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In ref. [5] an iterative method has been formally proposed for the numerical solution of a special class of integral equations of the
first kind, where one of the essential assumptions is the positivity of both the kernel and the right-hand side. Solving such an equation
is also known as unfolding or deconvolution. In this paper, we report the main results of our study (ref. [8]) on a motivation for this
iterative method and its convergence, taking into account a result (ref. [7]) on global convergence for a special discrete version of the
iteration procedure. In presenting the results, priority has been given to the applicability of the method and not to its mathematical
analysis, which may be found in ref. [8]). A numerical example from high-energy physics is presented.

1. Introduction

A common procedure in high-energy physics and
other fields of science is the measurement of various
kinds of spectra, or, more generally, of some density
function f which may depend on energy, effective mass,
current or some other parameter of one or more dimen-
sions. The observed spectrum g is usually a distorted
version of the true spectrum f. The distortions can
come from various sources, such as the limited resolu-
tion of the measuring device (detector) as expressed by
a resolution function r, the variable efficiency e with
which events are detected, or statistical fluctuations in
the measurements. It may also be the case that values of
r and e can only be obtained approximately by using
Monte Carlo simulation, which is another source of
distortion. Confining ourselves to the one-dimensional
case, the functions f, g, r, and e are related by an
equation of the type

[kGo Oy dy=g(x),  xelo1], (D)
0

where k(x, y)=r(x, y)e(y). Eq. (1) is an integral
equation of the first kind in which all the functions are
non-negative and f is unknown. The function k& is
called the kernel of the integral equation. Solving eq. (1)
is also known as unfolding or deconvolution. It is well
known that the unfolding problem is usually an ill-posed
problem, which means that small changes in g may
cause large changes in f.

In practice, g is never known exactly but is repre-
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sented only by a finite number of approximate mea-
sured values. More precisely, let x,, i = 0(1)m, be such

that
O<xg<x;<...<x,_;<x,=<1. )

We then consider the semidiscrete form of eq. (1):

[EDFOYdy=5. i=10)m, €
(V]

where g, and l::,( y) are approximations to g and
k(-, y), respectively, on (x,_,, x,). Examples of such a
discretization are

k(y)=k(x,y), &=8(x),
k,(y)= ;%_1'/:' k(x, y)dx,
§1‘=-—1—fx' g(x) dx, i=11)m.

X, X-1 Y%,

Egs. (3) have no unique solution in the class of non-
negative and continuous functions. If we know that f
belongs to a given class of functions which depend on a
finite number of parameters, it is advantageous to insert
such a function f into egs. (3) in order to obtain a
system of equations with a finite number of unknowns.
This system of equations will in general be nonlinear,
and will not necessarily have a unique solution in the
class of functions under consideration. When the system
is overdetermined the method of least-squares is often
used.
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If we know only that f is non-negative and continu-
ous we can use model functions as described, for exam-
ple, in ref. [1]. Another possibility is to use quadrature
formulae in order to replace eq. (3) by a system of linear
equations of the form

m ~
Z ¢, =8

J=1

i=1(1)m, (4)

with coefficient matrix (c,,) =[c,k,(z,)), where z, €
[0,1] are the knots and c, > 0 the weights of the quadra-
ture formula, i, j=1(1)m. The ¢, are to be interpreted
as approximations to f(z,).

There exists extensive literature on the numerical
treatment of the unfolding problem, of which we men-
tion only refs. [2-4], in which other references may be
found. In particular, Kondor [5] has proposed an itera-
tive method for solving eq. (1). He gives a purely formal
description of the method and presents a few examples
to illustrate it. A special discrete version of this iterative
method had already been used by Shepp and Vardi [6],
but this is not mentioned in Kondor’s paper. Shepp and
Vardi used the iterative scheme in order to solve a
constrained maximization problem which they obtained
from the maximum likelihood estimate of a finite num-
ber of unknown parameters of Poisson-distributed ran-
dom variables. The unknown parameters are discretized
values of an unknown emission density satisfying a
two-dimensional integral equation of the form of eq.
(1). The underlying physical problem arises in emission
tomography, where counts observed by a detector can
be used to approximate the right-hand side of eq. (1).
Kondor did not study the convergence of the iterative
method. Kaufman, Shepp and Vardi [6,7] did investi-
gate convergence for their discrete case.

In this paper we summarize the main results of our
study (Miilthei and Schorr [8]) on the iterative method
in both the continuous and the discrete case, taking into
account the convergence theorem given in ref. {7]. Proofs
of the theorems given below may be found in ref. [8].

2. The iterative method and a motivation

In order to avoid unnecessary complications, we
shall assume that k € C([0,1}2), g € C([0,1]), and that &
and g are positive. These requirements can be weakened
for practical cases. For instance, k may be allowed to
have isolated integrable singularities and discontinui-
ties. In what follows, the requirements to a solution f of
eq. (1) are always explicitly stated.

The iterative method is defined by

fn+l=G(fn)’ nENO’ (5)
where

G(NHD)=fNTH),

T(N0) = oo [EEE s,

F(x)= [[k(x, )f(5) 4y,

a(y)= j(;lk(x, y)dx,

f, foed={heC[0,1]\ {0} : h(x) =0
for all x € [0,1]}.

y€[0,1],

Obviously the operator G maps X into itself. Trivially,
a solution fe X of eq. (1) is also a function belonging
to

F={hex :T(h)(y)<1l, ye[01],
where equality holds for y with 2(y) > 0}.

The significance of the set ¢ will become clear in the
next section. For f € ¢, the following fixed point equa-
tion holds:

f=G(f). (6)

In the sequel we shall derive a constrained maximi-
zation problem whose solution, under certain condi-
tions, is equal to the solution of the continuous unfold-
ing problem. We shall then show that the solution of
this maximization problem can be obtained by the
iterative method, if it converges. In order to derive the
maximization problem, we use ideas which Kaufman,
Shepp and Vardi [6,7] applied to a discrete model of
emission tomography. In their model, photons are
emitted from boxes and detected, with some probabil-
ity, by a set of detectors. It is assumed that the photons
are emitted according to a Poisson distribution with
unknown mean value f, for box j. The mean values g,
of the counts observed by the detectors i are supposed
to be related to the values f, through the system of
equations

g=2r,f
J

where the p,, are known transition probabilities. The
unknown values f, are finally taken to be those values
which maximize the log-likelihood function belonging
to the observed counts in the different detectors.

In our case we may describe the positions of the
boxes by x,, i=1(1)m, satisfying relation (2), and
assume that, for the measurements g,

g=g(x) = [k(x 2)1(2) &y, 1=1)m.  (7)

Relation (7) is a necessary condition for f to be a
solution of the integral eq. (1). From relation (7) we
obtain

L 6= L [k 0)/0) 8, ®)
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a relation which will henceforth be taken as a constraint
on f.
Let P, i=1(1)m, be m independent Poisson-dis-
tributed random variables with mathematical expecta-
tion E(P,)=g,. If p, is a realization of P,, i=1(1)m,

the corresponding likelihood function is given by

m
In(f)=T1 exp(-2)sp./p.!, )
1=
where g, is given by the right-hand side of relation (7).
Taking the logarithm of both sides of relation (9), and
leaving out unimportant constants, we obtain the log-
likelihood function

Bu()= Eo [k IOV ] (0)

It is well known that maximizing A, for all fex’
which satisfy the constraint (8) yields a maximum likeli-
hood estimate of f. The p, in relation (10) are estimates
of the values g,, i = 1(1)m. We may therefore take p, in
relation (10) by g,. As m — oo we may replace the sums
in relations (8) and (10) by integrals to obtain formally

1 1,1
Ii= [(g(x) dx= [ [Uk(x, »)f(») dy dx
= [la(r)r () ay, (1)

A0 = [le) | [kx N1 @] ax. @)

We may consider A as the continuous version of the
log-likelihood function A,, in relation (10); A is a
functional of f for fixed ¥ and g which is concave
owing to the concavity of the logarithm. Eq. (11) is a
constraint on f€ X . In the sequel we therefore consider
the Constrained Maximization Problem (CMP): Maxi-
mize A on X, where

.X’F=={he.1”:j:a(y)h(y) dy=T}.

Note that G: #¥— ¥ and FC ¥ because of eq. (6).
For the CMP the following theorem then holds. It

shows the essential connection between the iteration

scheme (5) and the CMP.

Theorem 1I:

(1) Let f* €. Then, for all feX}, the following

inequalities hold:

A=A < [(5(x) In g(x) dx;

ie. every f* € is a global solution of the CMP. In
particular, for a solution f* €% of eq. (1) we have

A(f*) = [(a(x) In g(x) dx.
(2) For all feX} the following inequality holds:
A(f) =A(G(f))

In particular, if f* is a solution of the CMP, then

A(f*)=A(G(f*)),

which in the case of the uniqueness of f* implies
G(f*)=r*.

(3) Suppose that A is strongly concave on K. Then, a
positive f* € ¥ is a solution of the CMP if, and only
if, f* € and positive.

Remark: It can be shown that A is strongly concave on
X if, and only if, eq. (1) has a unique solution in
C[0,1].

For the proofs of theorem 1, see theorems 1 to 4 in
ref. [8]. The results of theorem 1 clearly show that it is
worthwhile to investigate further the properties of the
iterative method. For instance, the property (2) implies
that each iteration step of the scheme (5) leads to a
A-value which is at least as large as the one of the
previous step. In particular, theorem 1 shows that the
iteration procedure (5) refers primarily to the CMP, and
refers to the integral equation (1) only if there exists a
solution in J¢. In the case where A is strongly concave
on X, a positive solution of the CMP is characterized
as a positive element of #. The set of functions ¢
reflects the well-known Kuhn-Tucker conditions in
nonlinear programming which are used in refs. [6] and
[7], too. In the next two sections we shall investigate the
convergence and some other properties of the iterative
method (5).

3. Convergence properties of the iterative method

In order to investigate convergence of the iteration
scheme (5), one would like to be able to show that the
operator G is contracting. The usual method of showing
this consists in proving that its Fréchet derivative at a
fixed point of G with respect to any norm is bounded
by a number less than 1. But a nontrivial analysis in ref.
[8] (corollary of theorem 6) shows that this is not
possible in general. Nevertheless, certain convergence
properties of the iteration scheme may be proved, and
are given below.

Theorem 2: Let f,, = G(f,), n€N,, f, €X and posi-
tive. Then,

(1) A({,) converges monotonically to some real num-
ber as n — o0,

@ [£,O)1 = T(LX)? dy converges to zero as
0

n— oo.
In particular, T(f,) converges uniformly to 1 on each
subinterval of [0,1] on which all f, are uniformly
bounded away from zero.

For the proof, see ref. [8] (theorem 7 and its
corollary). Point (1) of theorem 2 states a property
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which is clearly advantageous for the maximization of
A on XT. As far as the significance of point (2) is
concerned, note that we have

L1 =T(HY dy=0

for all f&€,#. Furthermore, point (2) allows f, to con-
verge to zero on certain subintervals of [0,1] as n — 0.

The following theorem confirms what has been said

in connection with point (3) of theorem 1.
Theorem 3: For positive fy€X let f,. ;= G(f,) con-
verge to f* € C[0,1] with respect to L,[0,1] as n — co.
Then f* €¢, which implies that f* is a solution of the
CMP.

The question of whether the iterative scheme con-
verges is still open. The main obstacle to the proof of
convergence is the fact that, contrary to the discrete
case which is investigated in the next section, the rela-
tive compactness of the sequence f, with respect to the
commonly used function spaces is not available.

4. The discrete case

In order to perform the iterations (5) numerically, we
discretize by using the same quadrature formula for all
integrals in (5). We obtain the following discretized
form of the iteration scheme (5):

¢""1 =G, (¢"), (13)
¢" = (¢} ) 1=10)m € K,
K= {dER™\{0}¢,20,
n€N,,

G,.(¢)= [Gm,l(¢)]l=l(1)m9
G, (¢)=0T..(¢)

1 n m
Tm,l(¢) = ; Z cjkjlgj/ Zlc:kjs¢s7

i=1(1)ym},

¢=(®,)i=10ym € Hrn»

IJ=1
a, ;= Z c_]kjl’ g; ==g(ZJ), k_[l ‘=k(Z ’ Zl)’
J=1
i,j=11)m.

Note that » is the iteration index and m the discretiza-
tion index. By construction, we have ¢"€XT , n€N,
for ¢° €, where

m m
=o€t Taag=T,|. L= Tas.
=1 =1
By using the quadrature formula to discretize the func-
tional A defined in eq. (12) we obtain the approxima-
tion
m

A (o)=Y cg ln(Zch,j j), SEAT .
=1

J=1

In practical applications, as mentioned in the Introduc-
tion, it is obvious that k,, and g, are to be replaced by
k,(z,) and £, respectively, i, j = 1(1)m. In this form the
iterative scheme (13) can be interpreted as an iteration
procedure for the system of linear equations (4). All
statements in sections 2 and 3 concerning the continu-
ous case can be carried over to the discrete case, but we
do not formulate them explicitly. The following conver-
gence statement holds.

Theorem 4: For every positive ¢° €.%;, the sequence ¢"
defined by eq. (13) converges to ¢* € X , where ¢*
maximizes the functional A, on A7 .

Contrary to the continuous case, even global conver-
gence can be shown here with respect to all positive
elements of J¢,,. The statement of maximization in this
theorem follows immediately by carrying over theorem
3 to the iteration (13). The proof of the first part of
theorem 4 is obtained by writing the iterative scheme
(13) as the following equivalent iteration procedure

m m
}\r:+1 =}\': Z nj*pl_// Z prjxr;’

=1 r=1
N c,a,9; 0¥ = <8, P, = CJkJ’
"_ 2 = ——7 i b
i,7j=11)m, neN,,

for which convergence is proved in ref. [7] for all
positive starting values A9, i = 1(1)m. With respect to
the completeness of the assumptions of the convergence
theorem in ref. [7], the addendum in ref. [8] should also
be taken into account. Note that the following equa-
tions hold:

m m
Ynr=1, Y p,=1, i=1(1)m.
=1 J=1

Furthermore, the iterates A;, n& N, automatically
satisfy the constraint

Y Ar=1
=1

because of ¢" € X7 .

Note that the limiting point ¢* depends on the
starting point ¢° if A, has no unique maximum point
on X . Furthermore, if both the discrete constrained
maximization problem and the discrete version of eq.

(1)’

m

Z C_/ktj¢j = gn
J=1

i=1(1)m,

have a unique solution in J%,,, then ¢* is a solution of
this system of equations. The proof follows from the
discrete version of theorem 1 (1). The speed of conver-
gence is characterized by the spectral radius g:=
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0[G(¢*)], where

euw»=h%%xw4

1,1=11)m

is the Jacobian of G,, at the limiting point ¢* defined
in theorem 4; g is also called rate of convergence. In
ref. [8] (lemma 3) it is shown that

G, (¢*)=0,—L,,
where

1, = diag[ £ ] ,=10)m>
i=1(1)m,
L,=D,ClB,C,., C.:=(ck,), ~10m>
D, == diag(¢}*/a,),=10)m>

m 2
B, diag] e.8,/ (S e 87 ) | o

In order to determine ¢ we require only the submatrix
L,. , of L, which is derived from L, by leaving out the
ith row and the /th column forall i€ A:={ j: ¢* = 0}.
The smallest eigenvalue A{™ of L, , plays a special
role. In ref. [8] (Theorem 12) the following result is
given:

Theorem 5: For the spectral radius ¢[G,,(¢*)] we have

0[Gr.(*)] = max [1-X™, /"],
e

tm =T, (¢*) € (0,1],

where A{™, 1{™ €[0,1].

Note that the rate of convergence g is less than 1 if,
and only if, L, , is regular and ("™ <1 for i € A. This
is true, for instance, if C,, is regular and ¢* is positive.
If ¢ is less than 1, the iteration (13) always converges to
¢*, as defined in theorem 4, for every starting point
close enough to ¢* (see ref. [9], pp. 300-301). In this
case, ¢* must be an isolated maximum point of A,,,
and therefore the only one, because the set of maximum
points of A,, is convex and each of them is a fixed
point of G,,.

It is expected that 1 — A{™ will tend to 1 as m — oo
under certain assumptions. For a special model problem
investigated in ref. [8] (section 6) we have been able to
prove, by using an appropriate quadrature formula, that
the rate of convergence is

e[8r(sM)] =1- .

This means that the rate of convergence tends quadrati-
cally to unity as the step size m~! decreases. This is a
big disadvantage for the application of the iterative
scheme (13). On the other hand, it should be em-
phasized that according to theorem 4 the iteration pro-
cedure (13) is globally convergent to a maximum point
¢* even when the rate of convergence is unity.

5. Numerical example

In order to illustrate the iterative method (13) we
apply it to an example taken from ref. [4]. Other
numerical tests of the method may be found in refs.
[2,6-8). The calculations were done on an IBM 3090
computer in double precision, i.e. with a precision accu-
racy of approximately 15 digits.

Let f be the density of a variable y €[0,1]. The
measurement of y is performed in the following way.
The acceptance probability (efficiency) is

2
e(y)=1-2(y—1%), ye€[0,1].
The value y is transformed to

Yu() ==2y(1 - Tyﬁ)

Finally, y, is measured with the Gaussian resolution
function

r(x, y)=exp( =[x =y, (»)]'/26%),
x,y€][0,1], o=0.1.

The different measurement steps then yield the density
1
g(x)= [k(x, »)f(Ndy,  xe[o1],

where k(x, y)=r(x, y)e(y).

In order to see how the iteration procedure works,
we assume that f is essentially a sum of three
Breit—Wigner distributions. This means that

-
f = b, ———M%
) k=1 k(y~sk)2+d,f

ye[o.1].

., yelo1],

with parameters given by

K| b | s | de

1] 1002 |10
21 100] 04 | 01
3] 5010751 0.1

For the numerical treatment of this example the ex-
tended Simpson’s rule is used. In our case, we choose
the g, in'eq. (13) as
m

8= g: = Z c_]kljf(z_])’

J=1
since f is known. The weights ¢, and the knots z; are
those of the extended Simpson’s rule. The iteration
procedure (13) yields the following results, as shown in
table 1 and fig. 1, where

i=1(1)m,

6,,(x,)==f(x,)—¢7, 1=1(1)m’
18,(x,)]

=100 max ————— N,.

en=1 1rsn:s”u f(x) ’ 7 € No

We confine ourselves to the case m = 51 and the start-
ing values ¢’ =1, i=1(1)51. The dependence of the
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Table 1

fand §,, n=1,2,3,6, 50, 100

x f 8 3 83 5 850 8100
0.0 1.637 —0.315 -0.069 ~0.073 —0.077 —-0.034 -0.013
0.04 1.789 —-0.259 0.000 ~0.003 -0.029 0.001 —0.001
0.08 1.984 —0.245 0.043 0.050 0.001 0.014 0.003
0.12 2.248 —-0.298 0.041 0.075 0.024 0.003 0.006
0.16 2617 -0431 -0.024 0.063 0.059 -0.019 —0.003
0.20 3.160 -0.631 -0.177 -0.023 0.077 —0.012 —0.016
0.24 3.993 -0.822 ~0.422 -0.222 0.001 0.033 0.009
0.28 5.309 -0.764 —-0.621 —0.470 —0.206 0.033 0.034
0.32 7.340 -0.027 -0.360 -0.411 —0.328 —-0.073 —-0.032
0.36 9.904 1.536 0.703 0.374 0.077 —0.048 —0.046
0.40 11.339 2.574 1.545 1.089 0.560 0.137 0.080
0.44 10.037 1.578 0.804 0.501 0.153 —0.009 —0.007
0.48 7.628 -0.010 -0.272 -0.279 —0.247 —0.094 —0.044
0.52 5.800 -0.857 -0.665 —0.448 —0.160 —0.004 0.003
0.56 47719 —1.067 ~0.651 —0.354 -0.001 0.057 0.020
0.60 4.401 -0.979 ~0.563 —-0.301 —0.004 0.040 0.018
0.64 4.580 —0.668 -0417 -0.273 -0.119 —-0.037 —0.011
0.68 5.300 —-0.003 ~0.011 —0.042 —0.108 —0.081 —0.045
0.72 6.264 0.925 0.682 0.483 0.203 0.040 0.023
0.76 6.428 1.241 0917 0.657 0.328 0.097 0.055
0.80 5.324 0.537 0.330 0.150 —0.028 —0.054 -0.045
0.84 3.963 -0.237 ~0.209 —0.242 -0.220 —0.056 —0.023
0.88 2.959 -0.598 —0.346 -0.258 -0.127 0.021 0.025
0.92 2.301 -0.677 -0.279 -0.133 0.007 0.034 0.010
0.96 1.867 —0.662 —0.196 —-0.036 0.067 —0.001 —-0.011
1.00 1.570 ~0.652 —0.165 —0.010 0.048 -0.037 0.006

iterative method on the starting values has been il-
lustrated by some examples in ref. [8). On the other
hand, statistical reasons suggest the choice of constant
starting values.

We can see from table 1 that, in the beginning, the
iterations yield large improvements, a fact which has

] toatey
1.24
0.9
O.I.T
0-0J
-0"‘0 200 400 6(;07 800 1000 1200 fn

Fig. 1. Log(e,), n=1,2, ..., 1200.

also been observed for other examples in ref. [8]. How-
ever, the speed of convergence is rather slow, which is in
agreement with the consequences of theorem 5. Fig. 1
indicates that the.errors e, can only be reduced to a
certain level. Note the oscillations of the errors e,. The
minimum error for the 1200 iterations considered in fig.
1 is esp = 0.47. Given the fact that the right-hand side
of the integral eq. (1) is generally affected by measure-
ment errors in practical problems, the determination of
the solution with high precision is not usually necessary.
Therefore, a few iterations can yield a satisfactory re-
sult. Nevertheless, it should be kept in mind that the
iterative procedure (13) is globally convergent.
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