Pentakvarkok

Dániel Barna

barnad@rmki.kfki.hu

KFKI Részecske- és Magfizikai Kutatóintézet, Budapest

&

CERN NA49 kísérlet

<u>2003 Január:</u> LEPS kísérlet (SPring-8, Japán) PRL-hez beküldött cikke

 $\Rightarrow \begin{vmatrix} \text{Éles csúcs } m \approx 1540 \text{ MeV-nél a} \\ nK^+ \text{ spektrumban} \end{vmatrix}$

Csomó más kísérleti és elméleti cikk követte.

Miért ennyire érdekes ez az eredmény?

- ► Az új részecske barion: B=1
- ► Ritkasága: S=+1 \Rightarrow egy \overline{S} kvarkot tartalmaz

Elméleti jóslatok motiválták a kutatást

Mire számíthatsz a következő 1 órában ...

- ► Néhány elméleti modell ...
- A friss kísérleti eredmények (és a kísérletek, főleg NA49) áttekintése
- Régi eredmények áttekintése (miért csak most?) negatív eredményekkel való konfrontáció

Kvarkok: színesek — Megfigyelt hadronok: színtelenek A legegyszerűbben így építhetőek fel:

- ► $qqq \Rightarrow barionok$ $3 \otimes 3 \otimes 3 \supset 1$
- ► $q\overline{q} \Rightarrow \text{mezonok}$ $3 \otimes \overline{3} \supset 1$

De ez nem minden !!! Bonyolultabb állapotok is alkothatnak szín-szingletet!

- Tenger-kvark párok (qqq) jelen vannak (és fontosak) a hadronokban
- Szintén lehetséges: \overline{q} más ízű, mint bármelyik másik $q \Rightarrow$ nincs annihiláció

Penta/tetra-kvarkok: mik is ők?

- ► $qqqq\overline{q} \Rightarrow \text{pentakvark}$ (barion)
- ► $qq\overline{qq} \Rightarrow \text{tetrakvark} (\text{mezon})$

Nyilvánvaló jel: EXOTIKUS részecskék megfigyelése (olyan kvantum-# kombináció, ami nem létezhet 3-kvark rendszerre)

- ► Barion S=+1 ritkasággal \Rightarrow pár-nélküli \overline{S}
- ► Barion: S=-2, Q=-2 \Rightarrow Q(SSq) \neq -2

Ha a \overline{q} -nak van íz-partner q-ja \Rightarrow nem-exotikus

Elméleti jóslatok

A teljesség igénye nélkül ...

Bag model

- R.L. Jaffe, SLAC-PUB-1774 (1976)
- D. Strottman, Phys. Rev. D20, 748 (1979)
- Skyrme királis szolitonok:

A. Manohar – Nucl. Phys. B248, 19 (1984) kiterjesztés M. Chemtob – Nucl. Phys. B256, 600 (1985) hiperonokra

Diakonov, Petrov, Polyakov – Z. Phys. A359, 305 (1997)

Jóslat: exotikus barion anti-decouplet

⇒ tömeg & szélesség jóslatok Ez volt a motiváló cikk a LEPS kísérletnek Diakonov, Petrov, Polyakov – Z. Phys. A359, 305 (1997)

Jósolt paritás: pozitív

Korrelált (di-)kvark modell

R. Jaffe & F. Wilczek, arXiv:hep-ph/0307341(2003), arXiv:hep-ph/0401034

2 kvark egy di-kvarkok alkot: [q_1q_2]

- ► Spin: 0
- ► $SU(3)_{\text{flavour}} \& SU(3)_{\text{colour}} : \overline{3}$ $(3 \otimes 3 \supset \overline{3})$

 $\begin{array}{lll} \text{Pentakvark:} & [q_1q_2][q_3q_4]\overline{q} & \sim & \overline{3} \otimes \overline{3} \otimes \overline{3} \supset 1 & \leftarrow(\text{szin}) \\ \Rightarrow & \text{Barion anti-decouplet} \oplus \text{octet} & \leftarrow(\text{iz}) \end{array}$

 $\begin{array}{lll} \mbox{Tetrakvark:} & [q_1q_2][\overline{q}_3\overline{q}_4] & \sim & \overline{3}\otimes 3 \supset 1 & & \leftarrow(\mbox{szin}) \\ \Rightarrow & \mbox{Mezon oktet (nem-exotikus)} & & \leftarrow(\mbox{iz}) & & \leftarrow(\mbox{iz}) \end{array}$

Multipletek a di-kvark modellben

Könnyű kvarkok (u,d,s) esetén: <u>csak</u> ezek a pentakvarkok!

Jósolt paritás: pozitív

Soliton vs. dikvark tömeghierarchia

 $\Xi_{3/2}$ A legérdekesebb különbség:

a legkönnyebb barion

 <u>Dikvark modell:</u> N (nem-exotikus, S kvark nélkül)

• Soliton modell: Θ^+ (exotikus, benne \overline{S})

Az exotikusok bomlási csatornái

Csikor, Fodor, Katz, Kovács arXiv:hep-lat/0309090

Jósolt paritás: negatív

ugyanezt jósolja: arXiv:hep-lat/0310014

Elmélet – alternatívák

Lehet egy barion – mezon kötött állapot, "molekula"?

Szélesség \sim 100 MeV \updownarrow Kísérletileg: $\Gamma_{\Theta} \lesssim$ 10-20 MeV (kísérleti felbontás)

Nemkorrelált kvarkok?

Paritás: negatív

Különböző modellek különböző jóslatokkal !

FRISS KISERLETI EREDMENVEK

LEPS: #1

Reakció: $\gamma^{12}C \rightarrow nK^+K^-$ ($\gamma n \rightarrow nK^+K^-$)

- ► Foton nyaláb:
 - ★ Laser fotonok, Compton-visszaszórva a tárológyűrű 8 GeV/c²-es elektronjairól
 - ★ Foton energia (<2.4 GeV) meghatározása: a szórt e⁻ energiájának mérésével
- ► Target: plasztik szcintillátor (C, H)
- ► $\gamma p \rightarrow K^+ K^- p$ reakciók kizárása: meglökött p detektálásával
- ► $M_{inv}(nK^+)$ meghatározása: hiányzó tömeg $M_{missing}(\gamma, K^-)$
- ► Korrekció a Fermi-mozgásra

LEPS: #1

Reakció: $\gamma^{12}C \rightarrow nK^+K^-$

M = 1.54 GeV

Szignifikancia: 4.6 σ

Phys.Rev.Lett. 91, 012002 (2003)

DIANA @ ITEP

Reakció: $K^+Xe \rightarrow pK_S^0 Xe'$

- ► Nyaláb: 850 MeV *K*⁺
- Target: folyékony xenon buborékkamra
- Részecskeazonosítás: specifikus ionizáció
- Nincs mágneses tér ⇒ momentum meghatározása: részecske úthossza a xenonban

DIANA @ ITEP

Reakció: $K^+Xe \rightarrow pK_S^0 Xe'$

M = 1.539 GeV

Szignifikancia: 4.4 σ

CLAS @ JLAB

Reakció: $\gamma d \rightarrow pnK^+K^-$

- Nyaláb: elektron fékezési sugárzás anyagban fotonok
- Target: folyékony deutérium
- ► Végállapot:
 - **★** detektált: pK^+K^-
 - ★ Hiányzó tömeg = M_{neutron}
- ▶ p szintén detektálva ⇒ Fermi-mozgás korrekciója nem szükséges

CLAS @ JLAB

Reakció: $\gamma d \rightarrow pnK^+K^-$

M = 1.542 GeV

Szignifikancia: 5.3 σ

SAPHIR @ ELSA

Reakció:
$$\gamma p \rightarrow n K^+ K_S^0$$

- ► Foton nyaláb:
 - $\bigstar e^-$ fékezési sugárzása rézben
 - ★ Foton-energia meghatározása: szórt e⁻ mérésével
- ► Target: folyékony hidrogén
- Tracking: driftkamra mágneses térben (⇒ töltés és momentum-meghatározás)
- ▶ n mérés: hiányzó energia, impulzus

SAPHIR @ ELSA

```
Reakció: \gamma p \rightarrow nK^+K_S^0
```


$$M = 1.54 \text{ GeV}$$

Szignifikancia: 4.8 σ

νA ütközések

Buborékkamrás kísérletek kombinált adatai BEBC (CERN), 15-foot chamber (Fermilab)

M = 1.533 GeV

Szignifikancia: 6.7 σ

HERMES @ DESY

Reakció:
$$e \ d \rightarrow pK_S^0 X$$

$$M = 1.526 \text{ GeV}$$

Szignifikancia: 4-5 σ

Phenix @ RHIC: $\overline{\Theta}^+$

Reakció: $d \operatorname{Au} \rightarrow \overline{n}K^{-}X$

Csak periférikus eseményekben!

Antineutron: annihilációs cluster az EM kaloriméterben

 \overline{n} momentum meghatározás: repülési időből

Chris Pinkenburg (Phenix) Poszter: QM2004 (Január 11-17)

ZEUS @ DESY

SVD @ IHEP

E_{beam}=70 GeV

M = 1.526 GeV

Szignifikancia: 5.6 σ

Kísérleti összefoglaló

Kísérlet T	「ömeg [MeV]	Széles. [MeV]	Szignif.		
LEPS 1	540 ± 10	Γ <25	4.6		$ nK^+$
DIANA 1	539 ±2	$\Gamma < 9$	4.4		pK_S^0
CLAS 1	542±5	Γ <21	5.3	-8	$ nK^+$
SAPHIR 1	540±4±2	Γ <25	4.8	-	nK^+
νA 1	533±5	Γ <20	6.7	-8-	pK_S^0
HERMES 1	526±2.5	Γ <20	5.6	Ð	pK^0_S
Phenix 1	543 ± 2	6 ± 2		E	$\overline{n}K^{-}$
SVD 1	526 ± 6	Γ <24	5.6	-8-	pK^0_S
ZEUS 1	527 ± 2	10 ± 2		8	$pK^0_S, \overline{p}K^0_S$
Tömog: többnyirg konzisztons gradmányok 1520 1540 1560					

 pK_S^0 csatornában kisebb tömeg ???

Szélesség: $\Gamma \lesssim$ 10-20 MeV (kísérleti felbontás)

Friss, negatív kísérletek

- STAR @ RHIC: nincs jel p+p, d+Au, Au+Au ütközésekben (http://www.jlab.org/intralab/calendar/archive03/pentaquark/talks/salur.pdf)
- HERA-B @ DESY: nincs jel p+C, p+Ti, p+W ütközésekben (http://www-rnc.lbl.gov/qm2004/talks/parallel/Friday03/KTKnoepfle.pdf)
- ► Cosy: állítólag láttak csúcsot p+p ütközésekben (ha megkövetelik egy ∑⁺ jelenlétét), de nem mutattak ábrát (http://www.jlab.org/intralab/calendar/archive03/pentaquark/talks/stroeher.pdf)

Első pozitív kísérletek: γ vagy lepton (or K^+) nyalábok Nukleáris reakciók: későbbiek vagy eredménytelenek Nukleáris reakciók rosszabbak a Θ^+ megfigyeléséhez?

Miért rosszak a nukleáris reakciók?

- Túl sok háttér (az energiával növekszik)
- Θ^+ keltési h.keresztmetszet csökken az energiával? (NA49: $\sqrt{s} = 17$ GeV RHIC: $\sqrt{s} = 200$ GeV)

Miért rosszak a nukleáris reakciók?

► <u>DIANA</u> kísérlet: $K^+Xe \rightarrow pK_S^0 Xe$

a jel csak akkor szignifikáns, ha K_S^0 or p nem szóródik a magban

 K_S^0 és p back-to-back a transzverz síkban \Longrightarrow

Miért rosszak a nukleáris reakciók?

► <u>DIANA</u> kísérlet: $K^+Xe \rightarrow pK_S^0 Xe$

a jel csak akkor szignifikáns, ha K_S^0 or p nem szóródik a magban

 K_S^0 és p back-to-back a transzverz síkban \Longrightarrow

Phenix: jel csak periférikus d+Au ütközésekben látható

Az NA49 kísérlet

NA49: adatok és célok

p+p ütközések \sqrt{s} = 17.2 GeV energián

Eseményválogatás után (elsődleges vertex helye, stb) 3.76 M events

A vágyott részecskék:

► **Θ**⁺

E_{3/2} bomlási topológia

Θ⁺ bomlási topológia

Mindkét részecskéhez szükség van V⁰ (és kaszkád) rekonstrukcióra!

NA49: V⁰ rekonstrukció

NA49: Kaszkád rekonstrukció

NA49: Ξ, Λ invariáns tömegspektrumok

NA49: $\Xi - \pi$ spektrumok – vágások

<u>А Ξ-re:</u>

- ightarrow z > z(mainvertex) + 12 cm
- ► $|M_{\Lambda}$ 1115| < 15 MeV
- $\blacktriangleright~|M_{\Xi}$ 1321| < 15~MeV
- ► Bomlástermékek dE/dx: 3σ Bethe-Bloch görbe körül
- Impact paraméter vágások

Az elsődleges π -re:

- ► Visszafele extrapolált pálya a main-vertex-nél: |b_x| <1.5 cm, |b_y| <0.5 cm</p>
- ► dE/dx: Bethe-Bloch görbe mellett \pm 1.5 σ -n belül

NA49: $\Xi - \pi$ invariáns tömegspektrumol

NA49: további vágások a π -re

π⁺-ra: p >3 GeV (hogy kiszűrjük a protonokat)

NA49: további vágások a π -re

NA49: a végső $\Xi - \pi$ spektrumok

Mind a négy csatornában van valami 1.862 GeV-nál

 $\Gamma \leq$ 18 MeV (kis. felbontás)

Szignifikancia: 5.6 σ

2.4 arXiv:hep-ex/0310014, PRL 92, 042003 (2004)

Más kísérletek a $\Xi_{3/2}$ -ról

<u>STAR @ RHIC</u> p+p, d+Au és Au+Au ütközésekben :

 nincs jel
 (bár még nem mutattak ábrát ...)

Sevil Salur (STAR) Poszter: QM2004

Más kísérletek a E_{3/2}-ról

<u>STAR @ RHIC</u> p+p, d+Au és Au+Au ütközésekben :

 nincs jel (bár még nem mutattak ábrát ...)

Sevil Salur (STAR) Poszter: QM2004

Más kísérletek a E_{3/2}-ról

<u>HERA-B @ DESY</u> p+C, p+Ti, p+W ütközésekben

- \blacktriangleright Nem látnak jelet \Longrightarrow
- ► ... de ők sem látják a Θ⁺-t

Karl-Tasso Knöpfle (HERA) Poszter & beszély: QM2004

NA49: mi van a Θ^+ -val ????

Látjuk, de még sok megválaszolatlan kérdést kell tisztáznunk ...

Θ⁺ – korábbi kísérleti eredmények ???

Kísérleti eredmények

- ► A frissek: nK^+ és pK_S^0 tömegspektrumok \Rightarrow pozitív eredmények
- ► A régiek, amik szóba jönnek: főleg K⁺d és K⁺p szórás ⇒ nincs jel

Hogyan úszhatta meg eddig a Θ^+ , hogy megfigyeljék?

K⁺n szórás ...

A Nussinov-becslés: Γ_{Θ^+}

arXiv:hep-ph/0307357

$$f = \frac{\Gamma_{\Theta} + \text{``100 MeV''}}{\Gamma_{\Theta}}$$

- kiszélesíti a csúcsot
- elnyomja a maximumát

Elméleti számol. \implies nem-elnyomott csúcs-maximum

A K^+d szórási hatáskeresztmetszetben megfigyelt fluktuációk (\sim 4 mb) $\Rightarrow \Gamma_{\Theta} <$ 6 MeV

Θ^+ : pK⁰_S spektrumban már 1973-ban !!?

200 21 2.7 3.3 3.9 M²(pK[°])

CERN 2 m hidrogén buborékkamra

 K^+ nyaláb, p=1.69 GeV/c

$$K^+p \to K^0_S \ p \ \pi^+$$

Ha tudták volna, hogy OTT KELL LEGYEN egy részecske 1540 MeV-nél ..

Nucl. Phys. B64, 54-92 (1973)

Miért nem fedezték fel a Θ^+ -t eddig?

► A kísérletek nem voltak elég jók, stb. stb. stb.

Miért nem fedezték fel a Θ^+ -t eddig?

- ► A kísérletek nem voltak elég jók, stb. stb. stb.
- Nem tudtuk, hogy fel kéne fedeznünk (és hogy hol)

Korábbi kísérletek: Ξ – π spektroszkópia

BNL 80-in. buborékkamra (deuterium) K^-n ütközések (p_{beam}=3.6, 3.9 GeV)

Phys.Rev.D1, 847 (1970)

► $\Xi(1530)$ tisztán látható

- Nem látszik csúcs
 1.86 GeV körül
- Igen kis statisztika (néhány beütés 40 MeV-es binekben)

Korábbi kísérletek: $\Xi - \pi$ spektroszkópia

BNL 80-in. buborékkamra (deuterium) K^-n ütközések (p_{beam}=3.6, 3.9 GeV)

Korábbi kísérletek: Ξ – π spektroszkópia

- 1. Korábbi (Ξ^-,π^-) spektrumok
- ▶ ritkák
- nagy binekkel, kis statisztikával

- 2. Van azonban néhány (Ξ^-, π^+) spektrum
 - Főleg K^-p ütközések
 - Nagy statisztika

Korábbi kísérletek: Ξ – π spektroszkópia

WA89 @ CERN ("Hyperon beam experiment") arXiv:hep-ex/9710024

- ► Reakció: $\Sigma^- + A \rightarrow \Xi^- \pi^+ X$
- ► $p_{\text{beam}}^{\Sigma^-}$ =345 GeV
- Nincs csúcs 1860 MeV körül

WA89 @ CERN ("Hyperon beam experiment") arXiv:hep-ex/9710024

- ► Reakció: $\Sigma^- + A \rightarrow \Xi^- \pi^+ X$
- ► $p_{\text{beam}}^{\Sigma^-}$ =345 GeV
- Nincs csúcs 1860 MeV körül

NA49 – WA89 különbség:

- Energia
- Nyaláb
- ► Target
- Akceptancia

Erről maradtál le, ha kesőn érkeztél ...

- ► A Θ⁺ létezését több kísérlet is megerősítette, konzisztens tömegmérésekkel, de
 - ★ Egyéb tulajdonságairól semmit nem tudunk
 - ★ Paritás ??? (jó út bizonyos modellek kizárására)
 - ★ Várható: dedikált kísérletek pontos tömeg, szélesség, paritásmérésre
- ► NA49: a másik jósolt exotikus részecske $(\Xi_{3/2})$
 - ★ Várunk a megerősítésre
 - ★ Egyelőre nem látják mások! Miért?
 - ★ Más bomlási csatornák !!! (ΛK , ...)