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AN ITERATION FORMULA FOR FREDHOLM INTEGRAL 
EQUATIONS OF THE FIRST KIND.* 

By L. LANDWEBER. 

1. Introduction. Neumann's Method of solving Fredholm integral 
equations of the second kind by iteration is of great practical and theoretical 
value. For Fredholm integral equations of the first kind, on the other hand, 
Hellinger and Toeplitz [1] remark that a method of solution by iteration 
is not available. 

Physical problems often lead to an integral equation of the first kind 
to which a good first approximation may be derived by physical reasoning. 
An example of this is the problem of determining an axial source-sink or 
doublet distribution which would yield the axially-symmetric potential flow 
about a body of revolution in a uniform stream. This problem leads to an 

^1 
integral equation of the first kind, [(x - t) 2 + y (X)2]-3/2m(t)dt, 

where the axis of the body coincides with the x-axis from x- 0 to x = 1, 
y (x) is a known function, representing the ordinates of the intersection of 
the given surface with a meridian plane and m (x) is an unknown function, 
representing the distribution of the doublet strength per unit length along 
the axis. A well-known, excellent, first approximation to the doublet dis- 
tribution for elongated bodies of revolution is [2] m0 (x) - [y (x) ] 2/4. In 
cases such as this it would be highly desirable to have a method of successive 
approximations for improving upon this approximation. 

The theories of Schmidt and Picard furnish expressions for solutions to 
integral equations of the first kind. However, these expressions are of little 
practical value since they involve the characteristic numbers and functions 
of an arbitrary kernel, and the methods for obtaining these are both tedious 
and approximate. 

It is proposed to present an iteration formula for obtaining successive 
approximations to the solution of Fredholm integral equations of the first 
kind, and to prove the convergence of the successive approximations under 
various conditions. 

* Received August 10, 1950. 
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616 L. LANDWEBER. 

2. The integral equation of the first kind; theory of Schmidt and 
Picard. We are concerned with solutions and approximations to solutions 
of the integral equation of the first kind 

b 

(1) f (x) =f (x, y)g (y) dy, 
a 

where f (x) and k (x, y) are given continuous real functions in a < x, y : b, 
and g (y) is an unknown function. As is well known, (1) may be trans- 
formed into the integral equation with a symmetric kernel, 

4 b 
(2) F'(x) K(x, y)g (y) dy, 

a 
where 

b 
(3) K(x, y) k (t, x) k (t, y) dt 

and 

(4) F (x) k (y, x) f (y) dy. 

A theory due to E. Schmidt [3] shows that there exists a set {Ai} of 
positive characteristic numbers, which may be supposed arranged in increasing 
order of magnitude, and corresponding adjoint sets .p+(x) and q!i(x) of real, 
continuous, orthonormalized characteristic functions, (i_ 1, 2, ), such 
that 

(5) (p (x) , fk(x, y)>fr(y)dy, I(x) A, 7cf(y, x)ki(y)dy. 

It will be convenient, hereafter, to employ the customary operator notation 
b b 

for integral transforms, viz., kg f1c(x, y)g(y)dy, Kg JK(x, y)g(y)dy; 

furthermore, since the range of variation and the integration limits will always 
be from a to b, specific reference to these limits will be omitted and we will fre- 

^ b 
quently write integrals in an abbreviated form, viz., f(x)4p(x)dx ffki. 

If the kernel 7 (x, y) is degenerate, the number of characteristic functions 
is finite and they can be found by a well known procedure [4]. If f(x) is 

expressible in the form f(x) ajpi(x), the solution of (1) is 
n 

(6) g(x)= EXa+0(x), at JffcP. 

If f (x) is not of the above form, then (6) gives the best approximate solution 
of (1) in the least square sense, as can easily be shown. If the kernel kc(x, y) 
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is non-degenerate, the sets {As}, {01(x) } and {X/'(x) } are infinite. Since the 
degenerate case is readily disposed of, only the non-degenerate case will be 
considered hereafter. 

These characteristic numbers and adjoint functions have several properties 
which will be required in the following: 

a) Xi2 and q' (x) are characteristic numbers and functions of K (x, y) 
[5], i. e., 
(7) 

2 
K2j. 

b) A positive lower bound for the set {A} is given by the inequality [3] 

(8) f/A2< 5 75 y(x,y) dxdy. 

c) EXPANSION THEOREMS. Every function f(x) of the form (1), where 
g (y) is any piecewise-continuous function, can be expanded in the absolutely 
and uniformly convergent series [5] 

co 

(9) f (x) 'Y ajoi(x); a, ---ffo (gj) /As 
J=1 

Every function F(x) of the form (4), where f(x) is any piecewise- 
continuous function, can be expanded in the absolutely and uniformly con- 
vergent series 

(10) F(x) Lc41(x) ci JFp (Jf f,)/A,k. 
j=1 

If f is the same function in (9) and (10), the relations between the " Fourier" 
coefficients may be written 

In general a solution of (1) does not exist. A theorem due to E. Picard 
[6] states that, if the orthogonal set 4, is complete, a solution of the integral 
equation (1) exists if and only if the series 

00 

(12) E' A,22, a, f ffr 
j=1 

ts convergent. 

In the Schmidt-Picard theory, the solution of (1) is intimately related 
to the sequence 

(a3) is Aea,x,es(x)s n e fo theorems 

as is expressed in the following theorems: 
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THEOREM 1. The sequence {kg4 converges in the mean to f(x) if and 
only if the set {q,} is complete relative to f(x). The sequence converges 
uniformly to f (x), if a piecewise-continuous solution of the integral equation 
(1) exists. 

THEOREM 2. If a piecewise-continuous solution g(x) of (1) exists, the 
sequence {#n} converges in the mean to g(x) if and only if the set {'fr} is 
complete relative to g(x). If g(x) is of the form fk(y,x)h(y)dy, where 
h (y) is any piecewise-continuvous function, then the sequence #., converges 
uniformly to g(x). 

The completeness conditions on the sequences {qj} and {*p} in Theorems 
1 and 2 refer to the so-called completeness relations 

00 00 

(14) ff2 = Y a,2, a, = ffri and 5 g2 EY b2, b1 gq. 
j=1 j=1 

The phrase "complete relative to f (x) " in Theorem 1 signifies that (14) 
need be satisfied only by the particular function f (x), a condition which is 
considerably weaker than the assumption that the set {0q} is complete relative 
to a class of functions. Similarly (14) is assumed to apply only to the 
particular function g (x) in Theorem 2. 

The first part of Theorem 1 is of especial interest since it indicates that 
with increasing n, the error due to the assumption of g (x) as an approxi- 
mate solution of (1) diminishes in a least square sense, even if a solution of 
(1) does not exist. However the disagreeable possibility exists that, beyond 
some value of n, the error may accumulate and increase at some values of x. 
Nevertheless, even in this case, such a sequence may give useful successive 
approximatiolls in a particular problem, if the errors are observed at each 
step, and the approximations stopped when the error exceeds an acceptable 
value at any point. 

The second part of Theorem 1 asserts that, for sufficiently large n, n 

satisfies the integral equation (1) as closely as desired. It is noteworthy 
that no assumptions are made with regard to the convergence of the sequence 
{#,}. Indeed, Theorem 2 shows that an additional condition is necessary 
to assure even convergence in the mean. 

The expression (13) for gn, however, is of little practical value since 
it is expressed in terms of the characteristic numbers and functions of the 
kernel 7c (x, y). Principally for these reasons the Fredholm integral equation 
of the first kind has been considered to be of little value [7]. On the other 
hand, another readily calculable sequence of functions {gn(x)} will be defined, 
which, it will be shown, has properties relative to a solution of the integral 
equation (1) identical to those of g,(x). 
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3. The iteration formula. Let us now extend the operator notation, 
denoting Krg ... f K (x, yr) K (yr, Yr-i) ... K (y2y1) g (y1) dyrdyr-1 ... dyl. 
This notation is appropriate since the relation Kr (Ksg) EKr+sg is satisfied, 
as is easilv verified. 

Let go(x) be an assumed, approximate, piecewise-continuous solution of 
the integral equation (1). Then a set of continuous functions g1(x), g2(x),**. 
is defined by the iteration formula 

(15) gn gn + F Kgn-l 

where K and F are the functions defined in equations (3) and (4). The 
convergence of this sequence of functions and the applicability of its members 
as successive approximations to a solution of the integral equation (1) is the 
subject of the subsequent discussion. 

The recurrence formula (15) can be readily solved for gn in terms of go. 
First put 

(16) -yn gn- gn-i 

Then 
n 

(17) gn go+ yi 
j=1 

and also (15) may be written as 

(18) -y. F -Kgn-1. 

Thus the yn's are not only the differences between successive g"'s but also 
serve as measures of the errors corresponding to the gn's as approximate 
solutions of the iterated integral equation (2). Now, from (18), we have 
Yn Yn-1 -Ky-n1 or, in operation notation, -y. = (1 - K)yln1. Hence, 
since the operator K satisfies the associative laws of multiplication, we obtain 

(19) yn ( I-K) n-l-/= 

where (1 - K) n-l is to be formally expanded .by the binomial theorem before 
operating on yi. Substituting for the yi in equation (17) from equation (19), 
and performing the indicated summation, we obtain 

(20) gn go + { [l-(i K)n]/K} (-Kg 0) 

where, in the fractional operator, (1 -K) is to be expanded by the binomial 
theorem and a factor K in the numerator cancelled with the denominator 
before operating on (F - Kgo). 

If the sequence {gn (x) } converges uniformly, it is clear from (15), that 
lim gn is a solution of the iterated integral equation (2). However, since an 
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integral equation of the first kind has a solution only under special circum- 
stances, {g, (x)} may not converge uniformly, and indeed may not converge 
at all. Nevertheless the gn's may serve as useful approximations to a solution 
of (1) and (2) as will be evident on the basis of the convergence theorems 
in the next section. 

4. Convergence theorems. It will be assumed hereafter that 

wb ^b 
(21) k2 (X, y) dxdy < 2. 

This is no restriction since k (x, y) can always be modified, so as to satisfy 
(21), by multiplying (1) by a suitable factor and, in the right member of 
the equation, incorporating the factor into the kernel. 

The convergence theorems will first be stated and discussed briefly before 
their proofs are presented. 

THEOREM 3. The sequence {Kg"} converges uniformly to F(x). 

Theorem 3 is very strong. Without any restrictive assumptions about 
completeness, the existence of a solution, or the convergence of the sequence 
{gn}, it asserts that, for sufficiently large n, gn satisfies the iterated integral 
equation (2) as closely as desired. Basically, however, our interest is in the 
integral equation (1), rather than with (2). Concerning the suitability of 
the gn's as approximate solutions of (1) we have the weaker theorems. 

THEOREM 4. The sequence {1cgn} converges in the mean to f (x) if and 
only if the set {4,} is complete relative to f(x). The sequence converges 
uniformly to f (x) if a piecewise-continuous solution of the integral equation 
(1) exists. 

It will now be supposed that the O-th approximation go(x) is chosen 
of the form 

(22) go (x) fk(y, x) h (y) dy, 

where h (y) is any piecewise-continuous function. The special case h (y) - 0 
is also allowed. Concerning the convergence of the sequence {gn} we then 
have 

THEOREM 5. If a piecewise-continuous solution g (x) of (1) exists, the 
sequence {gn} converges in the mean to g(x) if and only if the set {*j} 
is complete relative to g(x). If g(x) is of the form 5 k(y, x)h(y)dy, where 
h (y) is any piecewise-continuous function, then the sequence {gn} converges 
uniformly to g (x) . 
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It should be noted that Theorems 4 and 5 are identical, word for word, 
with Theorems 1 and 2 except for the substitution of gtt for g". Hence the 
remarks concerning the suitability of the #n's as approximations to a solution 
of the integral equation (1) are applicable to the gn's as well. 

In order to prove the foregoing theorems it is first convenient to establish 
several lemmas. Put 

(23) F. (x) Kgn fn(x) = 7gn. 

The " Fourier " coefficients of F2, fn and gn then satisfy the relations 

(24) C=t f F =+ (5 f f p)/Ax ( / fgn*/)/Ai2. 
We then have 

LEMMA 1. F'"(x) and f"(x) can be expanded in the absotutely and 
uniformly convergent series 

n n 
(25) F,n(x) E'Y cj,"X(x), nnx ,Aeni) 0, 1 2'***. 

J=1 tj=1 

If g0(x) is chosen of the form (22), then also gn(x) may be expanded in the 
absolutely and uniformly convergent series 

n 
(26) g. (X) 'Y Ai'cinO(x), n 0,O 1,~ 2, 11. 

st=l 

Proof. It is clear, from their definitions in (23), that the expansion 
theorems apply to FY(x) and f (x) and consequently the series (25) converge 
as stated in the lemma. In the case of the gn's, it can be shown successively, 
from the iteration formula (15), that g1 (x), g2 (x), are of the same form 
as go(x). Thus we have 

(27) 1 - go + -Kgo. 

But 0= fk(y, x)h(y)dy; from (4), F= fk(y, x)f(y)dy; and from (3), (23), 
Kgo =fc(y,x)fo(y)dy. Hence (27) becomes g1 fk(y,x)[h(y) + f(y) 
- fo (y) ] dy. Hence the expansion theorem is applicable to gn (x) and the 
series (26) also converge, as stated. 

LEMMA 2. 

(28) Ctn Ct (cio c), 

where ci f 5F4, and the sequence pi is such that 

(29) || <1, ) and lim 1, t=1,2,* 
i-> oo 

Proof. We obtain, from (15) and (7), 5gn/i ( 1/A42) 5gn lvw 
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+ fr. Put = 1 -1/2. Then, by successive reduction, we obtain 

f gnt,t-i= pJgoq + XA2(1 - ) fF*j, which by (11) and (24), is seen 
to be equivalent to (28). Furthermore, from (8) and (21), we obtain 
O < 1/At2 < 5 Jk2(X, y) dxdy < 2, or -1 < R < 1. Thus, since the sequence 
{Ak} increases monotonically to infinity, it is seen that (29) is also satisfied. 
This completes the proof of Lemma 2. 

LEMMA 3. 

(30) lim z (cqn-ct)2=lim z 62(cqn-c)2=_0. 
n-> oo =1 n- oo =1 

If a solution g(x) of (1) or (2) exists, then also 
00 

(31) lim _XC4(cq -c)2 0. 
nf- oo i=1 

oo 

Proof. We first note that the series , (co c,) 2 converges since 
j=1 00 

we have, from Bessel's inequality , (co - C,)2 ? (Fo - F)2; hence, 
j=1 

00 00 

E (Cn - C) 2 = j2,,(c0o -c) 2 iS uniformly convergent in n, by (28) and 
j=1 j=1 

00 00 

the comparison test. Consequently, lim (c- c)2 E lim 2n (cto - c) 2 
nf- oo j=1 j=1 nf- oo 

0. Similarly, applying Bessel's inequality to fo - f, and then to go g, 
when g(x) is assumed to exist, we obtain (30) and (31), as desired. 

00 
LEMMA 4. If the series ro(x) = , w (x), where the w,(x) are con- 

j=1 

tinuous functions, is absolutely and uniformly convergent, and if r]7(x) 
00 
= i inwi(x), n = 0, 1, 2, , where y1 satisfies condition (29), then the 
j=1 

sequence rP(x) converges uniformly to 0. 

Proof. From the hypotheses on /Ai we have, for some su-fficiently large r, 
Jr >-1J, 1 r > i. Also, considering the series for ro (x), given an e > 0, 

00 
r can be chosen so large, and independent of x, that E I < e/2. Let 

r be chosen so that both conditions are satisfied. Further, we have 
r 00 

_ I w _ 
' 

I w. I < M, where M is an upper bound independent of x. 
j=1 j=1 

Choose N sufficiently large so that /rn <e/ ( 2M) for n > N. Then 
r 00 

J'nZ1Y_ I,? i nwi I + E I t,u I zr"M + e/2 < en? when n > N(e), as we 
j=1 i=r+l 

wished to prove. 
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LEMMA 5. If Gn0(x) can be expanded in a uniformly convergent series 
co 

(32) G00(x) = e*n0(x), nO, 1, 2, . e 

in terms of the real, continuous, orthonormalized functions O*(x), i - 1, 2,... 
and if G(x) is piecewise-continuous, with ej 5 G0, then necessary and 
sufficient conditions for the sequence Gn(x) to converge in the mean to G(x) 

are that fG2dx - E e 2 and lim E (e_-e,)2=O. 
j=1 nf- oo i=1 

Proof. Since the series (32) is uniformly convergent, we have 
00 00 00 5 GGn_ e5nf GO* = e*0,e*, and similarly 5 Gn2 = e*n2. Hence 

J=1 ~~~J=1 o=1 

00 00 

(33) f (Gn -G)2 = G2 + E (e*00- e*)2 - = e*2. 

Now suppose the conditions of the lemma to be satisfied. Then f (Gn -G2 
oo 

E (ef - e*)2 and consequently by hypothesis, lim f (Gn - G)2- 0. This 
J=1 

proves the first part of the lemma. 
00 

Now suppose that limf(Gn -G)2= 0. From (33), fG2dx?> e*2 
j=1 

+ f (G.0 - G)2 for all n. Hence fG2 ? E e*2. But, by Bessel's inequality, 
00 00 00 

5G2 ? e2. Hence fG2 = e*2. Then, from (33), E (e*-e*)2 
*=1 *=1 *=1 

= 5(G0- G) 2, whence lim ' (ein -- e O)2= 0. This completes the proof. 
*=1 

We can now proceed to the proof of the convergence theorems. 

Proof of Theorem 3. By the expansion theorem and (11) and (24), 

the series F - F 'Y (C,n - ci) i, n n= O, 1, 2, are absolutely and 
j=1 

uniformly convergent in x. Hence, by Lemma 2, the series n p(c,0 - c,) t 
i=1 

are also absolutely and uniformly convergent in x. Hence the conditions of 
Lemma 4 are satisfied and the sequence {F,0 -F)} converges uniformly to 
zero; or by (23), {Kgn} converges uniformly to F, as we wished to prove. 

Proof of Theorem 4. By Lemmas 1 and 3 all the conditions of Lemma 15 
are satisfied by the functions f00 (x) and f (x). Hence by (23) the first part 
of the theorem, concerning the convergence in the mean of {kg,,} to f (x), 
is proved. 
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In the second part of the theorem, since g (x) exists by hypothesis, the 
expansion theorem may be applied to f (x) as well as to fn (x). Hence by (11) 

and Lemmas 1 and 2, the series fn - f =-A(cjo cj)0p(x), n 0, 1, 2, * 
j=1 

are absolutely and uniformly convergent in x, and the conditions of Lemma 4 
are satisfied. Hence the sequence {fn - f} converges uniformly to zero, or, 
by (23), {kg,} converges uniformly to f (x). This completes the proof. 

Proof of Theorem 5. Since go(x) is of the form (22), Lemmas 1 and 3 
indicate that the conditions of Lemma 5 are satisfied by the functions gn (x) 
and g (x). Hence the first part of the theorem, concerning convergence in 
the mean of {g9} to g(x), is proved. 

In the second part of the theorem, the expansion theorem is applicable 
to g (x), by hypothesis. Hence, by (11) and Lemmas 1 and 2, the series 

00 
gn- g =, pnA,2(c10 - c,)qi,(X), n = 0, 1, 2, *are absolutely and uni- 

i=1 

formly convergent in x, and the conditions of Lemma 4 are satisfied. Hence 
the sequence {g9} converges uniformly to g (x), as we wished to prove. 

DAVID TAYLOR MODEL BASIN., 
WASHINGTON, D. C. 
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