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ABSTRACT

In this paper, we investigate an iterative method which has been proposed
[1] for the numerical solution of a special class of integral equations of the
first kind, where one of the essential assumptions is the positivity of the
kernel and the given right-hand side. Integral equations of this special type
occur in experimental physics, astronomy, medical tomography and other fields
where density functions cannot be measured directly, but are reiated to obser-
vable functions wvia integral equations. In order to take into account the
non-negativity of density functions, the proposed iterative scheme was defined
in such a way that only non-negative solutions can be approximated. The first
part of the paper presents a motivation for the iterative method and discusses
its convergence. In particular, it is shown that there is a connection between
the iterative scheme and a certain concave functional associated with integral
equations of this type. This functional can be interpreted as a generalization
of the log-likelihood function of a model from emission tomography. The second
part of the paper investigates the convergence properties of the discrete
analogue of the iterative method associated with the discretized equation.
Sufficient conditions for local convergence are given; and it is shown that, in

general, convergence is very slow. Two numerical examples are presented.



t. INTRCGDUCTION

In experimental physics, astronomy, medical tomography, and other fields,
density functions (of current, stars, radiation, etc.) are often measured by
devices which cannot measure the unknown density f directly. In most cases the
function g, which is read out from the device, is related to the unknown density
f via an integral equation of the first kind. This is often a linear integral
equation, which may always be reduced to the form

1
[ k(x,y)E(y) dy = a(x), x e [0,1] , (1.1)
0

with given k and g, and unknown f. In certain applications (for instance in
high-energy physics or in tomography) x and y can have more than one dimension,
and the functions k and f can have singularities. Physicists often call the
kernel k in (1.1) the apparatus function, while in engineering and tomography
the function k is called the point response function. It is well known that the
equation (1.1) is, in general, an ill-posed problem. This means that small
changes in g may cause large changes in f.

There exists an extensive literature on the solution of general linear
integral equations of the first kind. The case of density measurement, however,
is special insofar as the functions f, g, and k in (1.1) are non-negative. An
attempt to take this property into account was made by Kondor [1], who published
an iterative method for the solution of (1.1). Kondor gave a purely formal des-
cription of the iterative method and presented a few examples to illustrate how
the method works. A discrete version of this iterative method had already been
used by Shepp and Vardi [2]. However, this was not mentioned in Kondor‘s paper.
Shepp and Vardi used the iterative scheme in order to solve a constrained maxi-
mization problem, which they obtained from the maximum likelihood estimation of
finitely many unknown parameters of Poisson-distributed random variables. The
unknown parameters were discretized values of an unknown emission density which
was the solution of a two-dimensional integral equation of the form (1.1). The
underlying physical problem arises in emission tomography, where counts observed
by a detector can be used to approximate the right-hand side of equation (1.1).
Shepp and Vardi identified the (discrete) iterative method as a special case of
a general class of algorithms which had been introduced and studied by Dempster,
Laird and Rubin [3] when they investigated maximum likelihood estimators from
incomplete data. Neither Kondor nor Shepp and Vardi studied the convergence of
the iterative method. However, Shepp and Vardi provided a motivation for the
(discrete) iterative scheme by showing that, in the case of convergence, the



limiting point maximizes the log-likelihood function which belongs to the pro-
blem. In order to show this, they refer to the Kuhn-Tucker theorem of concave
programming and to results from Dempster et al. [3].

In this paper, we study the convergence properties of the iterative method
in both the continuous and the discrete case. In section 2 we formulate the
continuous iterative method as given by Kondor [1]. Then, in section 3, using
ideas from Shepp and Vardi and from Dempster et al. (which they applied to the
case of finitely many unknown parameters), we give a new motivation for the
(continuous) iterative method. Convergence properties are investigated in
sections 4 to 6. Finélly, in section 7, some numerical tests are presented in
order to illustrate how the method works.

2.  IHE ITERATIVE METHOD

In our own notation, the essential assumptions under which Xondor presented
the iterative method are the following.

(a) The kernel k is non-negative and continuous on [0,1] »x [0,1] except possibly
at isolated integrable singularities and discontinuities.

{b) For given positive g € C[0,1] the equation {1.1) has a positive solution
f* e c[0,1].

For the theoretical treatment, in order to avoid unnecessary complications,
we generally assume that:

{a) k € C({0,1]2) and positive,
(B) g € C([0,1]) and positive.

The requirements for £* are always explicitly given in the following.
Occasionally, for instance, we shall also admit that equation (1.1) has a
solution £* e C{0,1] which takes arbitrary values on [0,1]. The investigations
which follow show that the general assumptions («) and (B) can be weakened.
However, in this paper, we do not aim at more generality.

The iterative method is then defined by

£, =G}, nen, . (2.1)
where
G(E) (1) = £NTEN(Y)
1 1
Ty = gy ] TEEEY ax P = [ kxnIED) Ay,

] 0
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aly) := | k(x,y) dx , y = [0,1],
0

£.£, € K= {h € c[0,11\{0} : h(x) 2 0 for all x e [0,11} .

Obviously we have G : X » X. A function from X can also vahnish on sub-intervals
of [0,1].
Trivially, a solution f* € X of (1.1) is also a function from the set

Bi={f X : T(E)(y) <1, vy e [0,1] . equality holds for y with £(y) > O} .

The set T corresponds to the Kuhn-Tucker conditions for the discrete case in
{2], p. 119. It is easily shown that, for Y, € [0,1] and f = G with f(yo) =0
and T(f)(yn) ¢ 1, there exists [a,b] c [0,1], a < b, ¥, € fa,b], such that f
vanishes on [a,b].

For £ € T the fixed point equation

f = G(£) (2.2}

holds. Later, we shall also consider discrete versions of equations (1.1) and
(2.1).

Kondor's [1] justification for using this iterative method seems to be
essentially the'success which he claims to have had in practical applications.
In the following section we present a motivation for the method based on opti-
mization principles, making use, to some extent, of ideas of Shepp and Vardi {2]

and Dempster et al. [3].

3. NEW MOTIVATION FOR THE ITERATIVE METHOD

Later, in section 4, theorem 8, we shall show that the limiting function of
the iterative method maximizes a certain constrained concave functional. In
order to motivate the choice of the functional we use ideas which Shepp and
vardi [2] applied to a discrete model of emission tomography. In their model,
photons are emitted from boxes and detected, with some probability, by a set of
detectors. It is assumed that the photons are emitted according to a Poisson
distribution with unknown mean value fj for box j. The mean values gi of the
counts observed by the detectors are supposed to be related to the values fj via

the system of equations



9; =Zkijfj '
J

where the kij are known transition probabilities. The unknown values fj are
finally taken to be those values which maximize the log-likelihood function
belonging to the observed counts in the different detectors.

In our case we may proceed as follows. Let

0 = x <(x < Cxo_gOx =1
We set
1
9; = 9(x;) = [ k(x;,y)E(y) dy , i = 1(1)n, (3.1)
0
n 1
ry = Z g; = Z I k(x,,y)I(y) dy . (3.2)
i=1 i=1 10

The relation (3.1), and hence (3.2), is a necessary condition for f if f is a
solution of the integral equation (1.1). In the following, we will therefore
consider (3.2) as a constraint on f.

Let Pi' i = 1(1)n, be n independent Poisson-distributed random variables
with mathematical expectation E(Pi} =gq..

i
i = 1(1)n, the corresponding likelihood function is given by

If P, is a realization of Pi'

n

P;
e= - |
ﬂn(f) : | ! exp ( gi) 9 Ipi- ' (3.3)
i=1

where 9; is given by the right-hand side of {(3.1). Taking the logarithm of
both sides of (3.3}, and leaving out unimportant constants, we obtain the
log-likelihood function

n 1

A E) == z: p; ln [f k(x,y)£(y} dy] . (3.4)
i=1 0

Maximizing An for all f ¢ X which satisfy the constraint (3.2) yields a maximum
likelihood estimate of f.



The pi in (3.4) are estimates of the values gi, i = 1(1)n. We may therefore
replace P; in (3.4) by g, - AS n + » we may replace the sums in (3.2} and (3.4)
by integrals to obtain formally

1 11 1

ro=J g(x) dx = | [ k(x,y)E(y) dy dx = [ a(y)£(y) &y , (3.5)
b 00 o
1 1
M) 1= AL L (£) := [ g(x) 1n U k(x,y)£(y) dy] dx . (3.6)
0 0

We may consider A as the continuous version of the log-likelihood function An in
(3.4). A is a functional for fixed k and g which is concave due to the concavity
of the logarithm. The equation (3.5) is a constraint on f € J. In order to
maximize (3.6) on Ji under this constraint, one might think of using methods of
concave programming as Shepp and Vardi did. They, of course, had a problem in-
volving finitely many variables. However, maximizing concave functionals under
equality and inequality constraints, by using methods of concave programming,
implies the known complications of the choice of proper function spaces. We
succeed in avoiding these difficulties by transferring results and ideas from
Dempster et al. [3] for finite dimensional problems to our case of infinite
dimensions. It turns out that all results connected with the maximization of
A(f) can be obtained essentially by using Jensen's inequality. We set

1

JCF 1= {ﬁ eX: [ aly)n(y) dy = F} )
o

Note that ¢ : }{ +J£r {see theorem 5) and‘@c:J@r because of (2.2). We prove the
following theorem:

Theorem 1:
Let £* €. Then, for all £ e;KT, the inequalities

1

ME) < AE*) < [ a(x) 1n g(x) dx
0

hold; 1i.e. every f* € © is a global sclution of the Maximization Problem MP:
maximize A{f) for f eJQr.

w



In particular, for a solution f£* ¢ X of (1.1) we have
1

A(£%) = [ g(x) 1n g(x) dx .
L

Proof: Let a and B be two non-negative integrable functions defined on
[0,1] with

1
[ alt) at =1 .
0

Then, as a consequence of Jensen's inequality (Roberts and Varberg [4], p. 193),

we have

1 1 ‘
1n (f a(t)B(t) dt] 2 [ a(t) 1n g(t) dat . (3.7

Using {(3.7) we obtain with F*(X) := I; kix,y)f*{y) dy

1 1
MEX) - ME) =-T ] 9(?) 1n LX) 40 2-T1n [% I atx) ?i?;) dx]'

F*(x)
0 0

1
2-11n [% [ an £ T(E*) (9) dy] 2-rInt1=0,
¢

due to T(f*)(y) < 1 for v € [0,1], and

1
1
T g(x) In g(x) ax - A(f) =-T [ 9(?) 1n [

Iy kEx,y)E(y) dy
g(x) J dx
o .
1

2-T1n [% [ at{y)£(y) dy] =-Tin1=0,
0

This completes the proof.

Remark: The proof shows that theorem 1 is also valid ifJ{,r is replaced by

the larger class

1
ﬁrw{fe£:IaWKW)wsr}
0
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and if we only require that f* e,}f,{. and T(f*){y) < 1 for vy € [0,1). This appar-
ently weaker requirement for f* is, however, equivalent to f£f* € 5. In particular,
f* is on the 'boundary’ ovaér, namely inJ{,r .

This statement may be proved as follows: assume that f* satisfies the
apparently weaker assumption. It then follows that

1 1
r=[aly ) (y)T(E*)(y) dy < [ aly)f*(y) dy < T,

i 0
which implies that f* € J{T Clearly, this inequality leads to the contradiction
I < T if we have T{f*)(yu} {1 for a ¥, € [C,1] with f*(yo) > 0. Hence, f* € .
In this case, however, the weaker assumption for f* is trivially satisfied.

in order to motivate the iterative method of section 2 we proceed as

follows. By analogy with Dempster et al. [3], we split the functional A into a
difference of two functionals Q and H with Q, H :;&Q+ x J,+ R. We denote by J{f
and J{,;. the subset of all positive functions from J;and J{,r, respectively. We

define, for ¢ eJC and f e Ji;

1 1
Q(v,£) := [ g(x) | in [k(x,y}e(y)IK(f;x,y) dy dx ,
0 1]
] 1 .
H(o,£) := | g(x) | In [K(¥;x,y)IK(f;x,y) dy dx ,

1] o
with
R(h;x,y) = —SZIIMY) 0y 0,13, neX,
Jo ki{x,z)h(z)dz
for which

1
] Kthix,y) dy = 1 ; (3.8)
0

i.e. K(h;x,.) is a density function for x € [0,1] and h & K.

It is easy to verify that

AB) = 0(,£) - H(v, ) for &,feX . (3.9)
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Iheorem 2:
For arbitrary ¢, £ ¢ X' the inequality

DH(f,w) := H(f,f) - H(y,£) 2 0
holds. This means that f maximizes H(.,f) on X'.

Proof: We apply the inequality (3.7) to obtain with (3.8):

1 1

- T gx) J 1n [%%%%ﬁff%] K(f;x,y) dy dx

It

DH(f.w)
0 0
1 1
2-Jax) 1n [I K(b;x,y) dYJ dx = 0 .
0 0

Theorem 3:

For arbitrary f e X' and ¢ € Jﬁ; the inequality

DQ(f.ﬁ) 1= Q(G(E),£) - Q(¥,£) 2 0

holds. This means that G(f) maximizes Q(.,f) on Jﬁ; . In particular, the

inequality

Q(f,£f) < Q(G(f),f) for f e Jﬁ;‘,

holds.

Proof: Applying the inequality (3.7) we obtain:

1 1

- fgx) [ an [—&111——J K(f;x,y) dy dx

Do(fiv) G (1)

! Q

0 8

1
- I (gy) swemn oy
0

] 1
z—rm[%Juwwwdd=o.
0

(3.10)

(3.11)



Repark: The iterative scheme (2.1) yields, at each iteration step, a function
fn+1 = G(fn) which maximizes the functional Q(.,fn) on Jﬁ;. The iterative method
can, therefore, be interpreted as a generalized EM algorithm in the sense of
Dempster et al. [3]. Each iteration consists of two substeps: an estimation
step (E) and a maximization step (M). In our case these substeps coalesce. Shepp
and Vardi [2] already found this in their specialized discrete case. This fact
motivates the -- at first glance rather artificial -- iteration scheme intro-
duced by Kondor.

The following theorem shows the essential connection between the iteration

scheme (2.1) and the maximization problem MP.
Jheorem 4:
For all £ ¢ Jﬁr the inequality
AE) £ A(G(E)) (3.12)
holds. Equality is given in (3.12) if, and only if,

D, (£,G6(£)) = DQ(f.f) =0,

where DH(f,G(f}) and DQ(f,f), for f € Jﬁr\Jﬂ;, are given by (3.10) and (3.11),

regspectively.

Proof: From (3.9) we have for f € JB;:

A(G(E)) - A(f)} =D (£, f) + DH(f,G(f)) 20, (3.13)

Q

where the inequality follows immediately from theorems 2 and 3. The proofs of
theorems 2 and 3 show that (3.13) is also valid for f Jﬁr. The second part of

theorem 4 is then trivial.
Corollary:
i) Suppose that f* is a solution of the maximization problem MP. Then,
AG(Ex)) = A(L*) ,

Dy (£*,G(£*)) = D, (f*,£*) =0 .

Q
ii) Suppose that f* is the only soclution of the maximization problem MP. Then,
G(f*} = f* ;

in particular, for f* e Jﬂ;, it follows that £f* e @' (=€ n K .
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iii) Suppcse that A is strongly concave on JQF. Then, f* € JQ; is a solution of
the maximization problem MP if, and only if, f* e G'.

Proof:
i) From the assumption and from (3.12) it follows that

ACE*) £ A(G(£*)) £ A(f*). {3.14)
The second part of theorem 4 then yields the proof of point (i).

ii) According to (3.14) the function G(f*) is also solution of MP from which
the statement follows immediately.

iii) If £* € G, it then follows that f* € Jg;, and theorem 1 says that f* maxi-
mizes A on Jﬂr. By assumption, the functional A is strongly concave on Jﬂr,
which implies the uniqueness of f* if f* maximizes the problem MP. From
point (ii) of this corollary therefore it follows that f* ¢ T .

Remark: It can be shown that A is strongly concave on Jﬁr as well as on K
if, and only if, the equation (1.1) has a unique solution in C[0,1].

The results of this section clearly show that it is worthwhile to investigate
further the properties of the iterative method (2.1). In the next two sections we
shall investigate the convergence and some other properties of the method. The

continuous case is considered in section 4, the discrete one in section 5.

q, ON THE CONVERGENCE OF THE CONTINUOUS CASE
We begin with some characteristics of the operator G. These are summarized
in the following theorem:

Theorem 5:
Let f* ¢ G and f € J.. Then, G has the following properties:
i) G(cf) = G(f), for all c € R, -

ii) 6 = X+ X;
in particular, f* - G(f) changes sign at least once in [0,1] for
f* ¢ G(L).

iii) If, for £ # f£*, either
f(y) £ £*(y) or f(y) 2 f*(y) for all y e [0,1],
then
f(y) ¢ G(f)(y) or f(y) 2 G(f)(y), resp., for all y e [0,1],
where equality only holds for all y with £(y) = 0.
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Proof: Point (i) and the first part of point (ii) follow immediately from

the structure of G. Owing to point (ii) and G c Jgr we have

1

I a(Y)[f*(y) - c{f)m] dy = 0 ,
[}

which completes the proof of point (ii).
In order to show point (iii), assume that 0 ¢ f(y) £ f*(y) for a y € [0,1].
It then follows that

G(E)(y) = £(YVIT(D)(y) > £(VIT(EX)(y) = £(y) .

For f(y) = O the inequalities are trivial. The second part of (iii) is obtained
analogously.

In order to investigate convergence of the iteration scheme (2.1), one
would like to know whether the operator G is contracting. In this case, the
first thing one usually does is to estimate its Fréchet derivative at a fixed
point.

For any linear function mapping A we shall use the following notation:
Af(y) := (Af)(y), y € [0,1].

Lemma 1: The Fréchet derivative G'(f), £ e J, with respect to L1 is given,
for almost all y € [0,1], by

1,1

G*(£)h(y) = T(£) (Dh(y) -~ f[f g(x)k(x,y)k(x,2) dx] h(z) dz (4.1)
Y 0 ‘o Fz(x)

for h € L1{0,1] .
In particular, for f* e'@’,
G'(f*)h = (I - L)h , (4.2)

where I is the identity mapping and

1
h(y) = i [ eroh) dz
0
3
1(y,2z) := J 9(x)k(x,y}k§x,z) ax .
{(F*(x))

0
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In particular, for a solution f* ¢ J of (1.1),

1
2(y.z) = | k(x'gzzf"'” dax .
g

Remark: Note that
1) G'(£)E =0 for £ € K,

ii) Lf* = f* for f* ¢ G, 1.e., f* is an eigenfunction of L.

Proof: Consider

1

G(E+h) (y) - GIE)(y) = —— [ g(x)k(x,y)a(x,y) dx
a(y)
1]

with

_ E(y) + hiy) _ £(y)
wUx¥) = Foo ¥ ax)  Flx)

1

| x(x,y)n(y) dy .
i}

H(x) :

For h with thl1 sufficiently small the identity

ROY) _ £0Y) peyy 4 hoy) [F 1 1 ]

qa({x,y)

F(x) 224 (x) + H(x) ~ F(x)
1 o1 B(x)}
+ i) [F(x) vEE CF@ 2 (x)]

hiy) f£(y)

Fi{x) FZ(x)

H(x) + h(y)o[H(x)] + f(y)o[ﬂz(x)]

holds for almost all y € {0,1]. Denoting the right-hand side of (4.1) by Ah(y),
it can easily be shown that
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[G(f + h)(y)} - G(f)(y) - Ah(y)|

1! k(x,2) Ih(2)] 4z (5} kxz)n(2) | azf?
£ e |ihiyH 5 + £y 3
F* (x) F” (x)
<e, 1l (@1 + i) (4.3)

N

for almost all y € [0,1] and for IIhH1 sufficiently small, using the fact that
the functions a, f, and k are continuous. It follows that

11G(£ + h) - G(f) - Bh{], < c Ilhl,

3

This implies that A = G'(f). Equation (4.2) trivially follows from (4.1).

Remarks:
i) The assumption f* € G is essential for the representation (4.2). In

section 5, we shall also treat the discrete case which is analogous to the

case of f* e 6.

ii) The proof of lemma 1 shows that the representations (4.1) and (4.2), respec-
tively, are also valid, for instance, for the Banach spaces C[0,1] and
Lp{0,1], p e (1,»]. This is easily seen by the following. Using the triangle

inequality we obtain with (4.3)

|16(£+h) = G(£) - Ahl{, < const.l(hll, (11n11, + 11nll,)

"
£ const. | kh "

due to IIhH1 (4 const.IIhHp for all h € Lp, p € [1,»]. The proof for C[0,1]
follows analogous lines.

Application of the triangle inequality to the right-hand side of equa-
tion (4.2) is of no help for showing that G is contracting in a neighbourhood
of f*. The question is whether generally there exists a Banach space B with
X c B and ||G'(£f*)|] < 1, where ||.]|| is the operator norm. Using the eigen-
values of the linear operator L, we shall show that this is not possible for

f*r et .

Theorem b:
The eigenvalues of L lie in [0,1]. They are at most countable and only O
can be a limiting point. Thereby 1 is always an eigenvalue, whereas O is an

eigenvalue or at least a limiting point of eigenvalues.
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Addendum: L has finitely many eigenvalues if, and only if, the kernel & is

degenerate; in particular, O is an eigenvalue in this case.

Corollary: For every Banach space B with J. c B and G'(f*): B + B the ine-
guality [1G'(£%)]] 2 1 holds for £* e G .

Remark: For instance, C[0,1] and Lp[0,1], p € {1,»], are trivially such

Banach spaces.

Proof; If Lh = Ah, A # 0, and h # 0, then h € C[0,1], and it follows, by
changing the order of integration, that

1 1 1
IAl [ aty)Ih(y)] dy = | a(y)I1E(y)| dy £ [ a{z)T(£*)(z)}h(z)| dz
0 0 0
1

= | a(z)|h(z)| dz > 0 , (4.4)
0

which implies that |A] ¢ 1, where 1 is an eigenvalue. The spectrum of L is iden-

tical to the spectrum of the symmetric linear operator
-1
S :=WLW '

with

W:h- %—;h, h € c[0,1] ,

where the kernel of S is given by

& 4
s(x,y) := --\f%i;—) L(x,¥) , X,Y € [0|1] .

This kernel is positive semidefinite because it is symmetric and, for
all h € [0,1], the relation

11 1
2
[ [ stx,y)h(x)h(y) dx dy = ——‘3—@——2—[] i—% X(z,x)h(x) dx] dz > 0
(Fx(x))
1]

90
0
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holds. Therefore, all eigenvalues of S are in [0,1]. According to Tricomi [S5].
p. 105, the eigenvalues of S are countable, and at most zero is a limiting
point. In addition, S has finitely many eigenvalues if, and only if, its kernel
is degenerate, which is equivalent to the degeneracy of the kernel g. In the
latter case 0 clearly is an eigenvalue.

The proof of the corollary follows from theorem 6 and the fact that the
eigenfunctions h of L, which belong to the eigenvalues A 2 0, are elements of

C[0,1] < B such that with the norm ||.|| of B we have
Ilcl(f*)ll .= sup IIG|(f*)fl| > II(I - L)hF] =1 - A .
teg\io)  ET TThI|

If the kernel ¢ is degenerate, a continuous eigenfunction to the eigenvalue
A = 0 trivially exists. This completes the proof.

Remarks:
i) Let HLHW'1 be the L, -norm of L with respect to the weight function w. Note
that from (4.4) it easily follows that III-Ila’1 = 1, since for h := TII; a(y)dy
equality holds in (4.4).

ii) For the continuous case, the question whether the iterative method is con-~
vergent is still open. We had hoped to prove statements analogous to those given
by Dempster et al. for EM algorithms (see [3], theorems 2 and 3). But careful
checking shows that the proof of their theorem 2 is incorrect. (Inequality (3.13)
in [3] is not true in general, as can be shown by using mtj) = 14172+ ... +1/],
3 € N, in the notation of Dempster et al. as a counter-example.) Therefore, it
is not excluded that theorem 2 and theorem 3 (which is based on theorem 2) of

Dempster et al. do not hold.

So far, we have for the continuous case the following result.

Iheorem 7:
+
Let fn+1 = G(fn), ne No' f0 e K. Then,
i) A(fn), n € N, converges monotically to some positive number for n + .
4o

i) 1) £, (1 - re ) ay g2 o

Corollary: If, in addition to the assumptions of theorem 7,

£(y) 2 ¢ for yeJ := [«,f] c [0,1] , a«<B, meEN ,
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then T(fn)IJ [the restriction of T{fn) to J] converges uniformly to 1lJ for

n =+ e,

Remarks:

i) Note that in theorem 7 with respect to point (ii) we have

1
i f*(y)[1 - T(f*)(y)]z dy = 0
0

for all f* 6.

1i) Point (ii) in theorem 7 allows that, for instance, converges uniformly

f
nlJ
to zero as n + » even if T(fn)IJ does not converge to a non-hegative func-

tion which is bounded by 1.

In order to prove theorem 7 we need the following

it

min k(x,y).

Lemma 2: Tet k. := 11kl k .

in °

‘ X x,yel0,1]
Then, for f e Jﬁr,
1) Tk, € I3 £x) ax < Tk,
i) e, 1= (ky; fkpo )* CTUENY) S cp o= (ko Jko. 07,y e [0,1] .
iii) Let fn+1 = G(fn). ne Nb, fo e X.. Then, the set HT 'z (T(fn), n € N} is

compact in C[O0,1].

Proof:
i) Using the mean value theorem for integrals, it follows that there exists a
£ € {0,1} such that

1 1
r=[ aty)f(y) dy = a(€) [ £(y) dy .
1] 0

From this equality the relation (i) follows easily.
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ii) From point (i) it follows that

: 1 5 1

T(£)(y) < rkmaﬁ/Tkiin [ £(z) dz] J a(x) ax ¢ c,
\ 0 /g
;

1 3
T(£) (y) 2 rkmi,/(kf,ax I £(2) dz] Jetx)ax 2 c,
~ 0 J a

iii) The Arzéla-Ascoli theorem yields point (iii) if we can show that
a) MT is uniformly bounded,

b) the T(fn) are equicontinuous.

(a) follows from point (ii) and (b) is shown as follows. The function Xk is
an element of C([0,1]2). This implies that for any € > O there exists a & such
that

k(xry1) k(XrYz)
aly,) - a(y,)

A(X;Y,.¥,) := e forly -y,1 5.

For n € N, it follows using (i) that

1
‘_:r(x)t'.(x::y1 .yz)

dx { e k /K

IT(fn)(Yt) - T(fn)(Yzll £ J max’ min

1
X Iu k(x,z)f (z) dz

for Iy1 - Yzl £ 5. This completes the proof of point (iii).

We now prove thecrem 7 and its corollary.
i) We have
1
0 CAE) SME ) <[ g(x) Ing(x)dx, neN,
0
from theorems 4 and 1. The sequence {A(fn)} is therefore monotonically increasing

and bounded, hence convergent.

ii) Using the relation
1
{1 - t) dt
[z - t(z - zu)]2

In z = 1In zﬂ + (z - zo)/zo -~ J (z -2) , zo,z € R* .
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we have, for f ¢ Jﬁ;,
'1 1

J gi{x}) J In [k{x.y)[G(f)(y) + f(y) - G(f)(y)]] K(f;x,y) dy dx

]

Q(f,£)

0 0
b 1

Q(G(f),£) + [ g(x) J K(£;x,y) [f(Yé(E)?;f)(y)

0 0
1
_ J (1 -¢) dt
2
[f(Y) - t(f(y) - s(f)(y)]]

[f(y) - G(f)(y)]z] dy dx

g
1

= Q(G{f),£) + l aly)G(f) (y) [ftxé(;)f;f)(y}

(1 - t) dt [1 - T(f)(y)]z] dy .

) { [? - ¢[1 - T(f)(Y)]]z

Since I; a(y)fiy) dy = I; a(y)G(£f)(y) dy, and using lemma 2, point (ii), we

obtain
1 1
mmnm)—maﬂ=Jawmuuwb-ruan[ -t dt g
{1 - ¢(1 - 1))
0 g
1
2 ‘ ~ Tawenym(1 - nom) ey
2 max (1, HTEOI)
1
> L7 a(y)G(f)(Y)[1 - r(f)(y))z dy.

2 max (1,02) 0

Using theorem 4 and the relation (3.13) we obtain, for n € N:
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A(E ) = MED 2 QUE L E) - QUE L £)

1

4 2
[ a(n)f (y)(1 - E )(y)] dy .
2 mwax (1,c§) 0 n+1 n

2

Oon the other hand, according to lemma 2, point (ii), we have
fn+1(Y) = fn(Y)T(fn)(Y) 2 C1fn(Y) '
such that
1
c1km,in

sl £, (1 - e ar >0 .
Y27 o

A(f

ney) T AEL) 2

The left-hand side of this inequality tends to zero as n + « according to point
(i) of this theorem. This completes the proof of point (ii).

Proof of the corollary: From the assumptions, it follows that

1 1
[ (1w arcJemi-repwfar, aen,
0 0

which implies that 'r(fn)IJ converges to 1IJ
In order to show the uniform convergence of T(fn)IJ to 1;3' we proceed as follows.

with respect to the L2~norm as n + o,

According to lemma 2, point (iii), {T(fn)la} is compact. It therefore contains
an L -convergent subsequence whose limit can only be 1IJ' since this sub-

sequence converges to 1,_ with respect to the Lz-norm. But the last conclusion

)
also shows that the sequence {T(fn)!J} has, with respect to the L_-norm, only

one limiting point which is 1 This completes the proof of the corollary.

13

Theorem 8:
For f0 e X' let fn+1 = G(fn) converge to f* € X with respect to L1[0,1]
as n + ». Then, f* ¢ G; which means that f* is a solution of the maximization

problem MP.

Proof: Because of the inequality | IIf*[I1 - ||fn||1 | £ 11f* - fnlii'

there exists, for ¢ > 0, an integer n, = no(e) such that

lifnll‘ 2e fornn

Setting Fn(x) 1= I; k(x,z)fn(z) dz, we then cbtain
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1

: [F*(x) - F_(x)]
x* -
IT(£*) (y) T(fn)(y)l £ a(y) J g(x)k(x,y) F*(x)Fn(x} dx
]
C1 .
2 Xx)
0

The continuous functions T(fn) therefore uniformly converge to T(f*) e C[0,1]
as n » =, Assume that there exists a ¥, € [0,1] with T(F*)(Yo) > 1. Then, there
exist a neighbourhood U of Yor 2 5 > 0, and an integer n such that for n > B,
and y € U the inequality T(fn)(y) ) 1+8 holds. Because of fn+1 = T(fn)fn it then
follows that

(y) >0 forye?U, kenN

k
f k() 2 (14 07, :

This contradicts the assumption that fn converges as n + », Note that the posi-

tivity of fm follows from the fact that fo e X'. Hence, we have proved that
o

T(f*)(y}) ¢ 1 fory e [0,1] .

Now assume that there exists a Y, € {0,1] with T(f*)(yb) < 1. Again, there
exist a neighbourhood V of Y, @ constant q with 0 < ¢ < 1, and an integer r,
such that, for n ) I, and y e V, the inequalities

T(fn}(y) L£qg <1

hold. From this it can be deduced that

k
fr0+k Ldq fr (y) foryev, kel

0 L}

This result allows one to deduce that f converges uniformly on V to f* 0

nlv v =
as n + «. Hence, if f*(yb) > 0, the equality T(f*)(yu) = 1 must held. This

completes the proof.

Remark: Theorem 8 and its proof are analogous to the discrete case con-
sidered in [2], p. 120. In particular, the theorem shows that the iterative
method (2.1) is primarily oriented to the maximization problem MP; to the
integral equation (1.1), however, only as a special case. See also the remarks
in [2], p. 120.

Before we treat the discrete case we introduce the following simple

example:
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k(2,y) :=x(x-y)+n, n>>0, x,y € [0,1] ,
1, x>0,
Y(x) :=
0, x <0,
g({x) :=x +n .

For this example only the assumptions (a) and (b} of section 2 are satisfied,
and £f* = 1 is the only solution. For convenience, we consider the limiting case

n = 0 which yields the Volterra integral equation

X
I f(y) dy = x , x € [0,1] ,
o

with the only solution f* = 1. We ghall refer to this example as our 'model’
problem and shall use it to illustrate certain properties of the iterative
method. For this example, the following expressions for the operators G, G', and

L introduced above are easily obtained:

1

_ E(y) X +
G(f)(Y)—1_YJIxf(z)dzdx, £eXt,
y "0
G'(1) =1-1L,
! X
Lh{y) = ;—%—; 1 % I n(z) dz ax (4.5)
Y
1
== Jrxphx) &, heL[01],

x,y € (0,1] ,

Iny , XLy,
i(x,y)

In x , X>YyY.

Remark; Here, G is only defined on X

Theorem 9:
The operator L of the model problem defined by (4.5) has the Jacobi polyno-

mials P;°'1) with respect to [0,1] as eigenfunctions corresponding to the

eigenvalues An = ?/(n+1}2, n e Nﬂ.
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Procf: Consider

where A = 0 is not an eigenvalue. Multiplying (4.6) by 1-x and differentiating,
then multiplying the result by x and differentiating again yields, for A = An‘

the differential equation
x(1 - x)h'' + (1 -30)h' + ((n+ N2 -1Dh=0,
(a,B)

n
and B = 1. This completes the proof of theorem 9, since by going backwards (in-

which is the differential equation for the Jacobi polynomial P for a =0
tegrating twice and dividing each time by x and 1-x, respectively), the equa-

tion (4.6) for A = An can be obtained from the differential equation for the
n .
We shall return to the result of theorem 9 when we discuss a discrete

version of our model problem.

5. ON THE CONVERGENCE OF THE DISCRETE CASE
In order to perform the iterations {(2.1) numerically we discretize by using
a quadrature formula. For convenience, we confine ourselves to quadrature for-

mulae Qln of the following kind:

1 m
[ £(z) dz 2 Q (£) := ), c¢;f(z) . meN,
0 i=1

where

i) 2, € [0,1] are different for i # j, 1,7 = 1{1)m,
ii) c; >0, 1= 1(1)n.

The dependence of the weights c; and the knots z, onm is not explicitly indi-
cated. We use the notation fi 1= f(zi) and kij 1= k(zi,zj) for i,3 = 1(1)m. The
discretized form of the iteration scheme (2.1} then becomes

n+1

_ n
P - Gm(q’ ) ' n ENU Il (5-1)

with



n o]
¢ = (9.) e K,
Li=t(1)m n
G (p) :=|G_ .(9) e o= {e.) e K,
" [ el ]i=1(1)m Yist(tm "
m
1 k195 .
Gy 10 = 0Ty (0) , Ty (@) = —LBI . i=(m
Z crkrl j=1 Z cskjs"’s
r=1 g=1
Foo :={e e RUNO} : 0, 20, i=1(Du}.

Note that n is the iteration index and m the discretization index. By
construction, we have wn e Jﬂm if mu € Jﬁm, for n € N.
The discretized form of G is
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B, = {o e X, : Tmritw} <1, i=1(1m, equality holds for i with ¢, > o} .

Let Coo* = v be the discretized form of (1.1) with C := (kjc5) € g™ P
p* ;= (wi) € Jim, and y := (gi) € RT for i,j = 1(1)m. Then, ¢* e‘Gm trivially
follows, and for ¢* E‘Gﬁ we have p* = Gm(w*). Note that Tn'i(w) >0, 1 = 1(1)m,
for ¢ ¢ JCm.

All statements in sections 3 and 4 concerning the continuous case can be
carried over to the discrete case; therefore we do not formulate them expli-

citly. We only state some discrete analogues which we need in the following.

Theorem 10:

Let ¢* E‘Bm and ¢ € Jﬁm. Then, the mapping Gm has the following properties:

i) Gm(cw) = Gm(w), for all c € R+.

m m
i) ), e ), eS0T L €9
i=1 r=1 i=1
in particular, o* - Gm(m) has positive and negative components for.

*
p* ¢ Gm(w).
iii) If, for ¢ # @* , either

o £ p* or ¢ > ¢ (by components) ,
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then

» £ Gm(w) or Q2 Gm(¢) ' respectively ,

where equality only holds for all components for which the corresponding
components of ¢ are zero.
The proof follows the same lines as the proof of theorem 5.

The discretized analogue of lemma 1 is given by the following lemma:

Lemma 3: For p* € ?‘Sm.

k) = T -
Gm(w ) Im Lm ,

holds, where

IIn := diag (ti)i=1(1)m . ti re Tm,itw*) e (0,17 , i=1(1)m ,
L :=DCWBC |,
n mmDm
*
D := dia V *1 B
m’ 9 m _ d m
¢ 2: Crkri
r=1 i=1(1)m

At least one of the diagonal elements of Em is 1, and for o* E‘G; :=‘Gm n R?
the matrix Im is equal to the unit matrix Im’

The proof of lemma 3 is trivial.

In order to investigate convergence of the iterative scheme (5.1) we are

interested in the spectrum of Gé(w*), analogously to the continuous case.

Theorem 11:

The eigenvalues of Lm lie in [0,1] with 1 being an eigenvalue.

Proof: Theorem 11 can be proved analogously to the proof of theorem 6 in
section 4. We first assume that ¢* EWB;. The spectrum of Lm is the same as the
spectrum of

s :=WLW'=(w"Tscw'=sT,
)1 1] mmn m

. L —1/2
with Wm 1= Dm

Hence, Sm is positive semidefinite, which implies that the eigenvalues of Sm

. Bm is a diagonal matrix with positive diagonal elements,

are real and non-negative.
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Assume now that ¢* E‘GN\RT. This implies that L does not exist. We then
proceed as follows. For all i e & := {j : °§ = 0} the i-th row of Lm consists of
zeros; hence, zero is an eigenvalue. Onh the other hand, the i-th component of an
eigenvector to an eigenvalue different from zero is zero. It is therefore suffi-
cient to consider the matrix Lm,r which is derived from Lm by leaving out the
i-th row and the i-th column for all i € A. In the same way as for o* E‘G; it
can then be shown that Lm,r' and hence Lm' have eigenvalues which are non-
negative.

For an eigenvalue A > Q of Lm and a corresponding eigenvector ¢ = (wi)i=1(1)m
we have the relation

m m

mom
A Z Z Srkpicylel = Z Z c k¢l (L)l

i=1 r=t i=1 r=1

£

‘18

k .T _.{(9*)c.lg.
z: c Ky m,]{w ) lejl

-

1

(o]
g

]

L2

crkrjcjlw | » 0.

n [~ =

From this inequality, it immediately follows that O ¢ A £ 1. Finally, it is easy
to verify that ¢* is an eigenvector corresponding to the eigenvalue 1. This
completes the proof of theorem 11.

We set

* .= - =
(o) Im-u I-m'r, p = Al ,

where A and L r were defined in the proof of theorem 11. A is empty if ¢* e‘G;.

In this case p = 0 and L Lm. We always have gy ¢ m.

Theorem 12;

For the spectral radius Q[Gﬂ(w*)], p* e‘Gm, we haye

. _ _, (m) (m) .
Q[Gm(w*)] - nax [1 3 .ti] , A™ ok 011, ien, (5.2)

{m)

where A1 is the smallest eigenvalue of Lm r In particular, the iterative
!

method (5.1) is (at least) locally linearly convergent to ¢* = Gm(w*) with the
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rate of convergence Q[Gé(w*)} e [0,1), if Lm,r i3 regular and ti <1 for iec A.
The latter is true, for instance, if Km is regular and * E'B;.

Proof; Trivially, all ti, i € A, are eigenvalues of Gﬁ(w*) since the cor-
reaponding rows of I.m only contain zeros. Analogously to the proof of theorem
10, it follows that the remaining eigenvalues of GQ(@*) are the eigenvalues of

Gé r(cp*}. Since the spectrum of Ln is in [0,1] as we know, equation (5.2) is

proved. The statement of the conve;;ence follows from Ostrowski's theorem (see
Ortega and Rheinboldt [6], pp. 300-301). The set A is empty for o* E‘G;, and,
for reqular Km’ the matrix sm is positive definite. This implies that Lm is
regular, which completes the proof of theorem 12.

It is expected, taking Lm as an appropriate approximation of L, that
1 - Afm) tends to 1 as m +» «, under certain assumptions. We shall not consider
the general case, but treat only cur model problem, for which we can compute the

rate of convergence explicitly.

6. THE MODEL PROBLEM

For convenience, we use the extended right-side rectangular rule as a qua-
drature formula. This simple formula already reveals the general behaviour of
the rate of convergence. For the model problem, we set

m
g, (£) :=nz £(z;), h:=1/m, z,=ih, i=1(m.
=1
In this case, we have
m
G ()=——¢—i-—-—— ] i=1("m %' = Rr" (6.1)
w,i® T E T e i= vowe X, =R :
=i ) e,
r=1

Note that from (6.1) we have

1 m
t-z = T k(x,2;) dx = h z: T=hm+1t-1i)=1-2_,, 3z =0,
0 i=i
1 i
I xzy,y)ftyy dy = b ) £, i=1(m.

0 I=1
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In the first expression the quadrature error is -h, and it might therefore seem
that the application of the rectangular rule is not appropriate. On the other
hand, (6.1) yields for i = m (i.e. for the critical point y = 1):

®
- B

Gm’m(w) = m )

h ), e

r=1

which is the natural approximation to the expression

1

Lim £ I L " ax=—t e x.
y+1 ¥ Iu f(z) dz Io f(z) dz
We have
1 0
c, = 1m| 1. c R
1. .°.1
T o s : _
For ¢* := (1, 1, ..., 1) € R+ and ¥ := (1/m)i=1(1)m, the equality Cmm* = vy

holds, and, in particular, Tm(w*) = pt = Gm(¢*). Cm is regular. It is easily

seen that'l‘a’m = {p*} with A empty. Theorem 10 is still valid if Jﬂm is replaced by
Jﬁ;, and if the last clause in point (iii) is dropped. A more specialized form of
the theorems 11 and 12 for the model problem is given by theorem 13 below.

Theorem 13:
For the model problem we have:
i)} The eigenvalues of I.m are

A = 12, i=1(m . (6.2)

That is, they are equal to the first eigenvalues of L,

ii) The iteration scheme (5.1) is (at least) locally linearly convergent to ¢*
with the rate of convergence

o[Gplen] = 1 - 170’

Remarks:
i) The convergence rate tends quadratically to one as the step size h de-
creases, which is certainly a big disadvantage for the application of the

iterative scheme (5.1).
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ii) If some other quadrature formula is used, the exact relation (6.2) is not

usually obtained, but only some approximation to the first m eigenvalues

of L.

Proof of theorem 13:

For the model problem, we have

D =nm’ diag [

m m+ 1 -

Using the permutation matrix

we obtain

and since P2 =TI,

(s
fl

b
n

mPB_C_
mnn

2 2 _
m PBmP CmPBmCm = Am

(6.3)

It is sufficient to determine the eigenvalues of Am or A&‘. It can easily be

verified that

1 0
-1 -1
Cm =n : . e R
0 11
From (6.4) we immediately obtain
. 0
-1 1 -1 -1
Am = o C Bm P = .
m-1
m -(m-1)

. -1, - . .
The matrix Am is similar to the lower triangular matrix

(6.4)
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i+1, (m - 3! (i - 1
E := [(4)l+ [T L LAt [. - .]]
m (m - i)' 1 -3 i,5=1(1)m

as will be proved in lemma 4. (Note that 1/(-n)! := 0, ne N.)

i+1,

The eigenvalues of Em' and hence of Ah’, are (-1) i, 1 = 1(1)m, from

which the relation (6.2) follows by using (6.3).

x . . .
Lgmma_j_li With the upper triangular matrices

v _=[ (- J o - [(-ﬂ"""i(m +1-39)(3 - 1)!J
o S l@rr-oa-na -0 SIENE '

— : S
where 1,3 = 1(1)m, the relation Vm Am Vm = Em holds.

Proof; We have

AV ). o (-1t i -1t - )
m m'ij ifm - i)I(i + 3 -m- 1)! (1 - 1)(m+ 1 -1)!(1 +3 ~m~ 2)!
_ -1 .
"m+i-DHi+j-m-nr: *L3=thm.
Setting
g1, (1 - 1)!
Fism = 1 3 G=n1
we obtain
m
-1, -t _ m+1-i, X (m+1-x)(xr-1)!
(Vy By Vpl35 = 1) 3 ), N TR T DTG T S S E T
r=i
n 4
- 1 rfr - 13 - 1) _ iV -1
= N F i Z -1 [r - iJ[m - r] = Fiim Z [r - i)(m - r]
r=i r=i
m-1
- -1 -1 ) _ Jo- L= 1) _ o, it (m - 3y [i -1
= Fijm E: [r J[m -1i- r] - Fijm( m- i ] =N Y T - j]
r=0

%) The authors are grateful to C. Schneider of the University of Mainz for
providing what is essentially the matrix Vm.
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for i,j = 1(1)m, where we used the identity

i[g][n?r}=(p;q]' neN , PIER.

r=0

Remark: Using (6.4) it can easily be seen that the condition number of Cm
with respect to the maximum norm is equal to 2m.

7.  NUMERICAL TESTS

In order to illustrate how the iterative method works in practice, some
numerical tests were carried out on a CDC CYBER 875 computer, with a single
precision accuracy of approximately 14 digits. The method was applied to two
different integral equations with different step sizes, different stopping cri-
teria, and different starting functions. Let f* be the solution of the integral
equation (1.1), and let ¢* be the solution of the corresponding discretized
system. For each problem, values of f&: = (fi), i = t{i)m, and ¢*, of the start-
ing vector wo and of the iterates m1, wz, wn (last iteration) are shown in the
tables., In table 1, owing to space problems, not all components of the consid-
ered vectors are given for m = 20 and 40. The vectors in tables 2 and 3 are sym-

metric; this means that vi = v i for i = 1(1Y(m+1)/2, if v := (vi) is any

m+1-
vector in table 2 or 3.

i) The model problem
For this problem the discretization was as described in section 6. Table 1A
shows the results for the starting values

mu i= [5 + cos (i/m)Ji=1(1)m .

Table 1B shows the results for the starting values
wc 1= [1.5 + cos (50i/1a)]j_=1(1)m .
In both cases the iteration was stopped when IIw-wnlfu £ ¢ with ¢ = 1072,

We can see, particularly from table 1A that the iterations yield large im-
provements in the beginning. This phenomenon can alsc be observed for the other
integral equation. It is partly explained by theorem 5. A comparison between the
tables 1A and 1B shows that the number of iterations is strongly dependent on
the starting values. Table 1B also shows a strong dependence of n on the step
size. This can also be predicted theoretically. Decreasing e slightly for the
case considered in table 1B increased the number of iterations drastically.

However, ¢ = 10'8, for instance, with starting values wu of the first case
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required n = 217, 239, and 249 iterations for m = 10, 20, and 40, respectively,

which corresponds to rather slow convergence.

ii) Probability problem
In this example, the function g is essentially proportional to the prob-
ability density function of a sum of two independent random variables under the

condition that the sum has values in [0,1]. We have

k(x,y) := h(x -y) +n,
1-x%782, Ixl1£&,8>0,
h(x) :=
0, otherwise,

£H(y) =y (1 -y + 8,
g(x} := g (x,b) -.g (x,a) + nla/30 + 8) ,
a := max (0, x - &) ,
b := min (1, x + &) ,
g, (x,¥) = oy’ (1 - £ /8°)(1/3 - y/2 + ¥ [5)
+2xy* (174 - 29/5 + Y7 /6)/8°
- Y15 - /3 + ¥ I8 ]
+ By + (x - ¥)° /(3677 ,

where «, B, &, and n are properly chosen constants. Note that, if all constants
are positive, the functions k and g satisfy the assumptions (a) and {B} made for
the theoretical treatment of the iterative method (2.1).

The extended Simpson's rule was used for discretization of the integral
equation. The solutions ¢* of the discretized problems me* = y for different
m were computed by using double precision Gaussian elimination, yielding at
least single precision machine accuracy in the residuals for the different step
sizes considered. (The condition numbers with respect to the maximum norm ranged
between 1.8 x 10° and 4.0 x 10°.)

Two different cases were considered whose results are shown in tables 2 and
3. In both cases, a = 100, & = 0.12, and ¥ = 0.1 were taken, whereas p = 1 was
used in the first case (table 2) and B = -1 in the second (table 3). This
implies that in the latter case the solution f* takes negative values in the
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tails. For both cases the starting values were constant and equal to 1, but dif-
ferent stopping criteria were applied. The solutions ¢* are oscillating around
fé as can be seen from tables 2 and 3.

For B = 1 we first used ||o* - ¢n|'. £ & for the stopping criterion. Re-
quiring an error of the order of one per cent we had to iterate n = 146 times
for m = 11 and n = 43428 times for m = 21. Both cases show the extremely slow
convergence of the method. On the other hand, in the applications, owing to
measurement errors, it is often preferred to usge IImen - Tllw £ ¢ for the
stopping criterion. For the results in table 2 the iteration was therefore

stopped in such a manner for ¢ = 10-2 in the case of g = 1.

In the second case (g = -1), where we expected ¢J to converge, as j + =, to
the solution of the discretized analogue to the maximization problem MP, the
iteration was stopped when w? was less than or equal to e = 10714 for all i for

which mi is negative.

The results of table 2, especially for m = 21 and 41, show that if we do
not iterate too often, mn may be closer to the values of fa than o* is.

Table 3 finally shows that in the case of 8 = -1 the iterates converge to a
vector which has those components vanishing for which fa {and ¢*} has negative
values. According to theorem 8, interpreted for the discrete case, the limiting
vector is a solution to the (discrete) maximization problem MP. Note the rela-
tively fast convergence of the method in this case.

Summarizing we may state that the method converges very slowly. On the
other hand, since the right-hand side of the integral equation is always dis-
turbed in practical problems (discretization- and measurement-errors), deter-
mination of the solution with high precision must not be expected. Therefore,

a few iterations with this iterative method may give at least a good idea of
what the solution looks like.
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