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Introduction

In experimental particle physics we often study distribution of various observables to draw
physics conclusions.

For handling such problematics, we need a little probability theory / statistics. This is a whole
science, we will only go through some often occuring techniques.

Example: in π0 → γγ decay we measure the momenta of the γ-s, and assuming that they
are from π0 decay, we try to reconstruct true mass spectrum of π0-s.

But this is only example. One can do a great number of such things.
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The topic has extended literature. A few sources:

Bronstejn, Szemengyajev: Handbook for mathematics (statistics chapter, fundamental)

Bohm, Zech: Introduction to statistics and data analysis for physicists (statistics, new)

Feller: Introduction to probability theory (theoretical probability theory, a classic)

etc etc (there are a number of books on market, each of them with different emphasis)

Particle Physics Booklet (pocket book, to be used as handbook)

Press, Flannery, Teukolsky, Vetterling: Numerical Recipes (numerical algorithms, classic)
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Helper computer program packages

One can choose from a variety of tools. Some common examples:

GNUPlot + AWK scripts (often used, efficient for simple problems)

ROOT (a CERN and HEP standard, it is rather lousy, but lot of features)

Python + MathPlotLib (begins to be standard, tidy, lot of features)

BLOP-Plot (on sourceforge.net, non-standard, small community, tidy, developable)

Often one has to write own libraries in C or C++ (specific tools for specific problems)
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Typically an analysis is divided into 3 steps:

1. Data production: from raw measurement data one aims to reconstruct the physics
parameters of a collision event (reconstruction), or the same on simulated data
(simulation + reconstruction). This is normally done with a large number of jobs sent to
big computer clusters, and with the official software of the experiment.

2. Data analysis: we analyze with statistical methods the data of the big DST-s ("Data
Summary Tape"-s), produced in the above process. Typically done with large number of
jobs sent to big computing clusters, with our own custom analysis software.

3. Data visualization and interpretation (plotting, fitting etc). Typically we perform this on our
own laptop on small data produced above (on distributions etc), with our own software.

In this lecture, we mainly address the problematics occuring in steps 2 and 3.
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Important identities and distributions

Let x and y be two probability variable, with their values in R
n, having independent

probability density functions (pdfs) f and g. That is: let the common pdf of (x, y) be
(x, y) 7→ f(x) g(y). Then, the pdf of the probability variable z := x+ y will be f ⋆ g, which is
the convolution:

(f ⋆ g)(z) :=

∫

f(z − x)g(x)dx.

Easily follows:

If x and y has finite expectation value, then x+ y has also, and µ(x+ y) = µ(x) + µ(y)

holds. (Expectation value is additive.)

If x and y has finite sigma-square (variance), then x+ y has also, and
σ(x+ y)2 = σ(x)2 + σ(y)2 holds in such case. (Sigma-square is additive in such case.)

If we have n copies x1, . . . , xn from the same probability variable, with the same pdf f , then
their arithmetic mean z := 1

n

∑n
k=1 xk shall be a probability variable with pdf

z 7→ n f⋆(n)(n z) (scaled n-fold convolution).

Statistical data analysis – p. 7/33



From the additivity of µ and σ2 follows:

The expectation value of arithmetic mean m(x) := 1
n

∑n
k=1 xk is µ(x), i.e. expectation

value can be estimated from n samples.

The expectation value of empirical variance s2(x) := 1
n−1

∑n
k=1 x

2
k −

n
n−1

m2(x) is

σ2(x), i.e. variance can be estimated from n samples.

Also follows from additivity of µ and σ2:

σ2(m(x)) = σ2
(

1
n

∑n
k=1 xk

)

= 1
n2

∑n
k=1 σ

2(xk) =
1
n
σ2(x), i.e. m(x) = 1

n

∑n
k=1 xk

has a sigma of 1√
n

times the sigma of one sample xk .

This means: if we have a quantity with large spread, then we can estimate its true mean and
true sigma from n samples, using the above m(x) and s(x) formulas. Moreover, the true
sigma of this mean estimate m(x) shall have a sigma of 1√

n
times the true sigma of one

single sample σ(x). The latter is estimated by s(x). In total, the sigma of the mean estimator
m(x) is 1√

n
s(x).
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Gaussian distribution: rather common in nature.

Because of central limiting distribution theorem: if we convolve a finite variance pdf with itself
n-times (that is: we take the pdf of

∑n
k=1 xk), then that will converge to Gaussian

distribution.

Due to this, e.g. electronic noise etc all follow Gaussian distribution, because it forms as
superposition of many small similar finite variance effects.

In 1 dimension the Gaussian pdf is:

x 7→ 1√
2πσ2

exp

(

− (x− µ)2

2σ2

)

.

Expectation value µ, spread σ.
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Poisson distribution: rather common in nature.

Because of discrete central limiting distribution theorem: if we convolve a finite variance one
sided discrete pdf with itself n-times (that is: we take the pdf of

∑n
k=1 xk of such variable),

then that will converge to Poisson distribution.

Due to this, discrete counting fluctuations are all exactly Poisson, since it is the superposition
of similar finite variance one sided discrete effects.

The Poisson pdf is:

l 7→ Pλ(l) =
λl

l!
exp(−λ)

(l non-negative integer).

Important property: mean is λ, sigma is
√
λ.

Converges to discrete Gauss in large λ limit.
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Multinomial distribution: sometimes turns up in statistics.

Assume that there can be finite 1, . . . , k different possible outcome of an experimental try,
and we make a try n times, such that for all the n tries each outcome has constant pl
(l = 1, . . . , k) probability.

The pdf of multinomial is:

(x1, . . . , xk) 7→
n!

x1! . . . xk!
px1
1 . . . p

xk

k

whenever
∑k

l=1 xl = n, otherwise 0 (xl non-negative integer).

Important property: for all l,m = 1, . . . , k indices, µ(xl) = n pl, and σ(xl) =
√

npl (1− pl),
and Cov(xl, xm) = −npl pm (l 6= m).
In large statistics limit xl converges to Poisson.
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Skellam distribution: difference of two Poissons.

If we subtract two Poisson distribution non-negative integer valued variable, then we get an
integer valued variable, which will follow Skellam distribution.

Good for characterizing behavior of counter differences (e.g. true signal = measured raw
counter − background counter).

The pdf of Skellam is:

l 7→ Sλ1,λ2
(l) = e−(λ1+λ2)

(

λ1

λ2

)k/2

I|l|(2
√

λ1λ2)

where I|l|(·) is the |l|-th modified Bessel function of the first kind (l integer).

Important property: expectation value is
λ1 − λ2, sigma is

√
λ1 + λ2.
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Experimental estimation of density functions

One of the most common problematics is that we have finite (n) measurements of a
probability (vector)variable, and we would like to obtain from this finite sample the pdf of the
variable. For this, there are a number of methods with pros&cons.

There are unbinned methods. If we have an 1 dimensional (scalar) variable, then one can
construct the so called empirical distribution function. First, we order the samples x1, . . . , xn

in increasing order (quicksort algorithm costs merely n log(n)). Then, we construct the
function

x 7→ F̂ (x) :=
1

n

n
∑

i=1

H(x− xi)

where H is Heavyside function. This is a monothonically increasing step function from 0 to
1, and is called empirical distribution function.

Theorem: this converges to the true distribution function
F as n→∞, in the maximum norm.
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Similarly, we can construct a bit more clever estimator for distribution function: we do not use
step function, but linearly interpolated step function. This will be piecewise differentiable, its
derivatie will be pdf estimator:

x 7→
n−1
∑

i=1

1

xi+1 − xi
χ

[xi,xi+1[
(x)

where χ
[a,b[

is the characteristic function of the interval [a, b[.

This is nice, since it is binning-free. Disadvantage: it is hard to quantify its statistical
uncertainty due to finite sample.

Further disadvantage: in multiple dimensions it is not uniquely defined because there is no
natural ordering of samples. We can use e.g. lexicographic ordering, but then the pdf
estimator will slightly depend on how we order the dimensions.
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The most widespread is the binning method (histograming). It works well in any dimensions.
We take a large rectangular domain in the space of values of the observable. Along each
axis we subdivide the domain into bins uniformly. We order a counter to each bin, initially set
to zero. Then, we loop through our n sample x1, . . . , xn and increment the counter of the bin
where a sample falls. The method is merely linearly expensive in n.

Theorem: a n → ∞, this will converge to the
bin-integrals of the pdf, times n.
If the bins are large: it converges not to the pdf,
but to the bin-integrals of the pdf.
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About the counting fluctuations (uncertainty). One has two fundamental scenarios.

1. We collect samples for fixed observation time: each bin will fluctuate with Poisson⇒
stat. error = square root of number of entries.

2. We collect samples until a fixed total number of samples is reached: then, the number of
entries over bins will fluctuate with multinomial.

Note: the entries outside of the histograming domain are called underflows/overflows, and
should be counted to the first/last bin of the axis, and should be always displayed!

Note: we should always display the statistical uncertainty of the bin entries (square root of
number of entries for Poisson).

Note: the histogram figure should always have a title, and axis titles! (Vertical axis almost
always: Entries.)
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How it works: (pseudo)random number generation

Generating uniformly distributed pseudorandom variable. Take the recursion

I0 := s, In+1 := (a · In + c)%m

e.g. with s := 1, a := 1103515245, c := 12345,m := 32768. This will generate
pseudorandom numbers (integers) on the interval [0,m− 1]. We can then rescale it to the
real interval [0, 1[. The number s is called the seed (initial value).

This is how most of the built-in randomgenerator works, e.g. the srand48+drand48 in C.

A typical trick is that we set the seed from date+time, so that it is unique (ctime in C).
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A histograming example

histogram Downloadable example illustrates all this. One
can get it from the webpage of the lecture.
tar -xzf stat_progs.tar.gz

cd stat_progs

make

./hist

gnuplot hist.gnu

gv hist.eps
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How it works: generating important distributions

Theorem: if is x probability variable, and F is its distribution function (running integral of pdf),
then the probability variable F (x) shall take its values in the interval [0, 1[, and there it shall
have uniform distribution.

Remark: a distribution function F is strictly monothonically increasing from 0 to 1. Thus, for 1
dimensional variables, it is invertible.

Consequece: one can generate scalar distributions, if it is easy to evaluate F−1. First we
generate uniform random number u on [0, 1[, then x := F−1(u) shall have distribution F .

This is a fundamental trick, one can generate Lorentz(Cauchy), triangle, exponential, etc
distributions in such a way, see: stat_progs.tar.gz:stat_progs/rnd.h
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Usually, a Gaussian random number is generated differently, because evaluation of erf−1 is
expensive / technically not simple.

But one can use that any 1d section of a 2d Gaussian will be an 1d Gaussian.

And one can generate 2d Gaussian rather easily, in polar coordinates: the radius-square has
exponential distribution, and the azimuthal angle has uniform distribution, and the two are
independent, and they are cheap to generate.

Consequence: if u and v are uniform random numbers on the interval [0, 1[, then

x :=
√

2 | ln(1− u)| cos(2π v)

shall have 1d Gaussian distribution. This is cheaper than evaluating erf−1.

See: stat_progs.tar.gz:stat_progs/rnd.h

Statistical data analysis – p. 19/33



Statistical error propagation in linearized approximation

Let G be R
m −→ R

k function, and we approximate it at x := a+∆x (around a).

If G is n+ 1-times differentiable, then one has the Taylor-formula:

G(a+∆x) = G(a) + DG(a)∆x+
1

2!
D2G(a)(∆x,∆x) + · · ·+ 1

n!
DnG(a)(∆x, . . . ,∆x)

+O(‖∆x‖n+1).

Specially, if G is 2-times differentiable, then:

G(a+∆x) = G(a) + DG(a)∆x+O(‖∆x‖2).

Thus, such a function G around a can be split like this:

1. A shift by a constant G(a).

2. A constant linear transformation DG(a).

3. Plus a second order residual term, O(‖∆x‖2).

The linearized error propagation is based on: neglection of residual term.
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Take the Taylor-formula at the expectation value a := µ(x) of the variable x, and introduce
the new (centralized) probability variable ∆x := x− a. Then:

G(x) = G(a+∆x) = G(a) + DG(a)∆x+O(‖∆x‖2).

Take the expectation value of the transformed variable G(x):

µ
(

G(x)
)

= G(a) + µ
(

O(‖∆x‖2)
)

.

This means that if the residual term is neglected, then the expectation value propagates as:

µ
(

G(x)
)

= G(µ(x)),

that is we simply transform the expectation value itself.

This neglection can be done, whenever G around µ(x) behaves linearly enough, in a vicinity
determined by the ellipsoid of Cov(x).
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With the same approximation, the covariance of G(x) will be:

Cov
(

G(x)
)

= Cov
(

DG(a)∆x+O(‖∆x‖2)
)

= Cov
(

DG(a)∆x
)

+ µ
(

O(‖∆x‖3)
)

.

This means, that when we neglect the residual term, then the covariance propagates as:

Cov
(

G(x)
)

= Cov
(

DG(a)∆x
)

= DG(a) Cov(x)DG(a)T .

Now, writing back the notation a = µ(x):

Cov
(

G(x)
)

= DG(µ(x)) Cov(x)DG(µ(x))T .

This is the fundamental formula of linearized error propagation.

Using this, one can write an algebra of (measured value, measurement uncertainty) pairs
(automated error propagation). See:
stat_progs.tar.gz:stat_progs/meas.h,meas.cc

tar -xzf stat_progs.tar.gz

cd stat_progs

make

./meas
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Fitting to density functions (large statistics)

Assume: we have n measurements, where we measured a quantity as a function of some
variable, i.e. we have (x1, g1), . . . , (xn, gn). This can be, for instance, a pdf estimation from
histograming. In that case, xi are bin positions, and gi are number of entries in a bin. In that
example case, gi will fluctuate with Poisson. At the large statistics limit: Poisson will tend to
Gaussian.

We would like to describe our measured pdf with some model pdf x 7→ fθ(x), where θ is
some m dimensional parameter vector. (We assume, that they are properly normalized with
number of entries.)

Then, the θ parametervector can be determined at the place of best coincidence:

χ2 :=
n
∑

i=1

(gi − fθ(xi))
2

σ2
i

penalty function is minimized as a function of θ. If gi are histogram entries, then σi =
√
gi

due to Poisson counting uncertainty.

If gi truly fluctuates according to Gaussian (e.g. for large statistics Poisson), then this fit will
be a maximum-likelihood fit with Gaussian fluctuation hypothesis.

Statistical data analysis – p. 23/33



At the χ2 minimum the statistical covariance matrix of the parameters will be:

Cov(θ) = −1

2

(

(

∂2 χ2

∂θi ∂θj

)

i,j=1,...,m

)−1

.

Further important theorem is that at the minimum

χ2/(n−m)

has expectation value 1. (χ2/ndf ← number of degrees of freedom)
This can be used to test the goodness of model.

Statistical data analysis – p. 24/33



Fitting to density functions (low statistics)

Sometimes it happens that we have low number of entries in some important part of our
histogram. Then the simple χ2 fit, corresponding to Gaussian maxlikelihood fit, does not give
good result, because entries in reality do not fluctuate according to Gauss, but e.g. according
to Poisson.

Then:

χ2 :=
n
∑

i=1

2 (fθ(xi)− gi + gi ln(gi/fθ(xi)))

penalty function should be minimized as a function of θ. This is Poisson maxlikelihood fit.

The formula for Cov(θ) and µ(χ2/(n−m)) = 1 will be still valid.

Theorem: it conserves exactly the number of entries.

S.Baker, D.Cousins: Nucl.Instr.Meth. 221 (1984) 437.
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If we do measurement not for fixed time but until we reach a given number of entries, then
multinomial.

Then:

χ2 :=
n
∑

i=1

2 gi ln(gi/fθ(xi))

penalty function should be minimized as a function of θ. Multinomial maxlikelihood.

The formula for Cov(θ) and µ(χ2/(n−m)) = 1 will be still valid.

Theorem: it conserves exactly the number of entries.

S.Baker, D.Cousins: Nucl.Instr.Meth. 221 (1984) 437.
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Fine comparison of distributions, statistical tests

Assume: x is a real valued probability variable. Let F̂n be the empirical distribution function
made from n samples x1, . . . , xn. This is at some distance in the maximum norm from the
true distribution function F :

Dn := max
x
|F̂n(x)− F (x)|.

Theorem: the probability variable d :=
√
nDn for large n follows Kolmogorov distribution,

which has distribution function:

K(d) := 1− 2
∞
∑

k=1

(−1)k−1e−2k2d2 =

√
2π

d

∞
∑

k=1

e−(2k−1)2π2/(8d2)

Kolmogorov-Smirnov test works like this: with given finite sample and theoretical distribution
model function, we can quantify that what would have been the probability of measuring the
observed sample, assuming that our model for data distribution is true. Very sensitive test,
used also in gravitational wave searches.
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Let x and y be real valued probability variable. Assume that we have n sample x1, . . . , xn

from x and corresponding empirical distribution function F̂n. Similarly, assume that we have
m sample y1, . . . , ym from y and corresponding empirical distribution function F̆m. These
will be at some distance in the maximum norm:

Dn,m := max
x
|F̂n(x)− F̆m(x)|.

Theorem: if these two samples have the same distribution, then the probability variable
d :=

√

nm/(n+m)Dn,m follows the Kolmogorov distribution for large n,m.

With this, we can also do Kolmogorov-Smirnov test: we can evaluate what would be the
probability of obtainig these samples, assuming that they follow the same distribution. Very
sensitive test.

Kolmogorov-Smirnov test problematic in higher dimensions: one can generate empirical
distribution functions in multiple ways, depending on ordering of axes.
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Effect of non-ideal detector response, unfolding

Sometimes, we would like to measure the pdf x 7→ f(x) of some quantity x, but it is smeared
by a non-ideal detector response:

y 7→ g(y) =

∫

ρ(y|x)f(x) dx

is the measured pdf instead, where (x, y) 7→ ρ(y|x) is the response function, which we know
either from theory, or from calibration measurements. The real problem is that we rather
measure:

y 7→ g(y) =

∫

ρ(y|x)f(x) dx + e(y)

where e is an error term (e.g. from statistical counting uncertainty), and we only know its
properties, but not its actual value (it is a probability variable).

The above integral transformation operator is called folding.

The problem is: it is a theorem that in general, a folding operator maps some distant pdfs to
close pdfs, and these may be hard to distinguish due to the error term e.

This has extensive literature, there are some methods, but generally problematic.
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One of the methods is that we use that the folding operator (A) is linear, and we precondition
it to make sure that its spectrum is in the interval [0, 1].

f is the pdf which we would like to reconstruct, g is the measured pdf, and A is the folding
operator by the response function, with g = Af + e where e is the error term. Assume that
all these are given in terms of histograms, for simplicity.

An algorithm:

K := max
i

∑

j

(ATA)ij ,

f0 := K−1AT g,

fN+1 := fN +
(

f0 −K−1ATAfN

)

.

Theorem: this converges in L2 norm to f − PKer(A)f , and also binwise. There is a formula
for the algorithmic approximation error (at finite N ), and for the propagated statistical and
systematic errors.
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Systematic errors

This is the most difficult to capture.

Assume that we have some measurements x1, . . . , xn, which fluctuate according to some
distribution. (E.g. if they are histogram bins, then Poisson.) We would like to interpret these
as manifestation of a model function with some θ parameter vector: we make a statistical
estimate for θ, e.g. a fit. Denote the reconstruction procedure by a function A: then,
θ = A(x1, . . . , xn). E.g. A is a model fitting to data.

Often, the problem to solve is even more complicated. Often: the measurements x1, . . . , xn

are not of the form of known physics + known detector effects + known statistical fluctuations,
but they deviate from this systematically by pulls δx1, . . . , δxn to an unknown degree, due to
model imperfections. E.g. due to hard-to-quantify or neglected detector effects. Usually,
knowing the experimental details, for these systematic deviations we can set some upper
bounds sx1, . . . , sxn, which are called the systematic errors of the measurement.

The systematic deviations δx1, . . . , δxn on the measurement cause a systematic deviation
δθ in the estimated parameters. The task is to find upper estimate sθ (systematic error) to
the deviation δθ, given sx1, . . . , sxn. In most analyses, often this is a rather hard task,
because it can be very problem specific.
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