Fizika Doktori Iskola (Vezető: Dr. Horváth Zalán) Részecskefizika és Csillagászat Program (Vezető: Dr. Csikor Ferenc) Témavezető: Dr. Vesztergombi György	MTA KFKI RMKI, Részecskefizika Főosztály, Erős Kölcsönhatás Osztály laszloa@rmki.kfki.hu	Ph.D. értekezés nyilvános vitája	Nukleáris modifikáció 17.3 GeV nukleononkénti tömegközépponti energián, a CERN-NA49 kísérletben
---	---	----------------------------------	---

ELTE-TTK, 2008 június 20.

Egyik elemi kölcsönhatás: az erős kölcsönhatás.

PI magerőkért, hadronikus kölcsönhatásokért felel.

- Erős kölcsönhatást mai ismereteink szerint leíró modell: QCD.
- Perturbaíven csak nagy impulzusátadásoknál számolható

(nagy effektív csatolás), de rácson numerikusan is megoldható.

Rács-QCD jóslat: különböző fázisok. Hadronikus, QGP. Kísérletileg?

ω

Különböző nyalábokkal, céltárgyakkal sokféle ütközés.

Legnagyobb nyalábenergia nehézionnál: $158\;GeV/\mbox{nukleon.}$ Ezzel:

Pb+Pb, p+Pb, p+p $17.3 \ GeV$ /nukleonpár nukleon-nukleon t.k.p. energián.

$200 \mathrm{k}$ (perif.)	$1.4~{ m M}$ (közepes)	830 k (centr.)	Pb+Pb	Tisztítás után felhas
		$1.8\mathrm{M}$	p+Pb	ználható
		$4.8\mathrm{M}$	p+p	adatsor:

σ

Trigger h.k.m. mérhetó a felvett események között átszaladt események számának eloszlásából.

VENUS h.k.m. számolható az ütközési paraméter eloszlásból.

+ empirius VCAL energia eloszlással számolva az egyes ablakokban. N_W (meglökött nukleonok száma), $N_{\scriptscriptstyle BC}$ (bináris ütközések száma) VENUS Centralitás ablakok: teljes inelasztikus h.k.m. $(7.15 ext{ b}) \ \%$ -ában megadva

1. A Vétó Kaloriméter kalibrációja

ဖ

Pontosan mi a háttér forrása? Hogyan lehetne megtisztítani a mintát statisztikai torzítás nélkül?

Nagy transzverz impulzusú részecskék rekonstrukciója

Fix-céltárgyas kísérlet, nagy röppályasűrűség a merőlegesen kirepülő részecskéknél.

Nagy transzverz impulzusú részecskék rekonstrukciója

1

Nagy transzverz impulzusú részecskék rekonstrukciója

12

A detektor tulajdonságai az alkalmazott vágások esetén:

Gyk. 0% hamis-pálya szennyezés, impulzustér felbontást 1% majorálja részecskeazonosítás (tip. $\frac{dE}{dx}$ felbontás: 3 - 6%). $rac{\Delta(p)}{p}pprox 10^{-4}rac{p}{{
m GeV/c}}$), impulzus skála bizonytalanság kisebb 0.1%-nál, hatékony

	Sziszte	ematiku	ozid sr	nytala	nságo	<i>k</i> :
Korrekciónál figyelembe vett effektusok	típus	$\frac{\mathrm{d}E}{\mathrm{d}x}$	akc.	f.d.	f.d.	kvadr.
finomhangolt korrekciók):		alak			alak	ÖSSZ.
	π^+	1%	2%			2.2%
• geometriai akceptancia ($100 - 1000\%$),	π^-	1%	2%			2.2%
• rekonstrukciós veszteség (10% alatt),	d	1%	2%	3%		3.7%
 bomlási veszteség (20-tól 0%-ig), 	\overline{p}	2%	2%	3%	5%	6.5%
- bomló részecskékből szennyezés (5 -30%),	K^+	4%	2%			4.5%
• céltárgyon kívüli ütkből szennyezés (5%).	K^-	1%	2%			2.2%

p+Pb, p+p: még 5% a trigger-torzításból.

3. Azonosított töltött hadron spektrumok meghatározása

<mark>ქ</mark>

Mezon spektrumok hasonló keménységűek (p+p, p+Pb-ben \bar{p} is hasonló).

6

Keményebb spektrumúak a barionok.

3. Azonosított töltött hadron spektrumok meghatározása

Invariáns hozamok p+Pb és p+p ütközésekben:

Kis γ -detektálási valószínűség \Rightarrow közvetlen γ párosítás nem ad elég statisztikát Egyéb részecskék, pl π^0 -ak impulzuseloszlása is érdekes ($\pi^0 \to \gamma \gamma$).

visszanyerjük ρ_{π^0} -t (spektrum-visszafejtés). Lehetséges: $\rho_{\gamma}(\vec{k}) = \int \hat{\rho}_{\pi^0 \to \gamma\gamma}(\vec{k} | \vec{p}) \ \rho_{\pi^0}(\vec{p}) \ \mathrm{d}^3 p$ integráloperátor invertálásával

Spektrum-visszafejtés: általában nem megoldott. Speciális esetekben (pl konvolúció) igen. Az általános spektrum-visszafejtés problémára egy robusztus iteratív eljárást dolgoztam ki

(konvergencia tételek a módszerre...). Demo:

A módszer általánosan is érdekes jelfeldolgozási szempontból: nincs más ismert általánosan

alkalmazható robusztus módszer a spektrum-visszafejtésre

NA49-ben a statisztika túl kicsinek bizonyult ehhez a vizsgálathoz.

Osszevetés modellekkel és magasabb enegiás adatokkal

- spektrumokra és HBT sugarakra való illesztés kis $p_{\rm T}$ -n. Kis p_T : jó (illesztés). Nagy p_T : nem illik az adatokra mint várható. Lökéshullám (BW) paramerizáció. Hipotézis: részecskék közös termikus forrásból származnak; a forrás tágulása tömegfüggő kékeltolódást okoz. $E_{\scriptscriptstyle T}$ (F. Retiere, M. A. Lisa: Phys. Rev. **C70** (2004) 044907.)
- pQCD-alapú energiaveszteség modellek. (X.-N. Wang: Phys. Lett. **B595** (2004) 165.) Nem írja le a keltett-barion/mezon arányokat. Még nem perturbatív?
- A nagy p_{T} -s részecskeelnyomódás és részecskearányok energiafüggése. S. S. Adler et al. (PHENIX Coll.): Phys. Rev. C69 (2006) 024904.) (S. S. Adler et al. (PHENIX Coll.): Phys. Rev. C69 (2004) 034910

5., 6., 7.: Lökéshullám-kép, pQCD érvényesség, elnyomódás energiafüggése

20

Nukleáris modifikációs faktorok

Definíció:

$$R_{A+B/C+D} := \frac{N(C+D)}{N(A+B)} \cdot \frac{\text{Hozam}(A+B)}{\text{Hozam}(C+D)}$$

bináris ütközések illetve a meglökött nukleonok átlagos száma a megfelelő centralitás tartományra és A+B illetve C+D reakcióra. rendszermérettel való skálázására jellemző. Szélsőséges esetek: Itt N normalizációs faktor, amely a részecskeprodukció

Többszörös szórás (Cronin) kifaktorizálására: $R_{AA/pA}$ -t tekintjük.

Pb+Pb(0-5%)/p+Pb: $\sqrt{s_{_{NN}}} = 17.3 \,\text{GeV}$ Au+Au(0-5%)/d+Au: $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

Tézispontok (7)

- 1. A Veto Calorimeter kalibrációja: [1, 5] (referált), [6, 7, 8, 10, 11, 12] (egyéb).
- 2. Nagy transzverz impulzusú részecskék rekonstrukciója: [1, 3, 4, 5] (referált), [6, 7, 8, 9, 12, 13, 15, 16] (egyéb).
- 3. Azonosított töltött hadron spektrumok meghatározása: [1] (referált), [9] (egyéb).
- 4. Semleges pion spektrum meghatározása: [2] (referált), [14] (egyéb).
- 5. Kollektív viselkedés alacsony transzverz impulzusnál: [3] (referált), [13, 15] (egyéb).
- 6. Perturbatív QCD közelítés alkalmazhatóságának vizsgálata nagy transzverz impulzusú részecskék produkciójára: [3] (referált), [13, 15] (egyéb)
- 7. Nagy transzverz impulzusú részecskék elnyomódásának energiafüggése: [1] (referált).

Referált folyóiratban megjelent kapcsolódó publikációk (5)

[1] A. László et al. (the NA49 Collaboration):

"High Transverse Momentum Hadron Spectra at $\sqrt{s_{_{NN}}}=17.3\,{
m GeV}$, in Pb+Pb and p+p Collisions, Measured by CERN-NA49"; Physical Review C77 (2008) 034906

[2] A. László:

Journal of Physics A39 (2006) 13621. ","A Robust Iterative Unfolding Method for Signal Processing

[3] A. László et al. (the NA49 Collaboration):

",High p(T) Spectra of Identified Particles Produced in Pb Plus Pb Collisions at 158 GeV/nucleon Beam Energy"; Nuclear Physics A774 (2006) 473

[4] T. Schuster, A. László et al. (the NA49 Collaboration):

",High p(T) Spectra of Identified Particles Produced in Pb+Pb Collisions at 158 A GeV Beam Energy"; Journal of Physics G32 (2006) S479

[5] A. László et al. (the NA49 Collaboration):

"New Results and Perspectives on R_{AA} Measurements Below $20~{
m GeV}$ CM-energy at Fixed Target Machines"; International Journal of Modern Physics E16 (2007) 2516.

További kapcsolódó cikkek és fontosabb előadások (11)

- [6] A. László et al. (the NA61 Collaboration):
- ", "Study of Hadron Production in Collisions of Protons and Nuclei at the CERN SPS",
- NA49-future Letter of Intent (2006), 2.2 és 4.2. fejezetek
- [CDS:CERN-SPSC-2006-001, SPSC-I-235].
- [7] A. László et al. (the NA61 collaboration):
- ",Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS";
- [CDS:CERN-SPSC-2006-034, SPSC-P-330]. NA49-future Proposal (2006), 2.2, 3.5.3 és 4.2. fejezetek
- [8] A. László et al. (the NA61 Collaboration):
- Addendum to the NA49-future Proposal (2007), 8. fejezet "Additional Information Requested in the Proposal Review Process";
- [CDS:CERN-SPSC-2007-004, SPSC-P-330].

[9] A. László:

"High Transverse Momentum Identified Charged Particle Yields in $158\,{
m GeV}/$ nucleon Pb+Pb Collisions";

NA49 Technical Note (2007) [EDMS: 879787].

[10] A. László:

", "Calculating Mean Values of Collision Parameters as a Function of Centrality", NA49 Technical Note (2007) [EDMS: 885329].

[11] A. László:

NA49 Technical Note (2006) [EDMS: 815907]. "Time-dependence Calibration of the Veto Calorimeter";

[12] A. László (for the NA61 Collaboration):

"NA61/SHINE at the CERN SPS";

2007); Meghívott előadás a Critical Point and Onset of Deconfinement konferencián (Darmstadt,

Proceedings of Science CPOD07 (2007) 054.

[13] A. László:

"High p_T Spectra of Identified Particles Produced in Pb+Pb Collisions at

 $\sqrt{s} = 17.3 \text{ GeV/nucleon}$ ";

Meghívott előadás a Heavy Ion Forum-on (CERN, 2006).

[14] A. László:

",Deconvolution of Noisy Data";

Előadás a Zimányi Winter School-on (Budapest, 2006).

[15] A. László:

Előadás a RHIC Winter School-on (Budapest, 2005). "High p_T Spectra of Identified Particles Produced in Pb+Pb Collisions at 158 GeV/nucleon Beam Energy";

[16] László András:

"Nagy transzverz impulzusú azonosított töltött részecskék $17.3{
m GeV}/{
m nukleon}$

tömegközépponti energián";

Előadás a Magfizikus Találkozón (Jávorkút, 2006).

Függelék: Válasz Dr. Fülöp Zsolt kérdéseire, megjegyzéseire

 $T = 200 \,\mathrm{MeV}$ -es fiktív Boltzmann-eloszlás mérése, CMS-ECAL segítségével).

<u>5</u>

Figure 15: Time-dependence correction parameters of VCAL energy scale.

Függelék: Válasz Dr. Trócsányi Zoltán kérdéseire, megjegyzéseire

Figure 32: Point/potpoint distributions in $0 \le y_{\pi\pm} < 0.1$ slice for $p_T \ge 2 \, {
m GeV/c}$, with different $|\phi|$ cuts –

discontinuous tracks rejected.

5
Q
\mathbf{O}
T
<u> </u>
D ₁
<u> </u>
\cap
<u>-</u>
<
01
<u>'</u>
0)
5
22
IN
\cup
_
- C
_
'
O'
õ
čá –
×
Ъ,
$\boldsymbol{\boldsymbol{\triangleleft}}$
<u> </u>
NI
IN
0
<u> </u>
2
<u> </u>
(D)
7
\mathbf{O}
<mark>ا</mark>
Ś
ŏ
Щ.
2
D
•
n
Ο
õ
<u> </u>
D
പ്
\leq
N
<mark>ا</mark> ل
čn'
×
ш.
-
Φ

V00 + 17	\overline{p} 2%	p 2%	π^{\pm} 2%	type corre	particle acce	_
				ection	ptance	_
	3%	3%		yields	feed-down	
	5%			shapes	feed-down	
2.0%	6.2%	3.6%	2.0%	sum	quadratic	-

IADIE 5: Systematic error sources for Pb+Pb particle production spectra.

originating from the uncertainties of the trigger bias, discussed in Section 6.2. ... " "... The fully corrected particle spectra in Pb+Pb carry the cumulative systematic uncertainties, listed in Table 6, while the p+Pb and p+p particle spectra carry additional 5% systematic errors,

Tézispontok (7)

- 1. A Veto Calorimeter kalibrációja. Eljárást dolgoztam ki a Veto Calorimeter időbeli [1, 5, 6, 7, 8, 12]. alacsonnyá válnak [10]. Az eredményt sok NA49 publikáció felhasználta, többek között használatos, a centralitással kapcsolatos mennyiségek szisztematikus hibái elegendően szimuláció a mért spektátor energiával jó egyezésben van. Emiatt a fizikai érveléseknél kidolgoztam egy módszert, és kimutattam, hogy a Glauber-modellen alapuló VENUS korrelációjának abszolút voltán alapul [11]. Továbbá a pontos abszolút kalibrációra is degradációjának korrigálására, amely a spektátor energia és a detektált részecskeszám
- 2. Nagy transzverz impulzusú részecskék rekonstrukciója. Az NA49 kísérletben a transzverz impulzusig, centrális Pb+Pb esetén). jelentettek a rekonstrukciós veszteségek illetve a sok tévesen rekonstruált részecske miatti szigorú, optimalizált 3 dimenziós impulzustér vágáson alapul [9]. Ez a dolgozat egyik kulcs mely után a részecskeprodukció mérhető a kísérlet statisztikai határáig ($4.5~{
 m GeV}/{
 m c}$ lépése, gyakorlatilag az összes publikációm felhasználja [1, 3, 4, 5, 6, 7, 8, 12, 13, 15, 16], háttér. Erre a problémára megoldást találtam, mely a nem folytonos pályák kizárásán és egy $2\,{
 m GeV}/{
 m c}$ transzverz impulzus fölötti részecskék nem rekonstruálódtak tökéletesen: kihívást

- 3. Azonosított töltött hadron spektrumok meghatározása. Finomhangolt korrekciós spektruma nulla rapiditás körül elérhetővé válik p+p, p+Pb és Pb+Pb reakciókban melyek kb 5% pontosságúak, az [1] kísérleti cikkben kerültek publikálásra korrigálására, melyek után az említett részecskék inkluzív produkciós transzverz impulzus eljárásokat dolgoztam ki a nyers $\pi^\pm, p, ar p, K^\pm$ spektrumok különböző effektusokra való $\sqrt{s_{_{NN}}} = 17.3 \, {
 m GeV}$ tömegközépponti energián [9]. A teljesen korrigált eredmények,
- 4. Semleges pion spektrum meghatározása. Az inkluzív π^0 spektrum meghatározására egy analízisemben is, amely jelentős potenciális szisztematikus hibaforrás lehet meredek ideális impulzusfelbontás hatását a nagy transzverz impulzusú töltött részecske azonban a [2] cikkben közölt módszer megoldást kínál. Megvizsgáltam továbbá a nem határesetben ideálissá válik, a meredek spektrumokat a kaloriméter mégis torzítja, melyre esetekben a konvergenciát analítikusan bizonyítottam. Erre vonatkozó eredményeimet a [2] megoldására kidolgoztam egy robusztus iteratív matematikai módszert, melyre bizonyos alapul. Ezen általános valószínűségszámításbeli / funkcionálanalízisbeli probléma indirekt módszert dolgoztam ki, amely valószínűségi keverési operátorok invertálásán nagy-energiás kalorimetrikus mérések problémájára: bár az energiafelbontás ebben a matematikai cikkben publikáltam. Továbbá a [14] előadásomban felhívtam a figyelmet a

spektrumok esetén, azonban a becsült hiba kisebbnek bizonyult az egyéb szisztematikus hibáknál

5. Kollektív viselkedés alacsony transzverz impulzusnál. Kimutattam, hogy a kinematikai kép túl nagy barion/mezon arányt jósol, amely rámutat a kollektív mozgás reprodukálható a lökéshullám-képpel [3, 13, 15], amely termikus jellegű részecske-emissziót részecskeprodukció a kis transzverz impulzus tartományban ($< 1.5~{
m GeV/c}$) jól feltételez egy cilindrikusan táguló forrásból. Nagy transzverz impulzusnál azonban ez a

csökkent szerepére nagy transzverz impulzusok esetében

6. Perturbatív QCD közelítés alkalmazhatóságának vizsgálata nagy transzverz transzverz impulzusbeli faktorizációt mutat. eredményeket a $\sqrt{s_{_{NN}}} = 200~{
m GeV}$ energián felvett RHIC eredményekkel összevetve azt összehasonlítás arra enged következtetni, hogy $\sqrt{s_{_{NN}}}=17.3\,{
m GeV}$ energián még a kb a perturbatív QCD modell nagyon eltérő barion/mezon arányt jósol. A kísérleti $4\,{
m GeV/c}$ transzverz impulzusú részecskék sem tisztán perturbatív úton keletkeznek, mert után az eredményeket összevetettem perturbatív QCD jóslatokkal [3, 13, 15]. Az tapasztaltam, hogy a nettó-barion/mezon arány egy centralitástól nem függő energia és impulzusú részecskék produkciójára. A keltett-barion/mezon arányok meghatározása

7. Nagy transzverz impulzusú részecskék elnyomódásának energiafüggése. A

pion elnyomás mértéke kisebb az alacsonyabb energiás esetben. nem csökken le ugrásszerűen a $\sqrt{s_{_{NN}}} = 17.3\,{
m GeV}$ energia felé, épp ellenkezőleg: a összevetve azt tapasztaltam, hogy a RHIC energián mérhető centrális / periferális elnyomás perturbatív QCD jóslatok a mért nukleáris modifikációs faktorokat kvalitatíve jól visszaadják. mért modifikációs görbék igen hasonlóak a két nagyon különböző energián [1], bár a töltött Kísérleti eredményeimet a $\sqrt{s_{_{NN}}}=200\,{
m GeV}$ energián felvett RHIC eredményekkel