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A method has been developed for solving Fredholm’s integral equations of the first kind for the case of positive kernel function
and right hand side. The iterative solution seems to be satisfactorily stable against perturbations of a statistical nature. This feature
and the basic principle of the iteration itself come from including in the algorithm the so called acceptance function related to the
kernel of the integral operator. The main characteristic of the method - to iterate via smooth functions — becomes advantageous
compared to standard methods in those cases of integral equations with smooth solutions for which both the kernel function and the
right hand side function are strongly nonsmooth, which is often the case for the solution of the smearing problems of the high energy

physics experiments.

1. Unfolding problems and integral equations

Unfolding problems arise in measuring the density
u(x) of some quantity x when only the distorted
(smeared) distribution of x can be observed. x may be
one dimensional or higher dimensional and x may be a
random variable or a certain physical quantity which
can be described by a density function u(x). Since the
principles of the problems which are considered here are
aiways the same independently of the dimension of x, in
the following, for convenience, x is always considered
one dimensional and taking values between 0 and 1.

A common unfolding problem is the following. Let x
be a random variable with probability density function
u(x). In a great number of the cases a real measurement
of x does not yield an ideal sample of the x-values from
the density u(x) but one has distorted values y with a
density function v(y) where the distortion is caused by
some measurement noise w which is independent of x
and which has the probability density p(w). This situa-
tion leads to the well-known problem of the solution of
the convolution integral equation of the first kind.

Very often, however, the independent noise model is
not general enough such that more complicated equa-
tions than the convolution one have to be solved. First
of all the measurement distributions can depend on x
such that p becomes a function of two variables and the
equation relating the distributions «, v and 8ip gener-
alises to the Fredholm’s integral equation of the first
kind:

U(Y)=fO]P(XaY)u(X)dx,

O0<y<l )
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where

p(x,y)=0

Secondly, it can happen that no y-value is measured
even if an x-value occurred. This fact may be expressed
by the function

A(x>=f0‘p(x,y>dy,

for this, in this case, the inequality
0gA(x)<1, 0<x<1 (3)

forO<x,y< 1.
0<xxg1 (2)

holds. The function A4 is called the acceptance function
of the experimental device represented in our case by
p{(x, y). Suppose that

A(x)<1 (4)

for all the x in some interval in [0,1]. It then follows
from (1) to (4) that

folv(y)dy=f01folp(x’y)u(x)dmy
=](‘)1A(x)u(x)dx<1 (5)

if it is assumed that the order of integration in the
double integral in (5) can be changed. The occurrence of
this inequality also causes problems in practice.

Two more problems can be considered. The density
v can only be measured with some error and often the
function p is not exactly known. For instance, in high
energy physics, either p can only be estimated by Monte
Carlo simulation or due to computer cost, for an as-
sumed u, the corresponding v, can be estimated only.
Another well-known problem comes from the fact that
the problem of solving (1) for given p and v is an
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ill-posed mathematical problem. That means, for small
changes in v large changes in ¥ may be caused. Many
different proposals to solve eq. (1) have been made
ranging from series solutions over least square solutions
to regularization. Since there is no unique method which
solves the problem in general, sometimes different
methods may have to be tried. This implies that it is
important to have different methods available.

In this paper an iterative method is proposed whose
convergence properties have not yet been proved
mathematically. However, numerous cases of a limited
class of egs. (1) with measurement noise on v and p
have shown that good results may be obtained in prac-
tice.

In sect. 2 the class of egs. (1) is given to which the
iterative method is applied together with the iteration
scheme. In sect. 3 numerical examples are presented.

2. The method of convergent weights

In order to construct an iteration for solving eq. (1)
the following assumptions are made to define the class
of equations to which the iteration is applied.

(a) The kernel function p(x,y) is non-negative and
continuous on [0, 1] X [0, 1] except possibly isolated
integrable singularities.

(b) The acceptance function 4(x) is positive on [0,1]

O<A(x)=f]p(x,y)dy, 0<x<l. (6)
0

(C)!g(y)=f01p(x,y)f(X)dx>0, O<y<l (7)

for every integrable positive function f(x).
(d) For a given v = v(y) which is assumed to be posi-
tive and continuous on [0,1] the integral equation

v(y) =/Olp(x,y)u(x)dx,

has a unique continuous solution ¥ = u(x) for 0 < x
< 1.

(e)
folfolp(x,y)u(X)dxdy

0<y<l1 (8)

= ["['p(x, p)u(x)dydx. (9)
L

Before constructing the iterative scheme a conse-
quence of the above assumptions will be discussed.
Suppose one has a series of iterative approximations
{u'(x))T of the exact solution u(x). Using Eq. (7) one
can calculate v/’( y) the iterative right hand side

v(”(y)=f]p(x,y)u“)(x)dx, O<yxl. (10)
0

Introducing 8/)(x), the difference of u(x) and u'/’(x),

the following equation can be found

}u(y) =f01p(x,y)8‘”(x)dx,

- i
r(y)
O<y<l (1)
where
8D (x)=u(x)—u(x) and ,m(y)zﬂ‘
v ()
Eq. (11) proves that constructing a convergent to the
unity series {7/} under the assumptions (c) and (d)
one will have a convergent series of the corresponding
{u!y with the limit '’ = u(x) being the solution of
eq. (8).

Forming such an iteration at first we transform the
original equation to one having a normalized kernel. It
is easy to do via introducing the so called importance
function

z(x)=A(x)u(x). (12)
It then follows from (1), (2) and (6) that

o(y) =folq(x,y)2(X)dx,

where

q(x,y)=p(x.y)/4(x)
and q(x, y) is normalized to the unity. Eq. (13) has the
property of normalization

folv(y)dy=f0'f0]q(x’y)2(X)dxdy=f012(X)dX-
(14)

This normalization may have a regularization effect on
the iterative solution, so eq. (14) is used as a motivation
for requesting to satisfy eq. (14) by all the iterants. This
requirement implies the following form of the itera-
tional equation. Choosing a starting function u'9(x)
one can calculate r(%(y) as

O<yxl (13)

vO(y)=o(y)/0' ()., O<y<l
and z{%(x) as
2 O(x)=A(x)u'P(x), O0<gxx]l

and then the further iterants z¢/)(x) will be given by
200000 = [0 () g p)dy -2 ().
0

0<xxl, (15)

where equations (7)-(13) were used and u‘®(x) was
supposed to be arbitrary but satisfying assumptions
(a)—(d).

Eq. (15) has two characteristic features. All the
z)(x) satisfy the normalization requested for the exact
solution z(x) by eq. (14) and the definition of ¢(x, y)
in (13) guarantees the convergence of z/’(x) in the
cases when r/)(y)— 1. The reason for choosing the
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name the Method of Convergent Weights (MCW) for
this iteration was the central role of the convergence of
the series (r”}® to unity. The ratio r’ is called a
weight because it guarantees as a weighting function the
normalization (eq. (14)) until the series of { Z/)}3 is not
converged.

The basic equation of the iteration can be trans-
formed to

w* D (x) =/Ol’(”(y)q(x,Y)dY P (x),

0<x<1, (16)
which is equivalent to
# IO =[1+FD]u(x), (17)
where

— N
g?(j)=flv(y) 0 (y)q(x,y)dy,
0

o (y)
One can see that the multiplicative operator /) de-

pends on its arguments via an integral of the relative
error of the iterative right hand side

BuzBuZ ppe [ p(x) (3},
0

Bu ’
Eqgs. (16) and (17) are equivalent in the case of exact
values but in their numerical realization eq. (17) has
advantages giving higher stability against rounding er-
rors and those of the discretization of the integrals.

3. Test cases

Two test cases will be presented to demonstrate the
convergence and the stability of the MCW. Both cases
are created by analogy with real physical experiments.

3.1. Case 1

In this test case we demonstrate the solution of the
one-dimensional smearing problem by the example of a
purified numerical model of a real experimental prob-
lem [1]. The problems arising from the finite experimen-
tal resolution and the imperfect acceptance of a real
experiment we model by a Fredholm’s integral equation
of the first kind:

v‘(y)=fdbpt(x,y)ut(x)dx, (T.1)

where a = 4, b =24, u,(x) = 1600/x2,

p(x.y)=|4-B(5-x)

3
- kzv:l C, exp{—Dk(x —xk)2>

Xexp{—E(x—y)2>F,

- _f1 forx <5,
A=12, B= { 0.0023 for others,
C,=04,03,02 D,=551 x,=7,913

1 for|x —y|<0.08x + 0.88,

E=10, F= {
0 for others,

and the right hand side v,(y) is given by straightfor-
ward integration (see fig. 1).

We have chosen 50 equidistant coarse mesh-points
for discretizing of functions of one variable. The
pseudo-experimental errors of the RHS we obtained
from the following expression:

o,=0(x)1+0,p); i=12,..,50, (T.2)

where @, are equally distributed random numbers from
the interval [—1, 1] and p = 0.05.

The possible errors of the kernel function we have
modeled in the following manner:

pik=pt(xi’yk)(]+@ikp~); i’k=1’2""’50’
(T.3)

where p = max{O.S, (l + pyli — k| )}

The discretization of eq. (T.1) has been carried out
using Simpson’s quadrature with 20 fine mesh-intervals
in each coarse one.

The resulting quadratic system of linear equations
has been solved by using the MCW and the standard
Seidel’s method, the latter used for comparison.

For the purpose of illustrating the application of the
MCW we tested the convergence in the ideal case, i.e.
with errorless p,(x, y) and v,(y) but with the errors of
the discretization (fig. 1). We started with a trial func-
tion u(®? = constant. The relative error of the iterant was
found to converge to within +£0.5% in 7 iterations. The
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Fig. 1. Functions u,(x) and o,(y) for Case 1.
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Fig. 2. Fluctuations in the iterated solution in the case of +5%
error in the RHS and +5-50% error in the kernel function.

stability of the iteration has been proved in 1000 itera-
tion steps in which case the iterant remained within the
+0.5% error corridor.

Modeling the experimental errors as formulated
above we obtained the following results. In the case of ¢
and p, the result from 1 iteration is shown in fig. 2 by a
full line, while the case of ¢ and p is illustrated by
triangles. The parallel computation by the Seidel’s itera-
tion leads to a solution with fluctuations in a range of
+ 100% for the case of ¢ and p.

The stability of the MCW can be improved by two
transformations of the basic equations both having
smoothing character. At first one can transform the
discretized system of linear equations to the normalized
one multiplying by the transposed matrix of the system.
As a second step one can apply a proper power function
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Fig. 3. Changes in the stability of the iterated solution applying
smoothing transformations to the kernel function.

(with an exponent 0 < « < 1) for substituting »*)( y) by
[#2(y)]* in eq. (16). Having slowed down the iteration
one has to choose a more realistic trial function than
4% = const.

The change in the stability of the MCW has been
investigated in 7 iterations choosing

w@(x)=1100/x2[1+ 2 sin(0.2x — 0.8)],

which differs from u, (x) in a range of +20-100%. The
smoothing properties of the above transformations for

k =4 are shown in fig. 3.

3.2. Case 2

For the second test case we have chosen a typical
illposed problem. Our test case is based on that of the
monography of Tikhonov and Arsenin [2].

By analogy with the unfolding procedure of radia-
tion spectra, the following mathematical experiment can
be constructed. Suppose that the physical process under
discussion led to solving the following integral equation:

0 () =[x ) (x)dx. (T4)
where a =0, b=10,
u(x)= [1 —exp(—A(b—x)z}] + B sin(%-x)

2
2
+ X G exp{_Dk(x_xk) }
k=1
A=2 B=10.5
C,=6,6 D,=34

f,x e _f1 forz>0
p[(x,Y)—(l y)v(y x);v(z) {0 for others

x,=3,7.

and v (y) is given by straightforward integration (see
fig. 4).
The discretization has been provided as in Case 1.

0 7 4 5 8 T X

Fig. 4. Functions u (x) and v,( y) for Case 2.
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Fig. 5. Comparison of fluctuations excited by +5% error of the RHS for large numbers of iterations.

The errors of the RHS have been modeled by the
formula given in {2]:

- 3(b—a o
8, =v.(y) 1+@,\/—b3-jp), i=1,2,...,50,

where @, are random numbers from the interval [—1, 1]
and p = 0.05

Due to the integral in eq. (16) the convergence of the
MCW s extremely slow for this test case which give
good possibilities for investigating the numerical stabil-
ity of the iteration. For the ideal case ( p = 0) the result
of 4000 steps is presented in fig. 5 in comparison with
the exact solution. Choosing p = 0.05 one can see (fig. 5)
that the characteristic fluctuations of ‘%) appear late
enough to allow real peaks to be distinguished from
ones arising due to errors of the RHS.

4. Conclusions

. The use of the acceptance and the importance func-
tions related to the kernel function of Fredholm’s in-
tegral equations of the first kind has led to the construc-
tion of an iterative procedure which seems to be satis-
factorily stable against the errors of the RHS and the
kernel function. The convergence is controlled by the

integral of the relative error of the iterated RHS that
restricts the iteration to be recommended for solving
integral equations with nonsmooth RHS.

The effect of the transformation to the normal equa-
tion as well as that of the introduction of a power
function of the RHS’ ratio [in eq. (16)] is to reduce the
instability of the MCW due to the errors in the RHS
and the kernel function. Application of an exponent in
the power function far from the unity makes the conver-
gence slow down, so in such a case one has to choose a
more realistic trial function than (%= const.

It is hoped that improvements in the direction of
regularization of the basic equation will permit the
method to be applied into a wide range of the ill-posed
problems.

The author would like to thank Drs. B. Schorr
(CERN) and G. Emelyanenko (JINR) for helpful dis-
cussions.
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