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Maximum Likelihood Reconstruction for
Emission Tomography

L. A. SHEPP AND Y. VARDI

Abstract-Previous models for emission tomography (ET) do not dis-
tinguish the physics of ET from that of transmission tomography. We
give a more accurate general mathematical model for ET where an
unknown emission density X = X(x, y, z) generates, and is to be
reconstructed from, the number of counts n*(d) in each ofD detector
units d. Within the model, we give an algorithm for determining an
estimate A of X which maximizes the probability p(n*RX) of observing
the actual detector count data n * over all possible densities X.
Let independent Poisson variables n (b) with unknown means X(b),

b = 1,.*.*, B represent the number of unobserved emissions in each of
B boxes (pixels) partitioning an object containing an emitter. Suppose
each emission in box b is detected in detector unit d with probability
p(b, d), d = 1, - - - ,D with p(b,d) a one-step transition matrix, as-
sumed known. We observe the total number n* = n*(d) of emissions in
each detector unit d and want to estimate the unknown A= A(b), b =
1, - *, B. For each A, the observed data n* has probability or likeli-
hood p(n* IA). The EM algorithm of mathematical statistics starts with
an initial estimate A0 and gives the following simple iterative procedure
for obtaining a new estimate k,new from an old estimate ""Old, to obtain
Ak-k 1,2,-- ,

Anew Aold D n*(d)p(b,d)X (b) = X (b)L
d=1 f >old(bY)p(b, d)

bt= 1

b= 1,-... ,B.

We show that the likelihood strictly increases at each step (unless it is
already a maximum), p(n* Ak) > p(n* Al ) k > 1; the total number

Xk(b) of estimated counts is equal to the total number z n*(d) of ob-
^k Akserved counts at each step A , k > 1; A converges as k °o to an esti-

mate A which has maximum likelihood; X"(b) > 0; I(A) = log p(n* IA)
is concave.
We show by simulation that this algorithm reduces the statistical noise

artifact over conventional convolution backprojection algorithms with-
out introducing excessive smoothing. This is important because statis-
tical noise is a major limiting factor in emission tomography. The
method is generally applicable to any design geometry (single or multi-
ring), to single or double photon emission tomography, and can incor-

Mansucript received May 14, 1982.
The authors are with Bell Laboratories, Murray Hill, NJ 07974.

porate timing information and correct for positron range and angle
effects in a simple way. We discuss methods to speed convergence of
the computation.

I. INTRODUCTION
IN emission tomography (ET) [1] -[3], a compound contain-

ing a radioactive isotope is introduced into the body and
forms an unknown emitter density X(x, y z)> 0 under the
body's metabolism. Emissions then occur according to a Pois-
sion process with rate X(x, y, z). In the usual case of positron
emitter, the positron emitted finds a nearby electron and
annihilates with it. A pair of X-ray photons fly off from the
point of annihilation at the speed of light in opposite direc-
tions along a line which is uniformly distributed in angle.
There is an array of discrete detector elements surrounding the
body and the two photons are detected in coincidence by a
pair of detector elements defining a detector unit, or detector
tube, d. It is known only that somewhere along the length of
the tube d the annihilation took place. The case of single X-ray
photon emitter is similar, but here collimation is used to define
the detector tube.
The measured data are then n*(l),* n*(D), where n*(d)

is the total number of coincidences counted in the dth detector
tube, and the problem is to estimate the emission density
X(x,y, z) from the data n*. For purpose of display and for
purpose of machine computations, we discretize the density
X into boxes b = 1, - *, B, at the outset. Thus, in each box
b there is an unknown count n(b) with mean X(b) = En (b), b =
1, -, B and our problem is to estimate X(b), or roughly, to
guess the true unobserved count n(b) in each box, from the
observed data n*(d), d = 1,-* * , D.
A (nearly perfect) mathematical model of the above physics

is the following one. Denote by X(b) the integral of X(x, y, z)
over box b and let a Poisson distributed number n(b) with
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mean X(b) be generated independently in each box,

_ b)X(b)kP(n(b)=k)=eX(b) k=O 1.

Suppose that each emission in box b is detected in tube d with
known probability

p(b, d) =P (detected in d emitted in b) (1.2)

so that p(b, d) > 0. Thus, the probability of an emission in
b being detected at all is given by

D
p(b)= E p(b,d)l1. (1.3)

d=1

The transition matrix p(b, d) is assumed exactly known from
the detector array geometry. After each emission moves to
some detector tube, or is missed and undetected, there is a
known total number n*(d) of counts in each tube d = 1,**, D.
The probability P(n* IX) of observing n*(d), d = 1, , D is a
function L(A) of the unknown rate A = X(b), b = 1,.* , B. We
want to choose an estimate i of A to maximize L(X). Such
an estimate i is called a maximum likelihood estimate ofA
given n*.
We begin by observing that it is much simpler and involves

no loss of generality to assume that equality holds in (1.3).
Indeed, if we let X'(b) represent the mean of n'(b) = the num-
ber of emissions in b which are actually detected in some
detector, then p'(b, d) = p(b, d)/p(b) is the (conditional) prob-
ability that a detected photon emitted in b is detected in d and
satisfies

D

E p'(b,d)=l. (1.3)'
d=1

Since a Poisson process with rate X'(b), b = 1, ,B is ob-
tained from the original process X(b), b = 1, - , B by thinning
according to detection, it is clear ([4] and Section II) that
X'(b) = X(b)p(b) and p(n* IX) = p(n*I X'). Thus, if i is a max-
imum likelihood estimate of A then i' is a maximum likeli-
hood estimate of A' = X'(b) = X(b)p(b) and conversely. Hence-
forth, we will assume that equality holds in (1.3). This is
equivalent to thinking of X(x, y, z) as the density of emitted
counts which are detected.
The reader may have observed that the above model is only

nearly exact. The assumption that emissions follow Poisson
statistics (1.1) seems beyond challenge, but there is ambiguity
in the discretization into boxes and how p(b, d) is to be
determined. This ambiguity seems to be unavoidable and is
certainly less crude than the approximation required to force
the model of transmission tomography to fit the emission
case as we will see. We will discuss in Sections II and III how
p(b, d) is to be determined.
We also neglected two assumptions in describing the physics.

First, the positron has nonzero (a few mm) range before anni-
hilation and the angle between the paths of the two photons is
(a few degrees) less than 1800 unless the positron is exactly at
rest. However, we show in Section III that these assumptions
can readily be incorporated into the choice of p (b, d) and so
may not be a serious problem. The second assumption was to

neglect the fact that either or both photons can be deflected
(a scattering error), or two nearly simultaneous annihilations
can have exactly one photon detected (an accidental error). In
each case the wrong detector tube gets incremented. Scattered
and accidental count errors are well-known [1] - [3], and
depend on the absorption density of the body and so cannot
be incorporated into p(b,d) in an exact way. Ideally, these
errors should be eliminated in the physical measurement pro-
cedure, e.g., by energy discrimination of scattered counts and
by timing discrimination of accidental counts. We shall simply
be forced to ignore these problems and to assume that the
only source of difficulty is in the statisticalfluctuations in the
counting statistics n*.
We begin the mathematical discussion by noting that the

variables n*(d) are independent and Poisson with expectation
X*(d),

(1.4)
B

X*(d) = En*(d) = x: X(b)p(b, d).
b =1

This fact, pointed out by Snyder [4], is seen immediately by
noting that

(1.5)
B

n*(d)= E n(b,d)
b =

where n(b, d) is the number of emissions in b detected in d.
Indeed, the variables n(b, d), b = 1, * ,B, d = 1,* * ,D are
all mutually independent Poisson variables and so the disjoint
sums in (1.5) are also independent and Poisson and (1.4) fol-
lows from (1.5) by taking expectations. The maximum value
of exp (-X) Xn/n! over X occurs at X = n so that the maximum
likelihood estimator of X*(d) given n*(d) is X*(d) = n*(d),
d= 1, , D. Now one might attempt to simply solve the
simultaneous equations (1.4) forA =X(b) with n*(d) substi-
tuted for X*(d), and p(b, d) known, to obtain an estimate of
A. Because it is approximately true that, for a single ring planar
detector array,

(1.6)A*(d) = f X(x,y) dx dy
T(d)

where T(d) is the dth tube and p(b, d) is approximately con-
stant along T(d), (1.4) are more or less the same equations as
in transmission tomography and that mathematical apparatus
is usually used in ET [1] -[3 ]. (See also the remark at the end
of Appendix I in this connection.)
We emphasize that there are two problems with this ap-

proach. The first, and less serious, problem is that X*(d) is
actually given by

X*(d) = X(x,y)p((x,y), d) dx dy
T(d)

(1.6)'

where p((x,y), d) is the probability that a line through (x,y),
at a uniformly distributed random angle, will lie inside tube
T(d). The function p((x,y),d) is a complicated function
of (x,y) inside T(d), vanishing along the sides of the tube
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T(d) and not constant. Thus, it is not quite correct to use an
algorithm developed for strip integrals (1.6) to invert (1.6)'.
Indeed, in the experiments of Section IV where ET data are
generated instead of transmission data, as described there,
subtle artifacts are apparent which seem to be explainable on
the basis of the discrepancy between (1.6) and (1.6)'. Never-
theless, because of the low resolution (;4 cm) obtained to
date in ET, this problem hardly justifies much effort to correct,
since the artifacts introduced are small. The second problem
with using transmission algorithms to invert (1.4) for Xis that
at the low count rates intrinsic to ET, this procedure amplifies
the statistical noise in the estimate of k over that obtained by
the maximum likelihood procedure. We show in Section IV
by using simulation, that the maximum likelihood procedure
results in a reconstruction X which has evidently less noise
without excessive smoothing. Our explanation for this in-
creased noise effectiveness is that n*(d) - 102 or 103 and (1.4)
are nearly singular.

II. MAXIMUM LIKELIHOOD ESTIMATION OF X GIVEN n*
Since the variables n(b, d) = the number of emissions in box

b detected in tube d are independent Poisson variables with
mean

En(b, d) = X(b, d) = X(b)p(b, d)
the likelihood function is given by

L(A)=P(n*lA)=E 1f
A b-l,---,B

d =l,***,D

(2.1)

eI(b,)X(b, d)n(b,d)e-X(b, d,)(b,d)
n(b,d)!

By definition ofA on (2.2), the conditional expectation

E[n(bo)In*,X] 1(n H e-X(b,d)
P(n*IX) A b=l1,"-,B

d=al,- ,D

X(b, d)n(b,d)
n(b, d)! n(bo). (2.8)

Comparing the second term in (2.7) with (2.8) and using (2.4)
we get

al(x) 1 3L(X) 1
ax(bo) L(X) aX(bo) P(n* lA)

* {-P(n* I A) +((P Al) E[n(bo)In* A,}

I D
=-+ 1D(bE E[n(bo,d)ln*,XI.

X(b0) (2.9)

Now because of (2.3) and the fact that n(b, d) are all mutually
independent, the dth term in the sum in (2.9) is

E[n(bo,d)In*,XI =E[n(bO,d)In*(d),A ]
n*(d) X(bo, d) (7, '1

'-.'IB
f X(b' d)
b'=i

since for independent Poisson variables X, Y with means Xx,
Xy, E [X X + Y] = (X + Y)Xx/(Xx + 1 y). Equation (2.6) now

(2.2) follows from (2.1) and (2.10). From (2.6) we see that

where the sum is over all arrays A of n(b, d)'s with

def B
n*(d)=n(,d) = E n(b,d), d= 1, ,D

b =1
(2.3)

observed counts in the dth detector tube. Note also that

dLef D
n(b) = (b ) nEE(b, d) (2.4)

d=-1
is the (unobservable) number of emissions in the bth box. The
sum in (2.2) is very complicated, but we will show that

l(X) = log L(A) (2.5)
is concave as a function of A = X(1), , X(b) because of spe-
cial properties of the Poisson model. We first show that the
partial derivative of l(X) with respect to X(bo) is

al(A) D+ £ n*(d)p(bo,) (2.6)
8X(bo) d=1 £: (b't)p(b' d)

b'-l

By direct differentiation in (2.2),

3L(X) -X b d) X(b d)n(b,d)
8X(bo) A b H1, * B n(b, d)!J

1 D
.1 +(o dl n .od (2-7)

a2l(x) D n*(d)p(bo,d)p(bl,d)
fZr B

ax(b )aX(bl) d=1 z X(b')p (b I d)l
Lb' 1

(2.11)

It follows immediately from (2.11) that for any z (1), - * z (B)

E E Z(bo)Z(bl) aX(bX)aX(b Z n*(d)c2(d)
b0'=i b1=1 bd=1(03Xb)

B

E z(b)p(b, d)
C(d) b=-

E X(b')p(b,d)
b1

(2.12)

and since n*(d)c2(d) > 0, the quadratic form is negative semi-
definite so that l(X) is concave.
We now describe an iterative scheme, based on the EM algo-

rithm [5, Appendix I] for maximizing 1. We start the algo-
rithm with an initial guess X0(b) satisfying K0 (b) > 0, b=
1, * *B, and then in each iteration, if Xold (b) denotes the
current estimate of X(b), the new estimate is defined as

Xnew(J) = Ao1d(L\ D n*(d)p(b, d)
d=1 E '.o1d(b')p (b' d)

b'=1
b =1 * B. (2.13)
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t(,l)

Fig. 1. There are B - ir/4 X 1282 boxes b inside the circle of radius 1
(patient circle); each box has side 2/128. The detector circle of radius
\/2 has 128 equidivisions into detectors. A pair of detectors, such as

D1, D85, defines a detector unit, or a tube, d.

(The algorithm could never lead to a quotient of a positive
numerator divided by a zero denominator; zero divided by zero

is defined as zero.) In the implementation of (2.13), discussed
in Section III, we usually use a uniform constant as the initial
e'stimate A°. As a point of philosophical interest, the choice

of the initial estimate is somewhat akin to the choice of a

Bayes prior but there is actually no prior measure. For con-

tinuity we defer to Appendix I the proof, familiar from the
EM algorithm [5], that in each step the new estimate Xnew is

an improvement over the old estimate Xold:

L(XneW) > L(Xold), (2.14)

with equality if and only if L(Xold) = maxx L(X). It then fol-
lows from the concavity of log L(X) that all maxima of L(X)
are global maxima and so the iteration scheme (2.13) gives a

sequence

(2.15)

which converges to a global maximum likelihood estimator
XA. Of course if the maximum ofL(X) is not unique then by
the concavity of lo, L(A) any convex combination of maxima
is a maximum and A° depends on the initial choice A.

It is immediate from (2.13) that

B \D
E new(b)= E n (d) and XneeW(b) > 0 (2.16)
b=l d=i

so that the true total number of counts is automatically pre-

served in the estimate Anew, and XneW(b)> 0 at each stage.
This does not hold for the conventional algorithms of trans-
mission tomography adapted to ET.

III. CHOICE OF p(b, d)
How should we actually choose p(b, d), the probability that

an emission in b is detected in d (see Fig. 1)? Detector unit
d may be thought of as a tube defined by the two detectors
D1 and D85 at opposite ends of the strip T T(DI,D85) in
Fig. 1 and so p(b, d) is a measure of the angle-of-view of box
b into tube d and is the weighted average value ofp((x,y), d)
[defined after (1.6)'] over the box b, the weight function being
X(x, y). Unfortunately, X(x, y) is unknown and so p (b, d) is
impossible to compute exactly. Various approximations sug-

gest themselves; what must be made is a choice of the weight-
ing distribution in computing the average of p((x, y), d).
Fortunately, we find in Section IV that two such choices lead
to reconstructions which do not differ significantly in our
simulation.
We show next how it is easy to incorporate known facts or

assumptions about positron range and angle to modify p(b, d)
to correct for these effects. Indeed suppose it is assumed that
positrons range uniformly over a circle of fixed radius p (which
may be varied) after emission and then annihilate. Then in
Fig. 1 there is a certain calculable probability p(b I, d) that a
positron emitted say uniformly in b1 will range into and cause
a count in d. More generally, a positron emitted in b2 in Fig. I
may have nonzero velocity and due to conservation of momen-
tum have angle uniformly distributed over some interval de-
pending on the range location, leading at least in principle to
an estimate for p(b2 , d). We have not tried this but just want
to point out its feasibility and easy incorporation into the
Poisson model. It is also worth pointing out that, if as pre-
dicted by Ter-Pogossian [3], it soon becomes possible by time-
of-flight measurements to know to within say 6 cm where
along T(d) the firing took place then this information can also
be used. Indeed we could partition each tube d into subtubes

di, j = 1, - , m and compute probabilities p(b, di) that an
emission in b be detected in detector tube di. No essential
change in the algorithm (2.13) need be used. It should be
mentioned, however, that each of these corrections or modifica-
tions costs additional computational effort because the array
of nonzero p(b, d) values is made greater in each case and the
computational effort depends on how many of the p(b, d)
constants are nonzero.
How should the computation (2.13) proceed for maximum

efficiency? Ideally the constants p(b, d) should be computed
once and stored but since there are BD of these and each ofB
and D is about 104, this is somewhat inconvenient. Storing
the nonzero p(b, d) values is more convenient but the pro-
gramming demands more effort. We decided to compute
p(b, d) anew, on the fly, each time it is needed, as is clear in
the program supplied in Appendix II. For this purpose we
used p(b, d)'s which were easy to calculate, for most of our
runs. We chose p(b, d) = (2nR)-1 X (width of the intersection
of the circle of radius R about the center of b and the strip de-
fined by the tube d), where R is a parameter which we usually
take to be the radius of the inscribed circle to b, and n is the
number of detector elements around the detector circle. Note
zD-I p(b, d) = 1 and p(b, d) is exact for the following imagi-
nary positron range physics. Suppose a positron emitted in
b immediately runs to the center of b then runs a distance p
with probability density P(p) = p/(R NR - p2), 0< p < R,
in a random direction, to reach a point Q in the disk of radius
R about the center of b. Upon reaching Q the positron anni-
hilates and the photon pair chooses a line through Q, not at
random, but uniformly over the n tube directions. As we see
in the simulations of Section IV this choice of p(b, d) produces
remarkably accurate reconstructions when compared to the
actual box-counts n(b), and are not much different than if
p(b, d) are calculated by the more accurate method using the
angle-of-view from the center of b into d. Due to cost of
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Fig. 2. ET phantom used in the experiments in Section IV. We have
modified the phantom of [8] in gray levels to have more contrast and
to represent a possible emission density X(x, y). Note, however, that
the skull would ordinarily absorb little emitter and has been added
simply to defne a boundary and for comparison with [8]. C. L.
Mallows points out, correctly, that adding the skull as we have done
is inadvertently slightly unfair to the convolution-backprojection
approach because the artifacts in Figs. 8 and 9 exterior to the skull
would not appear for a more relevant phantom.

computation we were unable to use a still more accurate choice
for p(b, d) where the emission point is distributed uniformly
over b rather than just at the center. However, we are encour-
aged by the results above that the reconstruction does not
depend too critically on the choice ofp(b, d) assuming that it
is reasonable. We hope to study other more accurate choices
for p(b, d). The choice of p(b, d) seems to be less critical than
for the ART algorithm of transmission tomography [81 where
the corresponding weights are seen to play an important role.
It may be that this is because p((x,y), d) vanishes along the
sides of the tubes and so even center-weighting does not pro-
duce large errors as in [8] . Of course for a more complex or a
three-dimensional array of detectors this choice of p(b, d)
would be computed once and stored. We feel that our results
show that similar quality reconstructions could be expected
in any such case.
Of course, (2.13) is not the only way to find a maximum

likelihood estimator but is the EM algorithm in this case [5] as
we see in Appendix I. We plan to study alternate methods to
maximize 1(k) based on the gradient since this is available
from (2.6) and steepest ascent methods would probably be
faster [9]. However, properties (2.14) and (2.16) should not
be given up lightly.
The present algorithm (2.13) is in several ways reminiscent

of the so-called multiplicative ART [6]. However, our choice
of constants p(b, d) is certainly different and related to the
actual physics of the problem, as we have seen in Section I.
Further, our algorithm itself can be derived from the Poisson

Fig. 3. Photodisplay of Fig. 2.

model as is done in Section II. The algorithm (2.13) has no
advantage in transmission tomography, since the use of (1.6)'
over (1.6) is then incorrect. It is likely to have advantage over
transmission algorithms for emission tomography only at low
count rates, or when the geometry of the detector array is so
complex that transmission algorithms are hard to obtain.

IV. SIMULATION EXPERIMENTS
We study only two-dimensional, or single-ring ET and assume

that there are B = 128 X 128 boxes surrounding the unit circle
(the patient circle). We assume 128 discrete detectors equally
spaced around the circle of radius X/' circumscribing the
display boxes. We use the phantom in Figs. 2 and 3 with den-
sity 1X(x,y) and choose 107 random points from the density
X(x,y)/ff) independently. Each point is chosen by taking
a uniform random point in the square Ix 1, IyI < I and accept-
ing it with probability X(x,y). This gives the emission points
as if X(x,y) were the true emission density. The histogram of
the number of emissions in each box is displayed in Fig. 4.
After choosing each point we choose a random line L through
the point and increment the count for the detector unit corre-
sponding to the two detector intervals that L passes through.
This gives the numbers n*(d), d = 1, - - - ,D - 64 X 65 since
there are 65 detector intervals opposite each one. Note that
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Fig. 4. Histogram n(b) of the 107 counts drawn from the phantom of Fig. 5. Reconstruction by (2.13) with p(b, d) as in Section III by the
Fig. 2 at a rate proportional to X(x, y, z) at each point. It is felt that program of Appendix 11 after 32 iterations.
107 would be about the right value for single ring positron ET in
practice. Of course, without measuring exact time-of-flight, n(bo) is
not observable except in a simulation.

B- 1282 7r/4 since boxes outside the unit circle have known
emitter density zero.
The data n*(d) are fed into the computer program in Appen-

dix II which is included for repeatability purposes and the
reconstruction (2.13) with 32 iterations is displayed in Fig. 5.
It is remarkably accurate as is seen by comparing the numbers
on the line plots, Figs. 6 and 7, of the original histogram (Fig. ....

6) and the reconstruction (2.13) with the constants of the
program in Appendix II along the line y = 0. The same data
n*(d) are then fed into the usual convolution-backprojection , _ _ _ __
reconstruction in fan-beam configuration [7] with the Lak-
shminarayanan filter [7]. The reconstruction is displayed in
Figs. 8 and 9 and is clearly noisier than that of (2.13) (Figs. 5 -
and 7). It also has a cupping artifact (the dip close to the skull)
which is perhaps due to the error of using (1.6) instead of
(1.6)' as discussed in Section I. Although smoothing with other =__ __=
filters could be used to reduce noise in Figs. 8 and 9 to the
level of that in Figs. 5 and 7, we feel that this might result in
excessive smoothing. It is interesting that (2.13) is a nonlinear 0 o. , . - -0 00 . . .
algorithm and smoothing is a linear procedure. The maximum Fig. 6. Line plot of the histogram Fig. 4 through y = 0 (the x-axis).
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Fig. 7. Line plot of Fig. 5 along y = 0 (the x-axis). Note the quantitative
agreement between Figs. 6 and 7.

Fig. 9. Line plot of Fig. 8. Here the dip inside the skull is easy to see.
Note that the actual numerical values have no significance and some
are negative although they have been clipped in this display.

likelihood estimator thus seems to have good noise suppression
over linear algorithms.
In order to test how critical the choice of constants p(b, d)

is in (2.13), we took an extreme case where p(b, d) is 1/rr X
(angle of view into detector d from the center of b). This in-
volved an enormous amount of computation because p(b, d)
had to be calculated from the relatively complex subroutine
determining angle-of-view each time it was needed. The 14th
iteration is displayed in Figs. 10 and 11 and are seen to be
nearly identical to Figs. 5 and 7. Of course, if p(b, d) could be
computed and stored to avoid the need for recomputation,
we would expect this choice to be preferable and perhaps uni-
form weighting in b as discussed in Section III to be still better.

APPENDIX I
We discuss here the relations between (2.13), the EM algo-

rithm [5], and the Kuhn-Tucker (KT) conditions for opti-
mality [9]. Since 1(A) of (2.5) is concave, it follows from [9,
Theorem 2.19(e)] that sufficient conditions for 2 to be a max-

imizer of I are the KT conditions which, for our case, turn out
to be: for each b = 1, - ,B,

(Al)O ()al(^)| A(b D n*(d)X(b)p(b,d)

b'-1

and

a)(b) I A< 0 if X(b) = 0. (A2)

Fig. 8. Reconstruction by convolution backprojection from same data Having such a relatively simple expression for the right side of
n*. Note the increased noise and cupping artifact inside the skull. (Al) [which is derived from (2.6)], one could think of many
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n-(b) is our estimate for the emission count in box b we should,
in order to be consistent, estimate the emission density X(b)
by ni(b) (because this is the maximum likelihood estimate if
indeed n(b) is the emission count in box b); this is the maxi-
mization step. This gives the iterative scheme

(A3)

Fig. 10. Reconstruction by (2.13) where p(b, d) = 1/r X angle of view
from the center of b into tube d. Almost the same as Fig. 5.

Fig. 11. Line plot of Fig. 10 along y = 0 (the x-axis). Almost the same
as Fig. 7.

iterative schemes that would converge to a maximum of L A
particularly appealing one is (2.13) because it is a special case
of the EM algorithm (E stands for expectation, M for maximi-
zation). Here is the rationale behind the EM algorithm, tail-
ored to our example. Had we believed that AoId is the true A,
we would estimate the number of annihilations in box b to be
n(b) = E[n(b) AXld , n*]; this is the expectation step. But, if

As we have seen from (2.10), the right side of (A3) is the right
side of (2.13) and so (2.13) is an EM algorithm. Being an EM
algorithm, it follows from [5, Theorem 1] that if in (2.13)

°ld + Anew, then l(AOd) < l(AnX ); that is, the algorithm
is monotone (the likelihood increases in each step of (2.13),
unless AId = AX'e in which case we have converged). To
establish the convergence of (2.13) to a point of maximum
we rely on 1) the monotonicity of the algorithm and 2) if
A is a point of convergence of (2.13) it is a point of maximum
(to be proved below). Since the algorithmic map (2.13) is con-
tinuous, it follows from convergence [9, Theorem A, p. 91]
that indeed the algorithm (2.13) converges to a point of maxi-
mum likelihood. (The above argument is similar to the one
used in Vardi [IO] in another application of the EM algorithm.)
To prove 2), we first note that if A is a point of convergence
then necessarily it satisfies the first KT condition (Al). To see
that it also satisfies the second condition (A2), assume (by
negation) that there exists a b such that X(b) = 0 but

l(A) = 1 D n*(d)p(b,d) >0
ax(b)j E B .3X(b) |i d-l E Xk(b)p(b, d)

b'-lI

Now, since A(k) - A we get (because of the continuity of
al/aX) that there exists an e > 0 and ko such that for all k > ko

D n*(d)p(b,d) >1 + e

d-1E X(k)(b')p(b',d)
b'-lI

and hence, from (2.13),
A'(m+ko) '>(k) +e)m -° as (m - -)

which is a contradiction to (2.16). Note that in the last asser-

tion we assumed X(kO)(b) > 0. If this is not the case, so that
$,(ko)(b) = 0, then necessarily b is such that n*(d)p(b, d)= 0
for d = 1, * * , D, and we get

al(A) I <0
aX(b) I £

as desired.
Remark: If A = Aold is a solution of (1.14) with n* substi-

tuted for Ae, i.e.,

(A4)n*(d) = , k (b)p(b,d) d= 1, * *D*
b-l

then old is a stationary point of (2.13). Nevertheless, because
of low count rate variations, (A4) would typically be incon-
sistent, and hence attempting to solve (A4) would be a futile
way of deriving a stationary point of (2.13).
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APPENDIX II

The following program reconstructs B = A from PNP = n*
from (2.13) iteratively. The array PH keeps the denominator
in (2.13) and F is used to hold the numerator before updating
B. The constants p(b, d) are calculated as W when needed on

the fly. The summation over boxes b is by row or column
depending on tube direction being lesser or greater than 450.
The calculation of p(b, d) = W is required in calculating the
denominator PH and again in calculating the numerator sum to
update B = A in each iteration. The p(b, d) have been chosen
so that W is calculable by a few addition and maximization
operations as described in Section III. The input count data
are read in from file 10, the input A° is read in from file 9, and
the reconstruction is written out onto file 11.

C POSITRON EISSION DECO BITSH E- ALGORrITM
C I-(I1.I2) INDEXES 'IE ITH BOX WITH CENTER AT -1+t2I-1)/(2R-1) I-I1,12
C B I)-LAABDAtI)rF(I)-sUPnI . ,K)C(I,) P(E))

C E-(EK,K2) INDEXES TiE ETH TOBE WITH CENTERS AT (K-1)2P1/WD
C PUP(S)-NO. COUNTS IN TURE Ks PH(K)-SUR(93)C(J,E))
C IC-TOTAL NO. OF COUITS,ND-NO.DETECTORS,.5ND(ND-1)-N0. TUBES
C T1S.T2K- DISTANCES RO9 ). TO EDGES OF TUBE S. -RD<T2K<TIK<RD
C NVWIDTH OF THE INTERSECTION OF TIC KTH TUNE AND THE ITN SPHERE
C RD-RAD. OF DETECTOR CIRCLE DIV. ST BAD. Or PATIENT -I3CLEC.)

PARSUWETER (NB-12N.ND-12e.WC-0 .ND2-2 DNI?ERw1H3
DIBENSION N(MA.MN).FCN R),PIP(MD,ND).PM(WD.ND)
DININSIro X(NB),ST(ND2),Ct(ND2)
INT!GER ),INI(N )

C DEFINE :OSTAINTS
RIO. 1./MR
CC-1 ./2. *'RHON)
RDS ORT(2.)
PI-3A.14 159265
P12-2.*PI
RUB?-.S*INA
RNDPI2-xND/PI2
P121 D.5I2/Wn'
DO 11 I-1U,1

10 X(7-.t-5 2t
DO 11 K-1,N52
TH-. S*(K-I.)'PI'UID
SSM( )-SINI(TV)

11 CT(S)-COT(T)
DO 12 IS-,¶R
R2*iMR(I.-Xt)XM())
INU(S )-1-A2)-.O-UI,.5
INNIl 1)-S Y (ISUCI I).')

ITNT( 1) S
I ),")

12 CO'I7N"IE
TIf' -.'' .1

N2t1 :,3

C READ TI) ROW *OPP DATN
DO 1 1 K2-1.,%

1 1 coONTINU
"IT2 1,,,2,(POPS 1 ,.K2),K?1,'D)

1322 FOR4 AT(1.0rt2. 1)
CCCCCCCCc:

C IIITIALrZE P. TO IU"'T FILE
DO 229 JRA1,2
DO '31 124R51.,-I
IREA,3 9,1 '.9) C(ItIt,2),71-1,11)
IF(12.E2.N1t.09.12. '2tN2)'91T 1 ' ,A,(R(I'.12).I1-1,NR)

231 CON IHNO£
229 CO2BI%NU
1 )J9 FORI AT( 1 '}FI2 . 4)
CCCCCCCCCw CCv^CZCCCCCCCCCCCCC_CCCCC:CCCCC^CCCC^CCCCCCw¢CC'^CCCC

DO i1 IT'r9,1MTTrp
C UPDATE 9H(M-)SU9(91)1C(J,C))

DO 301 KI-1.1D-1
DO 302 K2-E1+1i,D
PACE 1 ,2)-0.

C CK-COS(EHK),SE-SIN(THK).TRK-(ALF+BET)/2 WHERE X'CE.Y*SK-TIE,T2E DEFINE
C THE EDCE LINE OF TUBE K WITH CENTERS AT RDCOSLrF.DSINALr AT
C (RDCOSRET,RDSIMBET), U<0ALF(RET<2 PI.

CK-ZTCKI+K2-1)
SK-S T (5 1+42-1)
TiS5RD*CT(K2-K1)
T29lRD-CT(E2-Xis2)
DK:'K*2./NN

C SKEP Ir (l(I1),X(I2)) TOO FAR FRoN TUBE X
IFC3S(CIC).LT.A&S(IEA))IO TO 305

C MOW 3BM THROUCH ROlES AT ROWS
D1EsE1'2. IIB
DO 303 ;2-1,N1R
IA=M(1.+(T2K-RH2-X(T2)*SX)/CK)C'N191.)*.S
I-( (1.+(T1K+RHN3-(T2)'SEC)/CK)'NR11.)*.5
}11-.M0SICINII(2) 1.U"iMSGCIAIN))
I12=IRXO(TNl(I2) NlAl3(CtA,IB))
TIPIXI 11 )*CK+( I 2)'SK-DK*RtO
TIN.TIP-2.'RHO
iFEIi.cT.Tr2)3 TO 333
DO 304 I1I-11.112
TI P, TIP.DEX
TIN=TIN+D
HRANAXI(TIP-T2K,O.),ANiHA'(vIR-T'E.2.)-ANAX1CTSP-T1R,p.)
WNI-AIAX(TII-T2.n'.)
P;CEtKI2)-PNCRtI, K2) RIIB( I t,12)

C PINr*T 1003,1tK,2,I1,12,1t,112,P!'(KEI.K2),,R(I1, 12),CK,SK
C E,T I .T2K.TIP,TTI
C15U.3 FOINAT(61H,9Fli.4)
304 COMlrIMU1E
303 COTrINUE

co ro 3.2
30S CONTINUE
C NoN RUM THRONGH ROY7GS RY 2OLS

DK3SK*2./Nq
DO IP6 I1-1,N1P
IA-C( CI..(T2E-R12-St(' 1).CCK)j'S E) .,4.).%
IN-((1. tSC1 S.BNtil-SCII)'CS )/S1C)-N'e t.)'.l
121- MAICIIl(I1) .1*RIM(IR.IRJ))
122-NIfi(THX(11) ,IAXJ(TA,IP))
TIP-X(I1)'CX+'(I 21)-SK-DK+RHO
TIN'TIP-2.'RHO
.IFC12i.CT.122)GT) T'I 3't
DO 3j7 12-121,122
TIP.TIP+D%

TIN.TSN.Dk
YWASAX1(TIP-T2X.u.)*AN1Xi(TIN-TG ,%..)-A9AC1(TIP-Ti1K..)
N-H-ANMAXI (TIft-T2K,' .)
PN(( 1,K2)uPH(K1,2)+N*CI.1,12)

C PRItT 1.'U4,S1.K2 I,1I2,721,122,PHCKi.,2).H,R(I1,12).CS,SK
C &,TIC ,T2K, IP,TIN
1^34 FOR4AT(64,F;..4 Q)
3.17 CON' INUE
336cEpl rINIIE
3E2 CONrINUE3 <> co11r T1up
C D0 321 X2-1,ID
C 321 P3IIT 1005,(PI(E,I2),E1-1,ND)
C 1juS F3RMAT(tOFlOI.)
C Now SEr PH(E)-U(.,S)/PHE()

DO 331 EI-1,D-1
DO 332 K2-K1+1,MD
IF(PH(K1,K2).GT.TINT)GO TO 334

C PRIrT 333,PH(K1,K2),K1,KC2
333 PORKAT(F10.4,2110,' TIWTY)

PHA E, 2)-0.
Go rO 332

334 PHAKI.K2)-PNP(CI ,K2)/(PH(KE.E2)/CC)
332 CONrINUE
331 coNrINUE
C DO 322 E2-1,11
C 322 PRINT 10OS,P.1CHKI1,E2),E11-,*D)
C FIMD PI( )-SNN(C(.KR*C(IK,)/PHCE))

DO 4001 12-1,1NB
DO 5002 II-IN(C21E2),IM12)

4002 FC11,12)-O.
4501 CONTINUE

DO 501 KI-1,10-1
DO A02 K2-R1+i,ND

C CK-COS(THE),SE-SIS(THK).THEt(ALF,BET)/2 BURRSE XSCE*TS-aT1E,T2E DEFINE
C THE EDCG LINE OF TUBS X WITH CENTENS AT NDCOSRLF,NDSINALF 6 AT
C (RDCOSNET,NDSINBET). *<-ALfl<ET<2 Pr.

CK ST(E 1.12-1)
SE-UTNS1 *E+12-1)
TIE RD*CT(C2-K1)
T2E-RD-CT(K2-K 1+2)
DK:5X*2. /NN

C SKIP IF (X(I1).X(12)) TOO FrA PROW TURN
IF(CAS(CE).LT.ANS(SE))cO TO 455

C NON RUN THROUGC NOSES BY ROBS
DK-ZK'2./NB

003 12-1,NR
IA-C CI..CTUS-RN-X 1CalI2)'EE[)/CEt) 'B+1 .)*.5
IN-C ( 1..CT11S*BHI-5C12)'SRE)/CT)'MRb.I)-.5
I11-NSA OC INNC(2) 1 INo(IR.IB1))
I12NIlPOI(INSI2) .MIAStOIA,IN))
TIP-X(I11 )*CKS+1 I2)1E5-DK+HO
TIBTIP-2.*RNO
IF(r11.GT.I12)CG TO 533
DO 404 I1-I11,112
TIP-TITPDK
TIN- TIN+DE
WIAIAX1(TIP-T2E.I.)SAN&1A(TIN-TS1E ..)-ANAIIS(TP-TIK,O.)
w-W-A1AI1CTIN-T2K*..)
FETl ,I2)9F(I1I,I2)+vNPHl1R1E2)
PRINT 1193,KEI,K2,I1,12,I1.,112,PPHl(1l2),V,H(.,1T2).CE,SE

: t,T1X ,T2.,TIP,TTII
*C4 CONrINUE
4r3 COTINlUE

CO rO 402
405 CONTINUE
C NOB THNONCI NOES COIS

DEw5K2.*/NB
DO 506 I1-10.1
IA-C ( 1..NT 2 E- NU:I-SI )*CE W)f5)'N 1.)*.S

IN-Ct CI. .(T1XE.RU -RCI1)'C SC)/SIS)NNM.)-.A
I22*INR0(IN(CI1) *I.NAO(C 1S)M
122-NINDCIM]XIO,SII).AOCIB.N))
TIP-E(I1I)*CE+(I2 1)R*-D.1BR0
TIN-TIP-2.*RNO
IF(121.GT.I22)G2 TO 536
DO 407 I2-121,122
TIP-TIP.DK
TIlUTIU+DK
NPANREI(TIP-T2E. O.)+AAIIN * TIS-TIE#0D )-ABWAI(TEP-TIK.D.)
BW -BNBEIC1 TINl-T25X .2.)

F(I1 .12)-P(11,12 ).NPN(Et,lt2)
C PRINT 1004S1E,12II.1,2.121,T22.RP(EI.52),sNlCI1.12),CK,SE
C L.T1( ,T2K,TIP,TIH
407 CONTINUE

506 coNTrINE
502 CONTINUE

CONTI

C NOB SEr P
SUR.O.

DO 031 I2=NN,I,-i
DO 432 I1 MIINI2),1912>)
3(11 .12)-RCII1,2)'F(X11,2)/CC
SNN.rSU1NNCI1I.2)

432 CONTINUE
IF(ETEN.NE.NS.NA.ITER.gE.NITTI)GO TO 431
BITECIE11,1)039) NRCI',52),I1-1,MN)
IFCr 2.E0.N1.O 2.E 2.EEA.92)PRINT V"N.CNCI.1 2).I1-1.NN)

431 CONTINUE
PIT 1101,ITEN,SUN

1101 PORINATCII,F16.S)
501 CONTINUE

STOP

END
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Collimator Effects in High Resolution X-Ray
Computed Tomography

JACQUES G. VERLY

Abstract-This paper complements other studies in the field of image
restoration in X-ray computed tomography by including the source col-
limator among the sources of image degradation. The overall blur is
describable in terms of a space variant 2-D impulse response or point
spread function, which is initially calculated for an arbitrary scanning
eccentricity, a unifonn source intensity distribution, a uniform detector
sensitivity, and arbitrary collimator aperture and position, and subse-
quently derived for tnore complicated sources and detectors. Numerous
3-D hidden-line displays are used throughout to illustrate the compli-
cated 2-D functions emerging from the analysis.

INTRODUCTION

THE PROBLEM of image restoration naturally arises in
X-ray computed tomography because the scans recorded

at various angular positions are not really sets of pure line
integrals, but rather collections of integrals over strips in the
isolated slice being imaged. Describing the blur which results
from using those data as ingredients in some version of the
Radon inversion formula [1] has been the object of a number
of recent studies [2] -[71, but actual examples of restoration,
even on synthetic data, are not yet available. The most elabo-
rate of these studies take into account various sources of image

Manuscript received April 5, 1982; revised July 7, 1982. This work
was begun when the author was with the Department of Electrical Engi-
neering, Stanford University, Stanford, CA, and was completed at MIT
Lincoln Laboratory with the support of the U.S. Department of the Air
Force.
The author is with the Lincoln Laboratory, Massachusetts Institute

of Technology, Lexington, MA 02173.

degradation such as the nonlinearity which characterizes X-ray
attenuation measurements, the spatial variation in X-ray in-
tensity across the source, the structure of the detector, and
the scanning eccentricity. However, they all implicitly assume
that the collimators usually inserted near the source and detec-
tor have no influence whatsoever on the imaging process. This
is not generally true in practice because the set of X-rays reach-
ing the detector is often "pinched" by the source collimator in
order to increase the dose effectiveness. Very often, however,
the detector collimator is just wide enough to prevent any
additional pinching of the imaging beam. As a result the atten-
tion will here be focused on geometries in which a single
collimator effectively disturbs the imaging process (Fig. 1).
In spite of their abilities to deal with a wide variety of image

degradations, this and other related studies [2] -[7] still appear
quite ideal since they all assume that the X-ray photon trajec-
tories are strictly confined to the plane of the slice of interest.
This is not at all the case in practice and the problem of high
resolution tomographic imaging really calls for a true 3-D treat-
ment, as explained in [8]. This recent study, however, has
shown that many of the 2-D results could be easily extended
to 3-D: in fact, if the theory in [8] is reformulated to take
into account the presence of a 2-D collimator, it rapidly be-
comes clear that the results of the simplified 2-D situation
discussed in this paper are also immediately applicable to its
direct 3-D counterpart. Since much can be learned and derived
from an ideal 2-D analysis, and since the related notations and
figures are much simpler, the rest of the paper will focus exclu-
sively on the planar geometry described above.
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