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A method has been developed for solving Fredholm's integral equations of the first kind for the case of positive kernel function 
and right hand side. The iterative solution seems to be satisfactorily stable against perturbations of a statistical nature. This feature 
and the basic principle of the iteration itself come from including in the algorithm the so called acceptance function related to the 
kernel of the integral operator. The main characteristic of the method - to iterate via smooth functions becomes advantageous 
compared to standard methods in those cases of integral equations with smooth solutions for which both the kernel function and the 
right hand side function are strongly nonsmooth, which is often the case for the solution of the smearing problems of the high energy 
physics experiments. 

1. Unfolding problems and integral equations 

Unfold ing  problems arise in measur ing the density 
u(x) of some quant i ty  x when only the distorted 
(smeared) d is t r ibut ion of x can be observed, x may be 
one dimensional  or higher d imensional  and  x may be a 
r a n d o m  variable or a certain physical quant i ty  which 
can be described by a densi ty funct ion u(x). Since the 
principles of the problems which are considered here are 
always the same independent ly  of the d imension of x, in 
the following, for convenience,  x is always considered 
one dimensional  and  taking values between 0 and 1. 

A common  unfolding problem is the following. Let x 
be a r andom variable with probabi l i ty  density funct ion 
u(x). In a great n u m b e r  of the cases a real measurement  
of x does not  yield an ideal sample of the x-values from 
the density u(x) but  one has distorted values y with a 
densi ty funct ion v(y)  where the dis tor t ion is caused by 
some measurement  noise w which is independen t  of x 
and  which has the probabi l i ty  density p(w). This situa- 
t ion leads to the well-known prob lem of the solution of 
the convolut ion integral  equat ion of the first kind. 

Very often, however, the independen t  noise model is 
not  general enough such that  more complicated equa- 
t ions than the convolut ion one have to be solved. First  
of all the measurement  dis t r ibut ions can depend on x 
such that  p becomes a funct ion of two variables and  the 
equat ion  relat ing the dis t r ibut ions u, v and  8ip gener- 
alises to the Fredho lm 's  integral equat ion of the first 
kind:  

e ( y ) = f o ' P ( x , y ) u ( x ) d x ,  0~<y~< 1 (1)  
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where 

p(x,y)>~O for 0 ~<x,y  ~< 1. 

Secondly, it can happen  that  no y-value is measured 
even if an x-value occurred. This fact may be expressed 
by the funct ion 

A ( x ) = f o ' P ( x , y ) d y ,  0~<x~< 1 (2)  

for this, in this case, the inequali ty 

0 ~ A ( x ) ~  1, O ~ x ~  1 (3) 

holds. The funct ion A is called the acceptance funct ion 
of the experimental  device represented in our case by 
p (x ,  y).  Suppose that  

A(x) < 1 (4 )  

for all the x in some interval in [0,1]. It then follows 
from (1) to (4) that  

= f o ' A ( ~ l u ( x l d x  < 1 (51 

if it is assumed that  the order  of integrat ion in the 
double  integral  in (5) can be changed. The occurrence of 
this inequali ty also causes problems in practice. 

Two more problems can be considered. The densi ty 
v can only be measured with some error and often the 
funct ion p is not  exactly known. For  instance, in high 
energy physics, either p can only be est imated by Monte  
Car lo  s imulat ion or due to computer  cost, for an as- 
sumed u 0 the corresponding v 0 can be est imated only. 
Ano the r  well-known problem comes from the fact that  
the problem of solving (1) for given p and  v is an 
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ill-posed mathematical problem. That means, for small 
changes in v large changes in u may be caused. Many 
different proposals to solve eq. (1) have been made 
ranging from series solutions over least square solutions 
to regularization. Since there is no unique method which 
solves the problem in general, sometimes different 
methods may have to be tried. This implies that it is 
important to have different methods available. 

In this paper an iterative method is proposed whose 
convergence properties have not yet been proved 
mathematically. However, numerous cases of a limited 
class of eqs. (1) with measurement noise on v and p 
have shown that good results may be obtained in prac- 
tice. 

In sect. 2 the class of eqs. (1) is given to which the 
iterative method is applied together with the iteration 
scheme. In sect. 3 numerical examples ar e presented. 

2. The method of convergent weights 

In order to construct an iteration for solving eq• (1) 
the following assumptions are made to define the class 
of equations to which the iteration is applied. 
(a) The kernel function p(x,y) is non-negative and 

continuous on [0, 1] × [0, 1] except possibly isolated 
integrable singularities. 

(b) The acceptance function A(x) is positive on [0,1] 

O<A(x)=fo 'P(x ,y ldy  , O~<x~<l .  (6) 

(c) ig(y)=folp(x,y) f (x)dx>O, 0~<y~< 1 (7) 

for every integrable positive function f(x). 
(d) For a given v = v(y) which is assumed to be posi- 

tive and continuous on [0,1] the integral equation 

fo' v ( y ) =  p(x ,y )u(x )dx ,  O~<y~ 1 (8) 

has a unique continuous solution u = u(x) for 0 ~< x 
~<1. 

(e) 

fol fo 'P(x,y)u(x)dxdy 

= fol folp( x, y )u( x )d ydx. (9) 

Before constructing the iterative scheme a conse- 
quence of the above assumptions will be discussed. 
Suppose one has a series of iterative approximations 
(utS)(x))~ of the exact solution u(x). Using Eq. (7) one 
can calculate vtJ)(y)  the iterative right hand side 

v~S)(y)=fo'P(x,y)u~J)(x)dx, O~<y~< 1. (10) 

Introducing 6~J)(x), the difference of u(x) and u(J)(x), 

the following equation can be found 

l l_ I t3( ) ; )  1 L p(x, y)8~l)(x)dx, 
r ' J ' ( y ) J  - = , 

0~<y~< 1 

where 

8(J)(x)=u(x)-u(J)(x)  and r~;'(y) - -  

(11) 

v</~(>,) 

Eq. (11) proves that constructing a convergent to the 
unity series (r~J))~ under the assumptions (c) and (d) 
one will have a convergent series of the corresponding 
(u~J))~ with the limit u ~ ) =  u(x) being the solution of 
eq. (8). 

Forming such an iteration at first we transform the 
original equation to one having a normalized kernel. It 
is easy to do via introducing the so called importance 
function 

z(x)  =A(x)u(x) .  (12) 

It then follows from (1), (2) and (6) that 

v ( y ) = f / q ( x , y ) z ( x ) d x ,  0~<y~< 1 (13) 

where 

q(x,y)  = p (x , y ) /A (x )  
and q(x, y) is normalized to the unity. Eq. (13) has the 
property of normalization 

folv(y)dY=fo' fo 'q(x,y)z(x)dxdy=folz(x)dx.  

(14) 

This normalization may have a regularization effect on 
the iterative solution, so eq. (14) is used as a motivation 
for requesting to satisfy eq. (14) by all the iterants. This 
requirement implies the following form of the itera- 
tional equation• Choosing a starting function u~°)(x) 
one can calculate r(°)(y) as 

v ~ ° ' ( y )  = v(y)/vt°)(y) ,  0 <~y ~ 1 
and zt°)(x) as 

z(°)(x)=A(x)u(°)(x),  O~<x<~ 1 
and then the further iterants z~J)(x) will be given by 

z ~s+ l ' ( x )  =f~r(J'(y)q(x, y)dy" z'S)(x), 
¢0  

o~x<. l ,  (15) 

where equations (7)-(13) were used and u(°)(x) was 
supposed to be arbitrary but satisfying assumptions 
(a)-(d). 

Eq. (15) has two characteristic features. All the 
z(S)(x) satisfy the normalization requested for the exact 
solution z(x) by eq. (14) and the definition of q(x, y) 
in (13) guarantees the convergence of z(J)(x) in the 
cases when rIJ)(y)~ 1. The reason for choosing the 
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name the Method of Convergent Weights (MCW) for 
this iteration was the central role of the convergence of 
the series (r(J))~ to unity. The ratio r (j) is called a 
weight because it guarantees as a weighting function the 
normalization (eq. (14)) until  the series of (Z(J))~ is not 
converged. 

The basic equation of the iteration can be trans- 
formed to 

u(J+l)(x) = fo lr(J)(y)q(x ,  y ) d y  • u(J)(x),  

0~<x~< 1, (16) 

which is equivalent to 

u ( J + ' ) ( x )  = [1 + ~ ( J ) ]  u ( J ) ( x ) ,  ( 1 7 )  

where 

~ ( ) , _  f ' v ( Y ) - - v ( J ' ( Y )  , . .  
• - ' o  v'~-~-y) q t x ' y ) a Y '  

One can see that the multiplicative operator ~(J) de- 
pends on its arguments via an integral of the relative 
error of the iterative right hand side 

Bu - -  g u  ( j )  

fo' ( ) f (  )d Bu ; Bf = p x, y x x. 

Eqs. (16) and (17) are equivalent in the case of exact 
values but in their numerical realization eq. (17) has 
advantages giving higher stability against rounding er- 
rors and those of the discretization of the integrals. 

3. Test cases 

Two test cases will be presented to demonstrate the 
convergence and the stability of the MCW. Both cases 
are created by analogy with real physical experiments. 

A = 1.2, B = {  1 forx  < 5 ,  
0.0023 for others, 

C k = 0.4, 0.3, 0.2 D k = 5, 5, 1, x k = 7, 9, 13 

1 for Ix - Y l  < 0.08x + 0.88, 
E =  10, F =  0 for others, 

and the right hand side vt(y ) is given by straightfor- 
ward integration (see fig. 1). 

We have chosen 50 equidistant coarse mesh-points 
for discretizing of functions of one variable. The 
pseudo-experimental errors of the RHS we obtained 
from the following expression: 

6 , = v t ( x , ) ( l + 6 ) , p ) ;  i = 1 , 2  . . . . .  50, (T.2) 

where O r are equally distributed random numbers from 
the interval [ -  1, 1] and p = 0.05. 

The possible errors of the kernel function we have 
modeled in the following manner:  

P,k =Pt(Xi ,Yk)(I  + (9,k/~) ; i ,  k =  1, 2 . . . . .  50, 

(T.3) 

wherep = max(0.5, (1 + p ~ ) ) .  

The discretization of eq. (T.1) has been carried out 
using Simpson's quadrature with 20 fine mesh-intervals 
in each coarse one. 

The resulting quadratic system of linear equations 
has been solved by using the MCW and the standard 
Seidel's method, the latter used for comparison• 

For the purpose of illustrating the application of the 
MCW we tested the convergence in the ideal case, i.e. 
with errorless pt(x, y) and vt(y ) but with the errors of 
the discretization (fig. 1). We started with a trial func- 
tion u (°) = constant. The relative error of the iterant was 
found to converge to within +0.5% in 7 iterations. The 

3.1. Case 1 

In this test case we demonstrate the solution of the 
one-dimensional smearing problem by the example of a 
purified numerical model of a real experimental prob- 
lem [1]. The problems arising from the finite experimen- 
tal resolution and the imperfect acceptance of a real 
experiment we model by a Fredholm's integral equation 
of the first kind: 

vt(Y ) = L b p t ( x , y ) u t ( x ) d x ,  (T . I )  

where a = 4, b = 24, ut(x ) = 1600/x 2, 

p t ( x , y ) =  [ A - B ( 5 - x )  2 

k-, expI- k(x- 

xexp(-e(x -y)2}F, 

10 z 

U(U 

10 t 

10" 

Fig. 

. . . . . .  ' ~ ' ' X ( 9 )  8 10 14 1B 22 

]. Funct ions ut(x ) and v t ( y  ) fo r  Case 1. 
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'~ - t r = ~ ' ,  P=Pt 

I0 ~ ~~ b'=tr, p=p 

L , , I 1'2_ ' ' J I , 2~4. X 4 8 16 20 

Fig. 2. Fluctuations in the iterated solution in the case of +5% 
error in the RHS and + 5-50% error in the kernel function. 

stabili ty of the i terat ion has been proved in 1000 itera- 
t ion steps in which case the i terant  remained within the 
+ 0.5% error corridor. 

Model ing the experimental  errors as formulated 
above we obta ined the following results. In the case of t5 
and  Pt the result from 1 i teration is shown in fig. 2 by a 
full line, while the case of t5 and /5 is i l lustrated by 
triangles. The parallel computa t ion  by the Seidel's itera- 
t ion leads to a solution with f luctuations in a range of 
_ 100% for the case of 15 and/5.  

The stability of the MCW can be improved by two 
t ransformat ions  of the basic equations bo th  having 
smoothing character.  At first one can t ransform the 
discretized system of l inear equat ions to the normalized 
one mult iplying by the t ransposed matr ix of the system. 
As a second step one can apply a proper  power function 

o, 

10 ~ a z~ 

A 

z~Z~ ~ o  

! , [ [ . . . .  I , ,  X 
4 8  12. t6 20 2/+ 

Fig. 3. Changes in the stability of the iterated solution applying 
smoothing transformations to the kernel function. 

(with an exponent  0 < x < 1) for subst i tut ing r O ) ( y )  by 
[ r ( J ) (y) ]  ~ in eq. (16). Having slowed down the i terat ion 
one has to choose a more realistic trial function than 
u (°) = const. 

The change in the stability of the MCW has been 
investigated in 7 i terat ions choosing 

u ( ° ) ( x )  = l l 0 0 / x  2 [1 ÷ 2 s i n ( 0 . 2 x -  0.8)1, 

which differs from u t ( x  ) in a range of _+20 100%. The 
smoothing propert ies of the above t ransformat ions  for 

= ½ are shown in fig. 3. 

3.2. Case 2 

For  the second test case we have chosen a typical 
illposed problem. Our test case is based on that  of the 
monography  of T ikhonov and Arsenin  [2]. 

By analogy with the unfolding procedure of radia- 
t ion spectra, the following mathemat ical  exper iment  can 
be constructed.  Suppose that  the physical process under  
discussion led to solving the following integral equation:  

v t ( y  ) =Lhp,(x,y)ut(x)dx, (T.4)  

w h e r e a = 0 ,  b =  10, 

u t ( x ) = [ 1 - e x p { - A ( b - x ) 2 ) ] + B s i n ( b ' X  ) 

2 

+ E Ck e x p { - - D k ( X - -  Xk) 2) 
k - 1  

A = 2  B = 0 . 5  

C k = 6, 6 D k = 3, 4 x k = 3, 7. 

I p t ( x , y )  = 1 - x  y ( y - x ) ; 7 ( z ) =  0 f o r o t h e r s  

and  v t (y )  is given by s traightforward integrat ion (see 
fig. 4). 

The discretization has been provided as in Case 1. 

10 

2~ 

0 2 4 6 8 10 X(Y)  

Fig. 4. Functions ut(x ) and vt(y ) for Case 2. 
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Fig. 5. Comparison of fluctuations excited by _+ 5% error of the RHS for large numbers of iterations. 
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The errors of the RHS have been  modeled by the 
formula  given in [2]: 

~5 ,=v t (y , )  1 + O ~  b ; ~ - a 3  p , i = 1 , 2  . . . . .  50, 

where O i are r a n d o m  numbers  from the interval [ -  1, 1] 
and  p = 0.05 

Due to the integral  in eq. (16) the convergence of the 
M C W  is extremely slow for this test case which give 
good possibilities for investigating the numerical  stabil- 
ity of the i teration. For  the ideal case ( p  = 0) the result 
of 4000 steps is presented in fig. 5 in compar ison with 
the exact solution. C h o o s i n g p  = 0.05 one can see (fig. 5) 
tha t  the characterist ic  f luctuat ions of u (k) appear  late 
enough to allow real peaks to be dist inguished from 
ones arising due to errors of the RHS. 

4 .  C o n c l u s i o n s  

• The use of the acceptance and the impor tance  func- 
t ions related to the kernel funct ion of F redho lm ' s  in- 
tegral equat ions of the first k ind has led to the construc- 
t ion of an iterative procedure  which seems to be satis- 
factorily stable against  the errors of the RHS and  the 
kernel  function.  The  convergence is control led by the 

integral  of the relative error of the i terated RHS that  
restricts the i terat ion to be recommended  for solving 
integral  equat ions with nonsmoo th  RHS. 

The effect of the t ransformat ion  to the normal  equa- 
t ion as well as tha t  of the in t roduct ion  of a power 
funct ion of the RHS '  ratio [in eq. (16)] is to reduce the 
instabi l i ty  of the M C W  due to the errors in the RHS 
and  the kernel  function.  Appl icat ion of an exponent  in 
the power funct ion far f rom the uni ty makes the conver- 
gence slow down, so in such a case one has to choose a 
more  realistic trial funct ion than u (°) = const. 

It is hoped that  improvements  in the direct ion of 
regularizat ion of the basic equat ion will permit  the 
me thod  to be applied into a wide range of the ill-posed 
problems.  

The author  would like to thank  Drs. B. Schorr  
(CERN)  and  G. Emelyanenko ( J INR)  for helpful  dis- 
cussions. 
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