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Quantum Field Theory on curved spacetimes is one of the most
important formalisms of theoretical physics. It also has a curious
mathematical structure. It leads to interesting problems in PDE’s
and operator theory.

Plan of my talk:

1. Propagators on the flat Minkowski space.

2. Propagators on a curved spacetime, including a construction of
the distinguished Feynman propagator.

3. The question about the self-adjointness
of the Klein-Gordon operator on a curved spacetime.



PART I. PROPAGATORS ON A FLAT SPACETIME.
Let me start with the Klein-Gordon equation the flat Minkowski

space R1,3

(−� + m2)ψ = 0.

The following propagators and 2-point functions should belong to
the standard knowledge of every student of QFT:



• the forward/backward propagator

G∨/∧(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ± i0 sgn p0
dp,

• the Feynman/anti-Feynman propagator

GF/F(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ∓ i0
dp,

• the Pauli–Jordan propagator

GPJ(x, y) :=
i

(2π)3

∫
e−i(x−y)·p sgn(p0)δ(p2 + m2) dp,

• the positive/negative frequency 2-point function

G(±)(x, y) :=
1

(2π)3

∫
e−i(x−y)·pθ(±p0)δ(p2 + m2) dp.



Define the Klein Gordon operator K := −� + m2.

G∨/∧, GF/F can be viewed as its inverses

KGf = GKf = f,

and G(±), GPJ are its bisolutions

KGf = GKf = 0.

Note the identities satisfied by the propagators:

GPJ = G∨ −G∧ (1)

= iG(+) − iG(−), (2)

GF −GF = iG(+) + iG(−), (3)

GF + GF = G∨ + G∧. (4)



The following facts are easy to see:

(1) The Klein-Gordon operator K = −� + m2 is essentially self-
adjoint on C∞c (R1,3) in the sense of L2(R1,3).

(2) For s > 1
2, as an operator 〈t〉−sL2(R1,3) → 〈t〉sL2(R1,3), the

Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

s-lim
ε↘0

(K ∓ iε)−1 = GF/F.

Here 〈t〉 denotes the so-called “Japanese bracket”

〈t〉 :=
√

1 + t2.



After splitting the coordinates into time and space R1,3 = R×R3,
we can rewrite the Klein-Gordon equation as a 1st order equation for
the Cauchy data. This is the evolution approach, which will be easy
to generalize to curved spacetimes.(

∂t + iB
)[u1(t)

u2(t)

]
= 0,

[
u1(t)
u2(t)

]
:=

[
u(t)

i∂tu(t)

]
, B :=

[
0 1l

−∆ + m2 0

]
.

The evolution e−i(t−s)B preserves the charge form

(u|Qv) = (u1|v2) + (u2|v1), Q :=

[
0 1l
1l 0

]
.



It is natural to introduce a whole scale of Hilbert spaces of the
Cauchy data Wλ = K1

2+λ
⊕K−1

2+λ
,

where Kβ = (−∆ + m2)−
β
2L2(Rd) is the Sobolev space. Their

scalar product can be written as

(u|v)λ := (|B|−
1
2+λu |H|B|−

1
2+λv).

B is self-adjoint on all of them. Among them the energy space has
the scalar product given by the Hamiltonian

H := BQ =

[
−∆+m2 0

0 1l

]
, (u|v)1

2
:= (u |Hv).

The dynamical spaceW0 becomes naturally the 1-particle space after
quantization.



We define the propagators in the evolution approach:

Pauli-Jordan bisolution EPJ(t, s) := e−i(t−s)B,

forward inverse E∨(t, s) := θ(t− s)e−i(t−s)B,

backward inverse E∧(t, s) := −θ(s− t)e−i(t−s)B,

pos./neg. freq. bisolution E(±)(t, s) := e−i(t−s)BΠ(±),

Feynman/anti-Feynman inverseEF/F(t, s) := θ(t− s)e−i(t−s)BΠ(±)

− θ(s− t)e−i(t−s)BΠ(∓),

Here θ is the Heavyside function and Π(±) := θ(±B).



They act on functions t 7→ w(t) =

[
w1(t)
w2(t)

]
as follows:

(E•w)(t) :=

∫
E•(t, s)w(s) ds, • = PJ,∨,∧, (±),F/F.

We obtain also the propagators in the spacetime approach:

G• := iE•12, • = PJ,∨,∧,F/F,

G(±) := ±E(±)
12 , E• =

[
E•11 E

•
12

E•21 E
•
22

]
.



LetWKG be the space of smooth complex space-compact solutions
of the Klein-Gordon equation. The classical charged fields ψ(x),
ψ∗(x) are the functionals on WKG

〈ψ(x)|ζ〉 = ζ(x), 〈ψ∗(x)|ζ〉 = ζ(x).

WKG is naturally a symplectic space. The corresponding Poisson
bracket is called the Peierls bracket and is given by

{ψ(x), ψ∗(y)} = −GPJ(x, y).

Quantization is performed in two steps.



Construction of the algebra. We put hats on ψ and ψ∗, replacing
the Poisson bracket by i times the commutator, obtaining the CCR
algebra over WKG:

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y).

Choice of a representation. There exists a natural Fock state whose
expectation values are

(Ω | ψ̂(x)ψ̂∗(y)Ω) = G(+)(x, y),

(Ω | ψ̂∗(x)ψ̂(y)Ω) = G(−)(x, y).

This state by the GNS construction defines a representation acting
on a bosonic Fock space.



The most important role in the evaluation of Feynman diagrams
is played by the Feynman propagator, which expresses the vacuum
expectation of time ordered products of fields. Similarly, the anti-
Feynman propagator expresses the vacuum expectations of the re-
verse time-ordered products of fields:(

Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= −iGF(x, y),(
Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= −iGF(x, y).



As a side remark, note that the Euclidean analog of the Klein-
Gordon equation is the Helmholtz equation

(−∆4 + m2)ψ = 0.

Its theory is much simpler, we have only one propagator:

GE(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2
dp

Performing the Wick rotation from the Euclidean propagator we ob-
tain the Feynman and anti-Feynman propagator. Practitioners often
prefer to use the Euclidean setting.



PART II. PROPAGATORS ON A CURVED SPACETIME.

Consider now a curved spacetime with a metric tensor gµν in the
presence of an external electromagnetic potential Aµ and an external
scalar potential Y . Introduce the Klein-Gordon operator

K := |g|−
1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y.

The charged field satisfies the Klein-Gordon equation

Kψ = Kψ∗ = 0.



Consider first the stationary stable case. More precisely, we assume
that M = R×Σ and g, A, Y do not depend on t ∈ R. We can then
define the generator of the evolution of the Cauchy data B and the
corresponding Hamiltonian H = BQ. We assume that H is positive
definite (which is called the stability condition).

The whole theory of propagators of the Klein-Gordon equation goes
through from the Minkowski to the stationary stable case with obvi-
ous minor changes (except for the slide that used the Fourier trans-
formation).

The Poincaré covariance is lost. However, the state (Ω| · Ω) is
uniquely determined by the requirement that it is the ground state
of the Hamiltonian implementing the evolution.



Suppose now that the Klein-Gordon equation is more generic. We
assume only that M is globally hyperbolic. It is well known that
under this assumption one can define the classical propagators, i.e.
the forward, backward, and Pauli-Jordan propagators, all possessing
a causal support:

G∨, G∧, GPJ := G∨ −G∧.
We introduce the space of space-compact solutions WKG and the

classical fields ψ(x), ψ∗(x). WKG has a natural symplectic structure,
and the Peierls bracket is still expressed by GPJ. Then we perform
algebraic quantization, obtaining quantum fields ψ̂(x), ψ̂∗(x). Un-

fortunately, unlike in the stable stationary case, G(±) are not well
defined, hence there is no natural state.



Let us make an additional assumption that the Klein-Gordon equa-
tion is asymptotically stationary and stable in the future and the past.
More precisely, we assume that we can identify M ' R × Σ, the
evolution of the Cauchy data is given by a time dependent generator
B(t) with the Hamiltonian H(t) := B(t)Q, such that
asymptotic stationarity: lim

t→±∞
B(t) =: B±, lim

t→±∞
H(t) =: H±

exist;
asymptotic stability: H± is positive definite.

Define the evolution generated by B(t):

i
d

dt
R(t, s) = B(t)R(t, s), R(t, t) = 1l.



Set Π
(+)
± := θ

(
B±
)
, Π

(−)
± := θ

(
−B±

)
.

Lemma. Under mild technical conditions, for any s

lim
t→−∞

R(s, t) Ran Π
(+)
− , lim

t→+∞
R(s, t) Ran Π

(−)
+ ,

lim
t→−∞

R(s, t) Ran Π
(−)
− , lim

t→+∞
R(s, t) Ran Π

(+)
+

are two pairs of complementary subspaces.
With help of the above lemma we define two pairs of projections

onto these subspaces:

ΛF(+)(s), ΛF(−)(s),

ΛF(+)(s), ΛF(−)(s).



Now we can define all propagators in the Cauchy data setting:

EPJ(t, s) := R(t, s),

E∨(t, s) := θ(t− s)R(t, s),

E∧(t, s) := −θ(s− t)R(t, s),

E
(+)
± (t, s) := lim

τ→±∞
R(t, τ )Π

(+)
± R(τ, s),

E
(−)
± (t, s) := lim

τ→±∞
R(t, τ )Π

(−)
± R(τ, s),

EF(t, s) := θ(t− s)R(t, s)ΛF(+)(s)− θ(s− t)R(t, s)ΛF(−)(s),

EF(t, s) := θ(t− s)R(t, s)ΛF(−)(s)− θ(s− t)R(t, s)ΛF(+)(s).



To obtain the propagators in the spacetime approach, set

G• := iE•12, • = PJ,∨,∧,F/F,

G
(±)
± := ±E(±)

±12, E• =

[
E•11 E

•
12

E•21 E
•
22

]
.

The identities satisfied by the propagators in the generic case differ
from the stationary case:

GPJ = G∨ −G∧ (1)′

= iG
(+)
± − iG

(−)
± , (2)′

GF −GF = iG
(+)
± + iG

(−)
± + smooth , (3)′

GF + GF = G∨ + G∧ + smooth . (4)′



We can use the in/out positive/negative frequency bisolutions to
define two Fock representations containing the in–vacuum and the
out–vacuum:

(Ω± | ψ̂(x)ψ̂∗(y)Ω±) = G
(+)
± (x, y),

(Ω± | ψ̂∗(x)ψ̂(y)Ω±) = G
(−)
± (x, y).



The Feynman propagator yields the expectation value of the time-
ordered product of fields between the in- and the out-vacuum:

GF(x, y) =

(
Ω+|T

(
ψ̂(x)ψ̂∗(y)

)
Ω−
)(

Ω+|Ω−
) .

Note that the RHS is defined only if Ω+ and Ω− are in the same
representation (which is rare and mathematically equivalent to the
so-called Shale condition). However the LHS is always well-defined!
Therefore, physicists do not have to care too much about the “im-
plementability of the dynamics on a Hilbert space”. They can always
compute Feynman diagrams using the Feynman propagator, even if
mathematicians forbid them to do this!



In words, the Feynman propagator describes particles travelling for-
ward in time and antiparticles travelling backward in time. Some-
times it is called the in-out Feynman propagator—in my opinion, the
name the Feynman propagator is good enough: the definite article
the is sufficient.

In a somewhat different setting, the construction of GF was given
by A.Vasy et al and by Gérard-Wrochna. But it seems that in its
natural generality the above construction was realized only recently
by me and D.Siemssen.



Thus on asymptotically stationary spacetimes we have two natural
vacuum states and a single natural Feynman propagator. They de-
pend globally on the whole spacetime. However, their singularities
are given by the local data.

Perhaps some of you may be surprised that the so-called Hadamard
condition has not been mentioned in my talk so far.

In words, a two-point function satisfies the Hadamard condition if
it is a positive definite bisolution of the Klein-Gordon equation whose
wave front set is the same as in the flat case. The state defined by
such a two-point function is called a Hadamard state.

Note that there are many Hadamard states. In particular, the in-
and out states, which we discussed, are automatically Hadamard, as
proven by Gérard and Wrochna.



To my understanding, one can divide researchers interested in QFT
on curved spacetimes into two categories.

1. The Feynmanists work with a global spacetime and use the distin-
guished in- and out states and the distinguished Feynman propaga-
tor. This is probably common among phenomenologically minded
researchers.

2. The Hadamardists usually look at spacetimes locally and say that
the refererence state can be arbitrary as long as it satisfies the
Hadamard condition. Many researchers in the mathematical QFT
community belong to this category.



There is no contradiction between the Feynmanist and Hadamardist
philosophy. Nevertheless, the emphasis of both approaches is quite
different. My presentation tries to be a mathematical exposition of
the Feynmanist approach.

If one insists on locality, at least in the time variable, one can use
the hybrid approach: Consider the spacetime [t−, t+] × Σ, choose
Hadamard states for the in-vacuum Ω− and the out-vacuum Ω+,
and then use the corresponding Feynman propagator to compute
scattering amplitudes between t− and t+.



To describe the (mild) technical assumptions needed to construct
the propagators we discussed, let us first recall some concepts from
functional analysis.

We say that a topological spaceW is Hilbertizable, if it is equipped
with a topology of a Hilbert space. Suppose that a (complex) Hilber-
tizable space W is equipped with a non-degenerate Hermitian form
Q, sometimes called a charge form

W ×W 3 (v, w) 7→ (v|Qw) = (w|Qv) ∈ C.
Note that often one starts from a real space with a symplectic form
ω. Then the charge form appears naturally as the complexification
of iω.



An operator S• on (W , Q) will be called an admissible involution
if S2
• = 1l and there exists a scalar product (·|·)• compatible with

the structure of W such that

(v |Qw) = (v |S•w)•.

(W , Q) is called a Krein space if it possesses an admissible involution.
Note that if S• is an admissible involution then its spectral sub-

spaces are a pair of Q-orthogonal subspaces, one is maximal positive
and the other maximal negative. The following lemma plays the
crucial role in the construction of the Feynman propagator:

Lemma. Let Z(+),Z(−) be subspaces of a Krein space W . If Z(+)

is maximal positive and Z(−) is maximal negative, then they are
complementary.



The technical assumptions that we need in our construction of
propagators can be described as follows We assume the space of
Cauchy data equipped with the charge form can be endowed with
the Krein structure, such that B(t) can be interpreted as a closed
operator generating an evolution R(t, s). Besides, we assume that
sgn(B+) and sgn(B−) are admissible involutions.



PART III. THE KLEIN-GORDON OPERATOR.
Recall that the Klein-Gordon operator is

K := |g|−
1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y.

It is clearly Hermitian (symmetric) in the sense of the Hilbert space
L2(M): ∫

f1(x)(Kf2)(x) dx =

∫
(Kf1)(x)f2(x) dx.

We use the so-called half-density formalism. Thus the scalar product
of f1 and f2 is in coordinates (f1|f2) =

∫
f1(x)f2(x) dx.



Conjecture. On a large class of spacetimes

(1) the operator K is essentially self-adjoint on C∞c (M) in the sense
of L2(M).

(2) in the sense 〈t〉−sL2(M)→ 〈t〉sL2(M), where s > 1
2,

s-lim
ε↘0

(K − iε)−1 = GF, s-lim
ε↘0

(K + iε)−1 = GF.



The above conjecture is easy to show in various special cases: In the
static stable case, if the spatial dimension is zero (when the Klein-
Gordon operator reduces to the 1-dimensional Schrödinger operator),
on a large class of Friedmann type spacetimes, also for symmetric
spacetimes.

Surprisingly, we have not found a trace of this question in the
older mathematical literature. Many respected mathematicians and
mathematical physicists react with disgust to this question, claiming
that it is completely non-physical.

In recent papers of A. Vasy and also Nakamura-Taira this conjecture
has been proven for asymptotically Minkowskian spaces by rather
technical arguments.



However, in the physical literature there are many papers that take
the self-adjointness of the Klein-Gordon operator for granted. The
method of computing the Feynman propagator with external fields
and possibly on curved spacetimes based on the identity

lim
ε↘0

1

K − iε
= i

∞∫
0

e−iτK dτ (∗)

has even a name:

the Fock–Schwinger or Schwinger–DeWitt method.

The variable τ is called the proper time or sometimes the fifth coor-
dinate. Of course, without the self-adjointness of K, (∗) does not
make sense.



THANK YOU FOR YOUR ATTENTION



(This is the end of the main part of my slides. Note that I have some
additional slides with “remarks” and “appendices”, which normally
I do not have time to cover in a talk.)



REMARK ABOUT VACUUM ENERGY

Suppose we have two quantum field theories with the evolutions Ui
and the in vacuum Ω−i and the out vacuum Ω−i , i = 0, 1. Then the
difference of energies produced during the two evolutions is defined
by

e−iE = lim
t→∞

(
Ω+

1 |U1(t,−t)Ω−1
)(

Ω+
0 |U0(t,−t)Ω−0

),
E goes under various names, e.g. the (relative) vacuum energy E or
the effective action. Note that its imaginary part describes the decay
of the vacua.



Let Ki, i = 0, 1, be two Klein-Gordon operators corresponding
to the same metric but two scalar potentials Yi, i = 0, 2. Then the
vacuum energy can be computed using the Feynman propagator GF

0 :

E =Tr
(

log(K1 − i0)− log(K0 − i0)
)

=Tr log
(

1l + (Y1 − Y0)GF
0

)
.

This is usually infinite, but in some situations after renormalization
it leads to useful finite expressions, e.g. it describes
the Casimir effect.



REMARK ABOUT WICK ROTATION

One often prefers to replace Lorentzian manifold by Riemannian
manifolds by doing the Wick rotation, which is described below.

For simplicity let us assume that the potentials are zero. By choos-
ing appropriate coordinates the Klein-Gordon operator (or actually
the d’Alembertian) can be written as

K =− |g|−
1
4(∂0 − βi∂i)|g|

1
2α−2(∂0 − βi∂i)|g|−

1
4

+ |h|−
1
4∂i|h|

1
2hij∂j|h|−

1
4.

Here, α−2 = −g00, β is the so-called lapse vector and [hij] is the
spatial part of the metric tensor [gµν].



The Wick rotation consists in replacing α with iα. The d’Alembertian
becomes an elliptic operator:

KE =|g|−
1
4(∂0 − βi∂i)|g|

1
2α−2(∂0 − βi∂i)|g|−

1
4

+ |h|−
1
4∂i|h|

1
2hij∂j|h|−

1
4.

The Feynman propagator (K − i0)−1 can then be replaced
by the Euclidean propagator K−1. Life becomes much easier!

Note that to define the Wick rotation we needed to fix an identifi-
cation M ∼ R× Σ.

The Wick rotation is usually described in textbooks as replacing x0

with ix0. This is not always correct, especially in the curved case.



Appendix I. Evolution in Hilbertizable spaces

LetW be a Banach space. We say that a two-parameter family of
bounded operators

R× R 3 (t, s) 7→ R(t, s) ∈ B(W) (∗)
is a strongly continuous evolution family on W if for all r, s, t, we
have the identities

R(t, t) = 1l, R(t, s)R(s, r) = R(t, r).

and the map (∗) is strongly continuous.



If R(t, s) = R(t − s, 0) for all t, s, we say that the evolution is
autonomous. Setting R(t) := R(t, 0), we obtain a strongly con-
tinuous one-parameter group. As is well known, we can then write
R(t) = e−itB, where−iB is a certain unique, densely defined, closed
operator called the generator of R(t).

If W is a Hilbert space, then B is self-adjoint if and only if R is
unitary.



LetW be a topological vector space. We say that it is Hilbertizable
if it has a topology of a Hilbert space for some scalar product (· | ·)•
on W .

Let (· | ·)1, (· | ·)2 be two scalar products compatible with a Hilber-
tizable space W . Then there exist constants 0 < c ≤ C such that

c(w |w)1 ≤ (w |w)2 ≤ C(w |w)1.



Let {B(t)}t∈R be a family of densely defined, closed operators
on a Hilbertizable space W . Let V be another Hilbertizable space
densely and continuously embedded in W . The following theorem,
due essentially to Kato, gives sufficient conditions for the existence
of a (non-autononomous) evolution generated by {B(t)}t∈R
Theorem. Suppose that the following conditions are satisfied:



(a) V ⊂ DomB(t) so that B(t) ∈ B(V ,W) and t 7→ B(t) ∈
B(V ,W) is norm-continuous.

(b) For every t, scalar products (· | ·)W ,t and (· | ·)V ,t compatible
with W resp. V have been chosen.

(c)B(t) is self-adjoint in the sense of Wt and the part B̃(t) of B(t)
in Vt is self-adjoint in the sense of Vt.

(d) For C ∈ L1
loc and all s, t

‖v‖W ,s ≤ ‖v‖W ,t exp
∣∣∣∫ ts C(r) dr

∣∣∣,
‖w‖V ,s ≤ ‖w‖V ,t exp

∣∣∣∫ ts C(r) dr
∣∣∣.



Then there exists a unique family of bounded operators {R(t, s)}s,t
on W , preserving V , called the evolution generated by B(t), such
that:

(i) It is an evolution on W and V ,

(ii) For all v ∈ V and s, t,

i∂tR(t, s)v = B(t)R(t, s)v,

−i∂sR(t, s)v = R(t, s)B(s)v,

where the derivatives are in the strong topology of W .



Appendix II. Lemma about subspaces of a Krein spaces

Suppose that (W , Q) is a Krein space. A subspace Z ofW is called
positive/negative, iff (·|Q·) restricted to Z is positive/negative. It is
called maximal positive/negative if it cannot be extended to a larger
positive/negative subspace.

Every admissible involution S• defines a pair of projections

the positive projection Π
(+)
• :=

1

2
(1l + S•),

the negative projection Π
(−)
• :=

1

2
(1l− S•).

It is easy to see that Ran Π
(+)
• is maximal positive and Ran Π

(−)
• is

maximal negative, and they are orthogonal wrt (·|Q·).



Lemma. Let S1, S2 be a pair of admissible involutions on a Krein
space (W , Q). Then we have two direct sum decompositions:

W = Ran Π
(+)
1 ⊕ Ran Π

(−)
2

= Ran Π
(−)
1 ⊕ Ran Π

(+)
2 .

In other words, a pair of subspaces, one maximal positive and the
other maximal negative is always complementary.



Let us sketch the proof. Set K := S2S1. Then K is posi-
tive with respect to ( · | · )1 and ( · | · )2. Hence we can define

c := Π
(+)
1

1l−K
1l+KΠ

(−)
1 . Then the projections corresponding to the

above direct sum decompositions are

Λ
(+)
12 =

[
1l c
0 0

]
, Λ

(−)
21 =

[
0 −c
0 1l

]
;

Λ
(−)
12 =

[
0 0
c∗ 1l

]
, Λ

(+)
21 =

[
1l 0
−c∗ 0

]
.

where we use the direct sum Ran Π
(+)
1 ⊕ Ran Π

(−)
1 .


