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Abstract
It is a common problem in signal processing to remove a non-ideal detector
resolution from a measured probability density function of some physical
quantity. This process is called unfolding (a special case is the deconvolution),
and it would involve the inversion of the integral operator describing the
folding (i.e. the smearing of the detector). Currently, there is no unbiased
method known in the literature for this issue (here, by unbiased we mean
those approaches which do not assume an ansatz for the unknown probability
density function). There is a well-known series expansion (Neumann series) in
functional analysis for perturbative inversion of specific operators on Banach
spaces. However, operators that appear in signal processing (e.g. folding and
convolution of probability density functions), in general, do not satisfy the
usual convergence condition of that series expansion. This paper provides
some theorems on the convergence criteria of a similar series expansion for this
more general case, which is not yet covered by the literature. The main result is
that a series expansion provides a robust unbiased unfolding and deconvolution
method. For the case of the deconvolution, such a series expansion can always
be applied, and the method always recovers the maximum possible information
about the initial probability density function, thus the method is optimal in this
sense. A very significant advantage of the presented method is that one does
not have to introduce ad hoc frequency regulations etc, as in the case of usual
naive deconvolution methods. For the case of general unfolding problems,
we present a computer-testable sufficient condition for the convergence of the
series expansion in question. Some test examples and physics applications are
also given. The most important physics example shall be (which originally
motivated our survey on this topic) the case of π0 → γ + γ particle decay: we
show that one can recover the initial π0 momentum density function form the
measured single γ momentum density function by our series expansion.
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1. Introduction

In experimental physics, one commonly faces the following problem. The probability density
function of a given physical quantity is to be measured (e.g. by histogramming) with an
experimental apparatus, but a non-ideal detector smears the signal. The question arises: if
one knows the behaviour of the detector quite well (i.e. one knows the response function of
the detector), how can one reconstruct the original undistorted probability density function
of the given physical quantity? Specially: there is an unknown probability density
function x �→ f (x) (this is the unknown probability density function of the undistorted
physical quantity), and the measured density function is obtained by y �→ g(y) =∫

ρ(y|x)f (x) dx (where the conditional density function (y, x) �→ ρ(y|x) describes the
smearing of the measurement apparatus, also called the response function); then under which
conditions, and how, can one re-obtain (i.e. unfold) the original probability density function
f by measuring g and by knowing ρ? We formalize this problem below. (In the text we
shall abbreviate probability density function by pdf, conditional probability density function
by cpdf, and the notion Lebesgue almost everywhere or Lebesgue almost every, known in
measure theory, by a.e.)

Let X and Y be two finite-dimensional real vector spaces, each equipped with the Lebesgue
measure (which is unique up to a global positive constant factor). Then L1(X) and L1(Y )

denote the space of Lebesgue integrable function classes X → C and Y → C, respectively.

Definition 1. Let ρ : Y × X → R
+
0, (y, x) �→ ρ(y|x) is a cpdf over the product space Y × X,

(i.e. it is a non-negative valued Lebesgue measurable function on the product space which
satisfies for all x ∈ X :

∫
ρ(y|x) dy = 1). Then the linear operator

Aρ : L1(X) → L1(Y ), (x �→ f (x)) �→
(

y �→
∫

ρ(y|x)f (x) dx

)
,

is called the folding operator by ρ.

Remark 2. The remarks below are trivial.

(1) By Fubini’s theorem, this linear operator is well defined.
(2) By the monotonicity of integration, such an operator is continuous:

‖Aρf ‖L1(Y ) =
∫ ∣∣∣∣

∫
ρ(y|x)f (x) dx

∣∣∣∣ dy �
∫ ∫

ρ(y|x)|f (x)| dx dy = ‖f ‖L1(X).

It is also trivial that we can saturate the above inequality by taking a.e. non-negative
function f , thus ‖Aρ‖ = 1 also follows.

Our main interest will be the questions: when is the operator Aρ invertible, and how can
the inverse operator be evaluated on given pdfs in a constructive way?

1.1. A special case: deconvolution problem

A special case of the unfolding problem is the so-called deconvolution, i.e. when Y = X

and the cpdf ρ is translation invariant in the sense that for all a ∈ X and for all
y, x ∈ X : ρ(y|x + a) = ρ(y − a|x). In this case, the cpdf ρ can be expressed by a
pdf η in the way ρ(y|x) = η(y − x) for all x, y ∈ X.
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Definition 3. Let η be a pdf (i.e. it is a non-negative valued Lebesgue integrable function on
X such that

∫
η(x) dx = 1). Then the linear operator

Aη : L1(X) → L1(X), f �→ η � f =
(

y �→
∫

η(y − x)f (x) dx

)
.

is called the convolution operator by η.

We will state here a few properties of a convolution operator (see e.g. [1, 2]).

(1) A convolution operator is not onto, and its image is not closed.
(2) The range of a convolution operator is dense if and only if the Fourier transform of the

convolver function is nowhere zero (Wiener’s approximation theorem).
(3) A convolution operator is one-to-one if and only if the set of zeros of the Fourier transform

of the convolver function has zero Lebesgue measure.

Remark 4. As a consequence, the inverse of a convolution operator—if it exists at all—is
not continuous. Indeed, the convolution operator is everywhere defined and continuous, so it
is closed, thus its inverse is closed as well; since the domain of the inverse is not closed, the
inverse cannot be continuous by Banach’s closed graph theorem.

We see that the characterization of a convolution operator is strongly related to the Fourier
operators:

F± : L1(X) → C0
∞(X∗), (x �→ f (x)) �→

(
y �→

∫
e±i〈y|x〉f (x) dx

)
.

We denote by C0
∞(X∗) the space of continuous functions X∗ → C which have zero limit at

the infinity. Here X∗ is the dual space of X, and for any y ∈ X∗ and x ∈ X the number 〈y|x〉
means the value of the covector y on the vector x.

The Fourier operators have the following basic properties [7]:

(1) C0
∞(X∗) is a Banach space with the maximum norm, F± is continuous and ‖F±‖ = 1.

(2) The Fourier operators are one-to-one. Thus, the inverse Fourier operators F−1
± exist.

(3) The range of F± is dense in C0
∞(X∗), however it is not the whole space. Thus, again by

Banach’s closed graph theorem, we infer that the operator F−1
± is not continuous.

(4) If f, g ∈ L1(X), then F±(f � g) = F±(f ) · F±(g) (convolution theorem).

The naive deconvolution procedure then goes in the following way:

(1) take the Fourier transform of the convolution, F±(η � f ),
(2) divide the above function by F±η,
(3) calculate the inverse Fourier transform;

f = F−1
±

(
F±(η � f )

F±η

)
.

The listed properties of the convolution operator, however, make it practically impossible
to apply the deconvolution procedure in signal processing. The reason is that the measured
density function (which is approximated by a normalized histogram in general) is not in the
range of the convolution operator: it can be considered as the sum of a pdf in the range of
the operator, plus a noise (e.g. Poissonian noise, originating from the statistical fluctuations
of the entries in the histogram bins) outside the range of the operator in general. When
applying the deconvolution procedure, the inverse operator can be calculated on the first term;
however the deconvolution would give a nonsense result on the noise term, as it is not in the
range of the convolution operator, thus leading to a nonsense result on the whole. Various
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noise suppression methods (high frequency cutoffs) are introduced as symptomatic treatment
of this problem; however these solutions are based on rather intuitive approaches not on
sound mathematics, and are highly non-unique (thus the derived solutions depend on the noise
suppression approach). This is because the non-continuity of the inverse of the convolution
operator: a small change caused by the high frequency regulation in the Fourier spectrum is
not guaranteed to stay small after the deconvolution. This effect, in general, is referred to as
follows: the deconvolution problem (or unfolding problem) is ill-posed, i.e. one cannot get a
robust method to do the deconvolution (or unfolding). Furthermore, if the Fourier transform
of the convolver pdf has zeros in the finite, then the naive deconvolution becomes even more
ambiguous: one has to introduce regulation procedures even at certain finite frequencies (at
the zeros of the Fourier transform of the convolver pdf).

Despite the above difficulties, we have developed a robust perturbative method which
solves the problem. Our method of series expansion gives a robust and stable method for
deconvolution. Using this method, the problem of zeros of the Fourier transform of the
convolver pdf in the finite does not arise at all; furthermore one does not have to reconsider
any high frequency regulations on a case-by-case intuitive basis. Plus, our series expansion is
optimal in the sense that it recovers the maximum possible information about the initial pdf
even in the case when the convolution in question is not even invertible.

2. Inverse operator by a series expansion

There exists a basic theorem providing a perturbative method to obtain the inverse of continuous
linear operators on a Banach space which are not too far from the identity operator. That
theorem in its original form, however, does not apply to the case of convolution (or folding)
operators. The main result of this paper is a generalization of that theorem to the case of
convolution operators.

Now we recall the series expansion (also called Neumann series) for the inverse of an
operator.

Let A be a continuous linear operator on a Banach space such that ‖I −A‖ < 1, where I is
the identity operator. Then the operator A is one-to-one and onto and its inverse is continuous,
and the series N �→ ∑N

n=0(I − A)n is absolutely convergent to A−1.
The proof is pretty simple and can be found in any textbooks of functional analysis (e.g.

[8, 9]). It will be instructive, however, to cite the proof, as later we will strengthen this
theorem.

First, it is easily shown by induction that
∑N

n=0(I −A)nA = A
∑N

n=0(I −A)n = I − (I −
A)N+1. The condition ‖I − A‖ < 1 guarantees that the sequence N �→ (I − A)N+1 converges
to zero in the operator norm, and the absolute convergence of the series N �→ ∑N

n=0(I − A)n,
thus

(∑∞
n=0(I − A)n

)
A = A

(∑∞
n=0(I − A)n

) = I , i.e. A−1 = ∑∞
n=0(I − A)n. As A−1 is

expressed as a limit of a series of continuous operators which is convergent in the operator
norm, we infer that A−1 is continuous.

Remark 5. The conditions of the above series expansion theorem fail for any folding
operator Aρ .

(1) We can observe that the series expansion is only meaningful for the case of a folding
operator only when the spaces X and Y are the same.

(2) Let us assume that Y = X. Then, it is easily obtained that a folding operator Aρ does
not satisfy the required condition ‖I − Aρ‖ < 1. It is trivial by the triangle inequality
of norms that ‖I − Aρ‖ � 2. We will show now that this inequality can be saturated for
a wide class of cpdfs. Let us choose an arbitrary point y ∈ X, and consider the series
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of pdfs n �→ 1
λ(Kn(y))

χ
Kn(y)

, where Kn(y) are compact sets having non-zero Lebesgue
measure λ(Kn(y)), such that Kn+1(y) ⊂ Kn(y) for all n ∈ N and ∩n∈NKn(y) = {y}.
Then,∥∥∥∥(I − Aρ)

1

λ(Kn(y))
χ

Kn(y)

∥∥∥∥ =
∫

z �∈Kn(y)

∫
ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

+
∫

z∈Kn(y)

∣∣∣∣ 1

λ(Kn(y))
χ

Kn(y)
(z) −

∫
ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx

∣∣∣∣ dz.

By making use of the fact that the integral of any pdf is 1, one can write∫
z �∈Kn(y)

∫
ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

= 1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x)
1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

for the first term. For the second term, one can use the monotonity of integration∫
z∈Kn(y)

∣∣∣∣ 1

λ(Kn(y))
χ

Kn(y)
(z) −

∫
ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx

∣∣∣∣ dz

�
∣∣∣∣
∫

z∈Kn(y)

(
1

λ(Kn(y))
χ

Kn(y)
(z) −

∫
ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx

)
dz

∣∣∣∣
=

∣∣∣∣
∫

1

λ(Kn(y))
χ

Kn(y)
(z) dz −

∫ ∫
χ

Kn(y)
(z)ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

∣∣∣∣
=

∣∣∣∣1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x)
1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

∣∣∣∣
= 1 −

∫ ∫
χ

Kn(y)
(z)ρ(z|x)

1

λ(Kn(y))
χ

Kn(y)
(x) dx dz.

Here, at the second equality
∫

1
λ(Kn(y))

χ
Kn(y)

(z) dz = 1 was used, and the fact that the
integral of any pdf over a Borel set is smaller or equal to 1 was used at the third equality.
Thus, we infer the inequality∥∥∥∥(I − Aρ)

1

λ(Kn(y))
χ

Kn(y)

∥∥∥∥ � 2 ·
(

1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x)
1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

)
.

If the point (y, y) ∈ X × X is a Lebesgue point of ρ, then we will show that the
integral term goes to zero when n goes to infinity, thus saturating our inequality in
question. If a function g : X → C is locally integrable, then a point y ∈ X is
called a Lebesgue point of g if limn→∞ 1

λ(Kn(y))

∫
Kn(y)

|g(x) − g(y)| dx = 0. If y ∈ X

is a Lebesgue point for g, then by the monotonity of integration it also follows that
limn→∞ 1

λ(Kn(y))

∫
Kn(y)

g(x) dx = g(y). Applying this result for ρ on the product space
X × X (assuming that the point (y, y) ∈ X × X is a Lebesgue point of ρ), we have
that the sequence n �→ 1

λ(Kn(y))
1

λ(Kn(y))

∫
Kn(y)

∫
Kn(y)

ρ(z|x) dx dz is convergent to ρ(y|y).
Multiplying this sequence by the sequence n �→ λ(Kn(y)) (which is convergent to zero),
we infer that limn→∞ 1

λ(Kn(y))

∫
Kn(y)

∫
Kn(y)

ρ(z|x) dx dz = 0. If ρ is continuous, then every
point in X × X is a Lebesgue point of ρ. Thus, we have shown that if the cpdf ρ is
continuous, then ‖I − Aρ‖ = 2 holds; therefore the original theorem of Neumann cannot
be applied directly for a folding operator with continuous cpdf.

Apart from the above remark, the reason is obvious for the obstruction of inverting the
convolution on the operator level: as the convolution operators are not onto in general, one
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only can try to invert the operator on a function in the range of the operator. We try to
modify the theorem for the case of convolution operators requiring, instead of convergence
in the operator series, the convergence of the series N �→ ∑N

n=0(I − A)n(Af ) in some sense
(equivalently, the convergence of the sequence N �→ (I − A)N+1f in the same sense), for any
f ∈ L1(X).

For getting a convenient result, let us recall that the elements of L1(X) can be viewed as
regular tempered distributions. The Fourier transformations can be extended to the space of
tempered distributions, where they are one-to-one and onto, continuous, and their inverse is
also continuous [8, 9]. The proof of convergence will be performed on the Fourier transforms
of the functions, then the result will be brought back by using the continuity of the inverse
Fourier transformation on the space of tempered distributions.

Theorem 6. Let Aη be a convolution operator for some η ∈ L1(X). Let Z be the set of zeros
of the function F±η. If the inequality

|1 − F±η| < 1

is satisfied everywhere outside Z, then for all f ∈ L1(X) the series

N �→
N∑

n=0

(I − Aη)
n(Aηf )

is convergent in the space of tempered distributions, and
∞∑

n=0

(I − Aη)
n(Aηf ) = f − F−1

± (χ
Z
F±f ).

Proof. Assume that |1 − F±η| < 1 holds everywhere outside Z. Let V denote the subset of
X∗, where F±η is nonzero. It is clear that V and Z are disjoint Lebesgue measurable sets and
X∗ = V ∪ Z. Trivially, the sequence N �→ |1 − F±η|N+1 converges pointwise to 0 on V ,
furthermore |1 − F±η|N+1 = 1 on Z for all N. For every f ∈ L1(X) and rapidly decreasing
test function ϕ on X∗, we have∣∣∣∣
∫

(1 − F±η(y))N+1F±f (y) · ϕ(y) dy −
∫

χ
Z

· F±f (y) · ϕ(y) dy

∣∣∣∣
=

∣∣∣∣
∫

V

(1 − F±η(y))N+1F±f (y) · ϕ(y) dy

∣∣∣∣
�

∫
V

|1 − F±η(y)|N+1|F±f (y)| · |ϕ(y)| dy.

The series of Lebesgue integrable functions N �→ |1−F±η|N+1|F±f |·|ϕ| converges pointwise
to zero on V , and |1 − F±η|N+1|F±f | · |ϕ| � |1 − F±η|1|F±f | · |ϕ| for all N; thus by
Lebesgue’s theorem of dominated convergence the last term of the inequality tends to zero
when N goes to infinity. Therefore, the function series N �→ (1−F±η)N+1(F±f ) is convergent
in the space of tempered distributions to the function χ

Z
F±f . Applying the inverse Fourier

transformation F−1
± and using the continuity of the inverse Fourier transformation in the space

of tempered distributions, we get the desired result, as by the convolution theorem we have
F−1

± ((1 − F±η)N+1(F±f )) = (I − Aη)
N+1f , and because

f −
N∑

n=0

(I − Aη)
n(Aηf ) = (I − Aη)

N+1f

for all N. �
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Remark 7. Let us assume that the condition of the theorem holds. Then it is quite evident
that

(1) If Z has zero Lebesgue measure (which holds if and only if Aη is one-to-one), then
F−1

± (χ
Z
F±f ) = 0. This means that the series in question always restores the arbitrarily

chosen original function f if and only if Aη is one-to-one, i.e. if and only if F±η is a.e.
nonzero.

(2) If Z has nonzero Lebesgue measure, our series also converges and restores the maximum
possible information about the original function f , namely the tempered distribution
f − F−1

± (χ
Z
F±f ). However, this tempered distribution may not be a function in general.

If the function χ
Z
F±f is not a continuous function which tends to zero at the infinity, then

F−1
± (χ

Z
F±f ) cannot be an integrable function. As we shall see in the following section,

if the function χ
Z
F±f is not a continuous function which is bounded, then F−1

± (χ
Z
F±f )

cannot even be a measure with finite variation.
(3) Let now η and f be pdfs and suppose that F−1

± (χ
Z
F±f ) = 0. Then our convergence result

has the following meaning in probability theory: the series converges in the sense that the
expectation values of all rapidly decreasing test functions on X are restored. Namely, for
any rapidly decreasing test function ψ on X we have that

lim
n→∞

∫ (
N∑

n=0

(I − Aη)
n(Aηf )

)
(x) · ψ(x) dx =

∫
f (x) · ψ(x) dx.

It can be easily observed that the condition of our previous theorem is not always satisfied
for a pdf η. For example, if η is a Gaussian pdf centred to zero, then it is satisfied, but,
e.g., if η is a uniform pdf on a rectangular domain centred to zero, then the condition is not
satisfied. Therefore, one could think that the applicability of our deconvolution theorem is
rather limited. This is not the case, however, as stated in the following theorem.

Theorem 8. Let η be a pdf on X. Then for any f ∈ L1(X) the series

N �→
N∑

n=0

(I − APηAη)
nAPη(Aηf )

is convergent in the space of tempered distributions, and
∞∑

n=0

(I − APηAη)
nAPη(Aηf ) = f − F−1

± (χ
Z
F±f ),

where Z := {y ∈ X∗|F±η(y) = 0}. Here P is the parity operator on L1(X), namely
Pf (x) := f (−x) for all f ∈ L1(X) and x ∈ X.

Proof. Let us observe that, if F±η is real valued and non-negative for a pdf η, then |1−F±η| < 1
is automatically satisfied outside Z. This is because

(1) by our assumption 0 < F±η outside Z, thus we conclude that 1 − F±η < 1 outside Z and
(2) by the inequality |F±η| � ‖η‖ = 1, we conclude that 0 � 1 − |F±η| = 1 − F±η.

It is easy to see that F±Pη = F±η (where the bar denotes complex conjugation) for a
pdf η, because η is real valued. Thus, we have that F±(Pη � η) = |F±η|2 is real valued and
non-negative; consequently, by our previous observation, the inequality |1 −F±(Pη � η)| < 1
holds outside Z, i.e. our previous theorem can be applied by replacing the convolution operator
Aη with the double convolution operator APηAη. �
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When applying this theorem in practice, one should take into account that the measured
pdf (which is obtained by histogramming in general) is not in the range of the convolution
operator, but it can be viewed as the sum of a pdf in the range of the convolution operator (if
our model is accurate enough) and a noise term. By the above theorem, the series expansion
will be convergent on the pdf in the range of the convolution operator, but will be divergent
(most probably) on the noise term, as it is not in the range of the convolution operator (in
general). Thus, the problem is that when to stop the series expansion: one should let the series
go far enough to restore the original (unknown) pdf, but should stop the series expansion early
enough to prevent the divergence arising from the noise term. This truncation procedure can
be viewed as a very elegant way to do the high frequency regulation. Note, however, that
the regulation problem at the finite frequencies (at the zeros of the Fourier transform of the
convolver pdf) does not arise at all, with this method.

The only remaining question is: at which index should one stop to keep the noise content
lower than a given threshold?

When working in practice, our density functions are discrete in general (e.g. histograms),
thus we may view them as a vector of random variables (e.g. in the case of histogramming,
these random variables are the number of entries in the histogram bins). Let us denote it
by v. If A is a linear operator (i.e. a matrix here), then we have that E(Av) = AE(v) and
Covar(Av) = A Covar(v)A+, where we denote expectation value by E(·), covariance matrix
by Covar(·) and the adjoint matrix by (·)+. Thus, in the Nth step of the series expansion, we
have

Covar

(
N∑

n=0

(I − Aη)
nv

)
=

(
N∑

n=0

(I − Aη)
n

)
Covar(v)

(
N∑

n=0

(I − Aη)
n

)+

.

This means that if we have an initial estimate for the covariance matrix Covar(v), we can
calculate the covariance matrix at each step, thus can calculate the propagated errors at each
order.

When using the method of histograming, as the entries in the histogram bins are known
to obey independent Poisson distributions, the initial undistorted estimates E(vi) ≈ Ni

(i ∈ {1, . . . ,M}) and Covar(v) ≈ diag(N1, . . . , NM) will be valid, where we consider our
histogram to be a mapping H : {1, . . . ,M} → N0, i �→ Ni . The squared standard deviations
are the diagonal elements of the covariance matrix, thus we can have an estimate on the L1 norm
of the noise term at each Nth order by taking 1∑M

j=1 Nj

∑M
i=1

√
Covarii

( ∑N
n=0(I − Aη)

nv
)
. By

stopping the series expansion when this noise content exceeds a certain predefined threshold,
we get the desired truncation of the series expansion.

Remark 9. We show an other (iterative) form of our series expansion which may be more
intuitive for physicists. Namely, take the initial conditions

f0 := APηH, Ĉ0 := APη diag(H), C0 := (
APηĈ

+
0

)+
.

Then, perform the iteration steps

fN+1 := fN + f0 − APηAηfN,

ĈN+1 := ĈN + Ĉ0 − APηAηĈN , CN+1 := (
Ĉ+

N + Ĉ+
0 − APηAηĈ

+
N

)+
.

Here H means the initial (measured) histogram, fN is the deconvolved histogram at the Nth
step and APηAη is the discrete version of the double convolution operator. The quantity ĈN

is a supplementary quantity, and CN is the covariance matrix at each step. The noise content
can be written as 1∑M

j=1 Nj

∑M
i=1

√
(CN)ii , which should be kept under a certain predefined

threshold.
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Remark 10. As pointed out in the previous remark, one can exactly follow the error
propagation during the iteration. However, to store and to process the whole covariance
matrix can cost a lot of memory and CPU time. Therefore, one may rely on a slightly more
pessimistic but less costly approximation of the error propagation, namely on the Gaussian
error propagation. This means that at each step one assumes the covariance matrix to be
approximately diagonal, i.e. this method is based on the neglection of correlation of entries
(which, indeed, holds initially) that slightly will overestimate the error content. Gaussian error
propagation means that when calculating the action of the operators in questions, we apply
the following two rules:

(1) if v is a random variable (histogram entry) and a is a number, then σ(a · v) := |a| · σ(v)

(this is exact, of course) and
(2) if v1 and v2 are random variables (histogram entries), then σ 2(v1 +v2) := σ 2(v1)+ σ 2(v2)

(which is exact only if v1 and v2 are uncorrelated). Here σ means standard deviation.

Remark 11. Even if the convergence condition for the deconvolution by series expansion
is satisfied for Aη, it is better to use the double deconvolution procedure by APηAη, for the
following reason. In practice the measured pdf corresponds to a pdf in the range of Aη

plus a noise term. When convolving the measured pdf by Pη before the iteration, the noise
level is reduced by orders of magnitudes (the convolution by Pη smooths out the statistical
fluctuations). As a thumb rule, one iteration step is lost with the convolution by Pη, but
several iteration steps are gained, as we start the iteration from a much lower noise level.

3. The general case of unfolding

For the case of general unfolding problems, a series expansion will become even more
interesting, as there are no known alternative methods like the naive deconvolution in the
case of deconvolution problems.

Unfortunately, for the general case of unfolding, we cannot state such a strong result as for
the case of deconvolution. This is because our theorem on the deconvolution strongly relies
on the relation of convolutions and Fourier transformation. However, we can state a sufficient
condition for the convergence of a series expansion for the general case of unfolding. To state
this theorem, we have to perform studies not only on pdfs, but also on probability measures.
The spaces X and Y are going to denote finite-dimensional vector spaces again.

A complex measure P on X is a complex valued σ -additive set function defined on the
Borel σ -algebra of X. The variation of the complex measure P is the non-negative measure
|P | defined as follows: if E is a Borel set, then |P |(E) is the supremum of

∑n
k=1 |P(Ek)| for

all splitting (E1, . . . , En) of E, i.e. for all such (E1, . . . , En) finite system of disjoint Borel
sets whose union totals up to E [6, 8]. The measures with finite variation (i.e. the complex
measures P for which |P |(X) < ∞) form a Banach space with the norm being the value of
the variation on X, i.e. ‖P ‖ := |P |(X). Let us denote this space by M(X).

Recall that a probability measure P on an X is a non-negative measure on the Borel
σ -algebra of X, with P(X) = 1. Thus, a probability measure is evidently in M(X).

Definition 12. We shall call a mapping Q : X → M(Y), x �→ Q(·|x) a folding measure if
for every x ∈ X the measure Q(·|x) is a probability measure on Y, and for every Borel set E
in Y the function x �→ Q(E|x) is measurable.

Note, that Q may be viewed as a conditional probability measure on the product space
Y × X. Evidently, if ρ is a cpdf, then Qρ(E|x) := ∫

E
ρ(y|x) dy defines a folding measure.
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Definition 13. Let Q be a folding measure Q. Then the linear map

AQ : M(X) → M(Y), P �→
(∫

Q(·|x) dP(x)

)
,

will be called the folding operator by Q.

Remark 14. The following remarks are trivial.

(1) Such an operator is well defined, as for all points x ∈ X and Borel sets E the inequality
Q(E|x) � 1 holds, thus the function x �→ Q(E|x) is integrable by any measure with
finite variation.

(2) By the monotonicity of integration, such an operator is continuous and ‖AQ‖ = 1, just as
in the L1 case.

(3) The folding operator defined above can be viewed as a generalization of the folding
operator Aρ : L1(X) → L1(Y ) defined by a cpdf ρ. This is because L1(X) can
naturally be embedded into M(X) by assigning to each f ∈ L1(X) the measure
E �→ Pf (E) := ∫

E
f (x) dx. Of course, if the folding measure Qρ is defined by a

cpdf ρ, then the restriction of AQρ
to L1(X) is just Aρ as defined before.

First, we generalize our deconvolution results to the space of measures with finite variation.

Remark 15. The convolution of two measures F,G ∈ M(X) can be defined by

F � G : E �→
∫

F(E − x) dG(x),

where E runs over all the Borel sets. (Of course, Pf � Pg = Pf �g for any f, g ∈ L1(X).)
The Fourier transformations can also be defined on M(X), and have the same properties

as in the L1 case, except that the Riemann–Lebesgue lemma does not hold (i.e. the Fourier
transform of a measure is a bounded continuous function but does not tend to zero at the
infinity). Therefore, our previous results on the series expansion for the deconvolution
(theorem 8) can directly be generalized to the probability measures, as the elements of M(X)

can also be viewed as tempered distributions.

As we remarked above for the deconvolution case, we have a powerful result also in the
more general framework of measures with finite variation. However, we are still lacking an
answer for the general cases of unfolding.

Remark 16. The conditions of the original Neumann series expansion theorem fail also in the
case of measures.

(1) We can observe that our series expansion is only meaningful for the case of a folding
operator only when the spaces X and Y are the same. (Just as in the L1 case.)

(2) Let us assume that Y = X. Then, it is easily obtained that a folding operator AQ does
not satisfy the required condition ‖I − AQ‖ < 1, in general. It is trivial by the triangle
inequality of norms that ‖I − AQ‖ � 2. We will show now that this inequality can
be saturated for a wide class of folding measures. Let Kn(y) (n ∈ N) be a sequence of
compact sets with nonzero Lebesgue measure, such that Kn+1(y) ⊂ Kn(y) for each n ∈ N

and ∩
n∈N

Kn(y) = {y}. Let us denote the complement of a set Kn(y) by K�
n (y). Clearly,

by considering the splitting
(
Kn(y),K�

n (y)
)

of the Borel set X, one has

|(I − AQ)δy |(X) � |δy(Kn(y)) − Q(Kn(y)|y)| +
∣∣∣δy

(
K�

n (y)
) − Q

(
K�

n (y)
∣∣y)∣∣∣

= |1 − Q(Kn(y)|y)| + Q
(
K�

n (y)|y)
.
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At the equality, δy(Kn(y)) = 1 and δy

(
K�

n (y)
) = 0 was used. Let us take the limit

n → ∞ on the right-hand side. By the monotone continuity of measures, we have that
limn→∞Q(Kn(y)|y) = Q({y}|y) and limn→∞Q

(
K�

n (y)
∣∣y) = Q(X\{y}|y); furthermore

by the subtractivity of measures we have Q(X \{y}|y) = Q(X|y)−Q({y}|y). As Q(·|y)

is a probability measure, we also have Q(X|y) = 1. Thus,

|(I − AQ)δy |(X) � |1 − Q({y}|y)| + (1 − Q({y}|y)).

As the measure Q(·|y) cannot take up larger values then 1 on any Borel set, we conclude
that

‖I − AQ‖ � 2 · (1 − Q({y}|y)).

Thus, if there exists such a point y ∈ X, where Q({y}|y) = 0, then ‖I −AQ‖ = 2. When
the folding measure Qρ is defined by a cpdf ρ, then Qρ({y}|y) = 0 always holds (this
is because a measure of the form Pf —for any function f ∈ L1(X)—cannot have sharp
points, i.e. such points where Pf ({y}) �= 0). Thus,

∥∥I − AQρ

∥∥ = 2 holds for any cpdf ρ,
therefore the Neumann series cannot converge for AQρ

in the M(X) operator norm. (But
of course, even Q({y}|y) � 1

2 is enough to violate ‖I − AQ‖ < 1.)

Just like in the convolution case, our strategy will be to require much weaker notions of
convergence. By intuition, one would think that if for all x ∈ X the Dirac-measures δx are
restored by the method (in some sense of convergence), then this would be enough for the
restoration of any other arbitrary measures with finite variation. We provide a similar result
with slightly stronger conditions. The theorem below is a trivial consequence of Lebesgue’s
theorem of dominated convergence.

Theorem 17. Let AQ be a folding operator for some folding measure Q. Let us fix a Borel set
E in X. If for all x ∈ X the sequence

N �→ ((I − AQ)N+1δx)(E)

converges to zero, furthermore

sup
N∈N

sup
x∈X

|((I − AQ)N+1δx)(E)| < ∞

holds, then for any P ∈ M(X) the series

N �→
(

N∑
n=0

(I − AQ)nAQP

)
(E)

is convergent and( ∞∑
n=0

(I − AQ)nAQP

)
(E) = P(E).

Proof. First, we note that for any index N the measurable function x �→ |((I −AQ)N+1δx)(E)|
can be bounded by 2N+1, thus these functions are integrable by any measure with finite
variation.

We know that for all x ∈ X the relation limN→∞((I − AQ)N+1δx)(E) = 0 holds,
furthermore sup

N∈N

sup
x∈X

|((I − AQ)N+1δx)(E)| < ∞. The integral
∫
((I − AQ)N+1δx)(E) dP(x)

exists for all N and the integrands converge pointwise to zero as N tends to infinity.
As the integrands are dominated by a constant independent of N which is clearly
|P |-integrable, by Lebesgue’s theorem of dominated convergence, the limit and the
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integration can be interchanged: limN→∞
∫
((I − AQ)N+1δx)(E) dP(x) = ∫

limN→∞((I −
AQ)N+1δx)(E) dP(x) = 0. On the left-hand side, (I − AQ) can be interchanged with
the integration, because I is the identity operator and because AQ itself is an integral:
we can interchange the integrals by Fubini’s theorem, namely

∫ (
AN

Qδx

)
(E) dP(x) =∫∫ · · · ∫ Q(E|yN) dQ(yN |yN−1) · · · dQ(y1|x) dP(x) = (

AN
QP

)
(E), for arbitrary power N.

Thus, limN→∞((I − AQ)N+1P)(E) = 0.
Using the equality

(
P − ∑N

n=0(I − AQ)nAQP
)
(E) = ((I − AQ)N+1P)(E), we get the

desired result. �
Remark 18. Assume that the condition of our theorem holds.

(1) The condition sup
N∈N

sup
x∈X

|((I − AQ)N+1δx)(E)| < ∞ (i.e. the condition of boundedness) is

crucial for the proof in order to be able to interchange the limit and the integration. In
other words: the restoration of the Dirac-measures δx for all x ∈ X is not enough.

(2) If P is a probability measure, then the meaning of our convergence result is that the
probability of the event (Borel set) E is restored:

lim
N→∞

(
N∑

n=0

(I − AQ)nAQP

)
(E) = P(E).

The present theorem is weaker than that for deconvolution, nevertheless it provides a
computer-testable condition of convergence for any unfolding problem (which may not be
expressed as convolution). In the following section, we shall provide some physical examples
which show the method in operation. Of course, the iteration procedure goes just the same as
discussed at the end of the previous section.

Remark 19. If we are testing the convergence criterion by computer, some measure theory
trivialities are useful. Namely, if the condition holds for disjoint sets, then it also holds for
the union of them. Thus, in practice (e.g. when handling histograms), it is enough to confirm
the condition when the Borel sets E are the histogram bins, because then the condition will
automatically hold for any set built up from the histogram bins. Of course, we cannot go below
the granulation of our histogram binning, but if our granulation is fine enough, the numerical
test of convergence condition can give an accurate answer.

The disadvantage of our presented convergence criterion is that it is rather expensive even
for a simple one-dimensional case (however, for a given folding measure Q, this condition has
to be shown only once). It may be better to only show the convergence for the given unfolding
problem, i.e. on a case-by-case basis, and not for the general case of every P ∈ M(X). (The
disadvantage of such a convergence condition is that surely it will be violated after a certain
iteration step, because of the divergence arising from the noise term.) Such a condition of
convergence may be obtained by Cauchy’s root criterion.

Theorem 20. Let AQ be a folding operator for some folding measure Q. Let us fix a measure
P ∈ M(X) and a Borel set E in X. If the inequality

limsup
N

N

√
|((I − AQ)NAQP )(E)| < 1

holds, then the series

N �→
(

N∑
n=0

(I − AQ)nAQP

)
(E)

is absolute convergent.
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Figure 1. A Gauss� Cauchy deconvolution by series expansion.

With the above condition one may control the convergence of the series iteration for a
given measured pdf: the condition limsup

N

sup
E

N
√|((I − AQ)NAQP )(E)| < 1 may be required

as a condition of convergence, where the Borel sets E are the histogram bins. Given the order
N, we shall call the number sup

E

N
√|((I − AQ)NAQP )(E)| the Cauchy index.

Remark 21. The iteration scheme is the same as discussed at the end of the previous section
(remark 9). In the iteration scheme, the convolution operator APη should be replaced by some
folding operator AG (used to artificially smear the measured histogram in order to reduce the
noise content, as pointed out in remark 11—typically this may be chosen to be a convolution
operator by a Gauss pdf centred to zero, or can be chosen to be the identity operator, if
smoothing is not needed), and the convolution operator Aη should be replaced by the folding
operator AQ (describing the physical smearing process).

4. Examples and applications in physics

Our first test example will be a deconvolution problem of an initial Cauchy pdf of the form
x �→ 1

π
· 1

�2+x2 and with a Gauss convolver pdf of the form x �→ 1√
2π ·σ 2

· exp
(− x2

2·σ 2

)
over the

real numbers. We will choose � = 1 and σ = 1 in our example. By theorem 8 we can assure
the convergence of the problem. The result is shown in figure 1.

Our second test example will be a deconvolution problem of an initial Cauchy pdf as in
the previous example with a triangle convolver pdf of the form x �→ 1

W 2 ·χ[−W,W ](x) · |W −|x||
over the real numbers. We will choose W = 2 in our example. By theorem 8 we can also
assure the convergence of the problem. The result is shown in figure 2.

A signal smearing, caused by a measurement apparatus, is described by folding in general.
In this case the cpdf in the folding integral is the response function of the device. Our series
unfolding can be applied to remove the non-ideal detector smearing at the spectrum level.
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Figure 2. A triangle� Cauchy deconvolution by series expansion.

This is a common issue in analysis of recorded data in experimental physics, which may be
solved by our method.

Our physical example will be the π0 decay. π0-s are produced in high-energy particle
collisions (e.g. in hadron or heavy-ion collisions). The particle π0 decays through the channel
π0 → γ + γ decay (98.798% branching ratio). It has such a short lifetime (8.4 × 10−17 s)
that even in the highest energy colliders it only travels at most micrometres before decay,
thus from the detector’s point of view, the resulting γ photons come from the collision point.
The π0 particles are detected via the resulting γ photon pairs. This is possible because the
dominant part of the γ yield comes from π0 decays in hadron or heavy-ion collisions. The
γ candidate signals are paired to each other in every possible combination, and the mass of
each pair is calculated from the hypothesis that they originate from a common π0 decay. The
combinatorial background is estimated by so-called event mixing techniques (by taking γ

candidates from different events, thus these signals are completely independent). The π0 yield
as a function of momentum thus can be obtained, which plays an important role in high-energy
particle physics.

However, in certain cases (e.g. in heavy-ion collisions) the reconstruction efficiency of
π0-s can be very low at certain momentum space regions; thus this straightforward
reconstruction method is not always applicable for measuring the momentum distribution
of the produced π0-s.

A possible idea is to measure the single γ momentum distribution, and reconstruct
the parent π0 momentum distribution from it, somehow. The arising of the child γ photon
momentum pdf from a parent π0 momentum pdf is described by a folding, as will be discussed
below. The task is: to unfold the original π0 momentum pdf from the γ momentum pdf.
This issue was also addressed in [4], however the answer given by the paper was not fully
satisfactory. Firstly, the method described in the paper was very specific to the particular case
of π0 → γ + γ decay (and did not deal with the general problem of unfolding). Secondly,
two kinematical kind of approximations were used which are mathematically ill-defined and
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have an unclear physical meaning. It seems, indeed, that our method gives a more realistic
answer, as it will be shown.

Let us denote the momentum space by (M, g), where M is a four-dimensional real vector
space and g : M × M → R is a Lorentz form (with signature 1,−1,−1,−1). Let us choose
a time orientation on it. Let V +(0) denote the positive null cone (positive light cone), and let
V +(m) be the positive mass shell with mass value m (m will now play the role of π0 mass).
The π0 momentum pdf is defined over V +(m), and the γ photon momentum pdf is defined
over V +(0). However, they also can be viewed as probability measures over M, with their
support in V +(m) and V +(0), respectively. Given a π0 momentum, the γ momenta directions
(decay axes) are uniformly distributed in the π0 rest frame (this is the physical information
put in). Namely, let us take the set

F :=
{

(p, k) ∈ M × M

∣∣∣∣∣ p ∈ V +(m), k ∈ V +(0), g

(
1√

g(p, p)
p, k

)
= m

2

}
,

and let us define for every p ∈ M the set Fp := {k ∈ M | (p, k) ∈ F }. Clearly, Fp is the set of
possible γ photon momenta arising from a π0 with momentum p (in other words: Fp is defined
by the vectors in V +(0) which have energy m

2 in the rest frame of the π0 with momentum p).
We shall define our folding measure by the following: Q(·|p) is the measure over M for each
p which describes the uniform distribution on Fp (as Fp is compact, it has finite measure,
thus this is meaningful). If P is a probability measure over M describing the π0 momentum
distribution, then the γ photon momentum distribution is defined by the probability measure
AQP . Thus, one may try to obtain the parent π0 momentum distribution by unfolding the
measured γ momentum distribution. This will be done explicitly below for a toy example.

Let us parameterize the momentum space with respect to an Einstein synchronized frame
(e0, e1, e2, e3) that corresponds to the centre-of-mass system of the collision. We choose
the collision axis (the beam axis) to be the third spatial coordinate axis which we also call
the longitudinal direction. As the experimental setups of collisions are axially symmetric
with respect to this axis, the single-particle momentum distributions are axially symmetric
with respect to the longitudinal direction. Therefore, it is convenient to parameterize a π0

momentum p ∈ V +(m) in the form
(
g(e3, p),

√
g(e1, p)2 + g(e2, p)2, arctan

(
g(e2,p)

g(e1,p)

))
, and a

γ momentum k ∈ V +(0) in the form
(
g(e3, k),

√
g(e1, k)2 + g(e2, k)2, arctan

(
g(e2,k)

g(e1,k)

))
. The

three coordinates are called longitudinal momentum, transverse momentum and azimuth,
respectively. The axial symmetry means that the pdfs describing π0 and γ momentum
distributions only depend on the longitudinal and transverse momenta.

It is even more convenient to introduce a more sophisticated parameterization: if p
L

is
the longitudinal momentum and p

T
is the transverse momentum, then y := asinh

( p
L√

m2+p2
T

)
(longitudinal rapidity) and E

T
:=

√
m2 + p2

T
(transverse energy) can be introduced. The

so-called longitudinal pseudorapidity η := asinh
( p

L

p
T

)
is also useful for longitudinal

parameterization. We shall present the pdfs in the (η, p
T
) parameterization.

For demonstration, we take a realistic toy example of π0 momentum pdf. The π0

momentum pdf is characterized by as follows: the momentum pdf of the π0 with respect to
the Lorentz invariant measure of the mass shell V +(m) corresponds to a product of a Gaussian
one in y and an exponential one in E

T
(a typical experimental spectrum can be qualitatively

described in this a way). The standard deviation of the y distribution was taken to be 0.5, and
the inverse slope parameter of the E

T
distribution was taken to be 0.5 GeV.

The initial π0 momentum pdf is presented in figure 3 together with the arising γ

momentum pdf. We used a sample of 10 000 000 Monte Carlo π0 particles to generate
the measured γ spectrum.
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Figure 3. Input π0 momentum pdf and measured γ momentum pdf.
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Figure 4. Input π0 momentum pdf and unfolded π0 momentum pdf.

The unfolded π0 momentum pdf is presented in figure 4 together with the initial π0

momentum pdf. Due to the high statistics, we did not apply smearing for noise reduction (as
discussed in remark 21).

To demonstrate the capability of the method, we also included a smearing according to the
CMS-ECAL detector’s known energy and angular resolution function, when generating the
measured gamma responses: the method also removes this detector effect from the momentum
pdf. This fact is rather important in practice, because a non-ideal detector resolution changes
the inverse slope parameter of the transverse momentum spectrum remarkably, which is used
in heavy-ion physics to determine the temperature of the collided system.

Some sections of the previous pdfs are also presented at η = constant slices in figures 5
and 6.

For completeness, we also show the answer given by Cahn’s prescription (as described in
[4]), in figures 7 and 8. Of course, here we did not include additional detector effects as in
our unfolding case, as Cahn’s method was not designed to undo detector effects. As one can
see, the reconstructed π0 momentum pdf given by Cahn’s prescription is rather far from the
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Figure 5. Input π0 momentum pdf, measured γ momentum pdf, and reconstructed π0 momentum
pdf: taken at the η = 0.0 slice.
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Figure 6. Input π0 momentum pdf, measured γ momentum pdf, and reconstructed π0 momentum
pdf: taken at the η = 0.4 slice.

initial one, especially when compared to the answer given by our series expansion method,
introduced in this paper.

Our remaining issue is to show the convergence of our series expansion for this π0 → γ + γ

decay unfolding problem. In figure 9 we plotted the Cauchy index as a function of the iteration
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Figure 7. Input π0 momentum pdf, measured γ momentum pdf, and reconstructed π0 momentum
pdf with R. Cahn’s method: taken at the η = 0.0 slice.
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Figure 8. Input π0 momentum pdf, measured γ momentum pdf, and reconstructed π0 momentum
pdf with R. Cahn’s method: taken at the η = 0.4 slice.

order. It is clearly seen that the Cauchy indices are saturating to ≈0.8, thus the convergence
is a consequence of theorem 20.

Remark 22. It is very important to note that when implementing the folding operator, one
does not have to know the analytic form of the integral. In the π0 → γ + γ case it is possible
to calculate the integral formula analytically from kinematics, however, the integral becomes
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Figure 9. Cauchy convergence test of the series expansion for the π0 → γ + γ problem.

very ugly in the (η, p
T
) parameterization. Therefore we calculated the action of the folding

operator by Monte Carlo simulation, which makes the method easy to implement.

5. Concluding remarks

A robust iterative deconvolution and unfolding method was developed for applications in
signal processing. The method has three main advantages:

(1) it solves any deconvolution problem optimally,
(2) it also solves a wide class of more general unfolding problems (for which no general

unbiased method was known previously) and
(3) the method is quite easy to implement even for sophisticated folding problems, if Monte

Carlo integration method is applied.
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