Networks utilized had two values of the sample@.e., the inputs to the networksvere
layers—one hidden and one output layer. The hidden layenormalized so that the maximum channel value was unity on
neurons had a sigmoid transfer functidifx) =1/(1+e %), each sample. This was found to increase performance con-
which is a convenient continuous approximation of the stegsiderably. The networks were found to function best with
function and the output neurons simply produced their lineaaround 20 hidden layer neurons. Each hidden layer neuron
sum as their output. The output of the five parameteos-  had 32 inputs, corresponding to the 32 measuring channels
responding to the two position, two width, and the amplitudeof the cameras.
parameter of the Gaussiawere all scaled to be in the inter- A database on which the networks were trained was set
val [0, 10. It was found to produce better results, whenup, and a separate database was used for testing the perfor-
training five networks with one output neuron each, to estimance of the networks and to compare it to the performance
mate one parameter of the distribution rather than to trairof a conventional nonlinear curve fitting. This conventional
one with five output neurons to estimate all five parameterslgorithm consisted of calculating the error function de-
simultaneously. It is also possible to exploit the fact thatscribed in Sec. Il and minimizing this error as a function of
there is a linear dependence between the channel values atiee parameters using a conjugate gradient method for each
the amplitude parameter at given position and width paramsample separately. A substantial amount of noise was also
eters. Since the networks should return to the same positiomdded to the channel values of the samples to simulate real-
and width parameters from channel values that span a largstic experimental conditions. This noise consisted of two

Rev. Sci. Instrum., Vol. 68, No. 3, March 1997 Neural network tomography 1441



20 R e 30 ; e —
_ _ -0} Rl
g oy . e E .
oy . . s = 50t .

g L ] L] L ] : »
] o} L
= = .
2 g -60
= & .
L -y
§ -10 3 a0l
) = .
N Tt
';‘ L I i L A 1 g 8 A I I i 1 1 1 1
20900 4940 4980 5020 5060 0900 4940 4980 5020 5060
T [ps] T {ps]
5000 R
4000 | 1
8
[h)
£ 3000} :
-]
oy
[~
2 2000} 1
[}
o]
=
S 1000} I
[=%
g oobrre oot
4900 4940 4980 5020 5060

T [pus]

FIG. 5. Results of tomographic data processed by neural networks. The position parameters can be seen to correspond to a localized distribution moving into
the plasma from below in the vertical direction, while the amplitude parameters correspond to a sudden increase in radiation from impurity ions.

components. One was a Gaussian distribution noise added t@eded for convergence. It must be stressed, however, that
each channel value, whose standard deviation was 10% @fhile a conventional nonlinear fit may provide information
that channel value. The other was a white noise, whose anon the applicability of our chosen test functioftise error at
plitude was 2% of the largest channel value in the samplethe end of the minimization may still be large indicating that
Results of the comparison can be seen in Figs. 3 and 4. Thee chosen test function does not describe the distribution
left-hand side figures show how well the neural networksadequetly, the neural networks have no such capability. The
estimated the generating parameters of the sanffilesde- networks will provide an output whatever the input is, and if
sired outpux, while the right-hand side figures show the the measurements correspond to a different distribution,
same for a conventional nonlinear curve fitting. Standard defe.g., one corresponding to several pellets at the same time
viations from the generating parameters can be seen at thie output will provide false information.

top of each of the figures. It can be seen in the figures that The price to be paid for utilizing neural networks lies in
the results for position parameters are slightly worse for théraining the networks. Training the Backpropagation Net-
neural network estimate, while the results for amplitude pawork involves a nasty nonlinear minimization involving a
rameters are practically the same for the conventional norlarge number of parameters. This is, of course, extremely
linear fit and the neural networks. While the standard deviatime consuming and training networks only pay off if there
tions for the width parameters are smaller for the neurahre large numbers of tomographic data to be evaluated. The
networks, the structure of the error is different, as the relativ&eomputational load needed for training varies with the num-
error for narrow distributions is much larger for the net- ber of hidden layer neurons and training samples used. For
works. By changing the circumstances of learning, this carthe numerical minimization of the error function we tried the
be changed, and it is possible to train the network, so that theonjugate gradient, and the Broyden-Fletcher—Goldfarb—
relative error of the parameters is constant. The overall perShanno algorithm! both of which were found to work well.
formance of the networks thus makes them suitable for fash set of 2000—3000 samples to train the networks was found
measurement evaluation, and the values returned by the nét give good results. The minimization was found to con-
works may be used later as a starting point for a conventionalerge in a few hundred iterations. For 30 hidden layer neu-
nonlinear fit if greater accuracy is desired, reducing timerons and 2000 training samples, the training required 4—6
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