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Abstract. A study of the general framework for the causal boundary is presented, and for 
various separation properties necessary and sufficient conditions are proved. As a con- 
sequence, it is shown that the usual implicit topological identification rule, imposed on 
the ‘preboundary’ of the spacetime to obtain the right boundary structure, might in general 
not exist. To rule out this difficulty, a new explicit identification rule is proposed. This 
new identification seems to yield the intuitively expected point set structure of the boundary, 
onto which the chronology relation can be extended. 

1. Introduction 

In the general theory of relativity the spacetime model is a smooth manifold M without 
a boundary equipped with a Lorentzian metric. To study some special problems, e.g. 
asymptotic structure, singularities, etc, however, the introduction of certain kinds of 
boundary points seems to be useful. (To prove singularity theorems predicting cur- 
vature singularities, a boundary construction is probably indispensable [ l].) Several 
attempts have been made to construct a boundary to spacetime, among which the 
causal boundary is probably the simplest and most transparent one [2]. Its basic idea 
is that the future (past) inextendible non-spacelike curves having the same chronological 
past (future) define a point at a future (past) singularity or infinity. Certain boundary 
points defined by past inextendible non-spacelike curves, however, have to be identified 
with certain boundary points defined by future endless curves. 

The original identification rule of Geroch et al [2] for strongly causal spacetimes 
is given in an implicit way. Thus it is rather complicated to construct the causal 
boundary for a given spacetime, and for Taub’s spacetime this identification seems to 
conflict with the intuitively expected boundary structure [3]. 

Budic and Sachs proposed an explicit identification rule for causally continuous 
spacetimes [4]. For Taub’s spacetime their identification yields a more reasonable 
boundary structure. Unfortunately, their method cannot be used for strongly causal 
spacetimes and, in general, there is no known explicit rule to carry out this identification. 

The present paper is devoted to the causal boundary too. In 5 2 the general 
framework for the causal boundary is examined, where we concentrate on the separation 
properties of quotient spaces. Based on these results, in 5 3 we examine some of the 
properties of the topology proposed by Geroch et a1 and it is shown that the original 
implicit topological identification rule, given for strongly causal spacetimes, might not 
exist in general. Thus we have the twofold problem of finding an appropriate topology 
and an identification rule. In the remaining part of the paper a new explicit iden- 
tification and some of its consequences are described. Though we could not give any 
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reasonable topology on the completed spacetime, satisfying all our requirements, the 
point set structure of the boundary seems to be the expected one; moreover, the 
chronology relation can be extended to the boundary in a natural way. 

Throughout this paper spacetime is assumed to be time-oriented and strongly causal 
[5]. Our conventions are the same as those used by Hawking and Ellis [6], unless 
otherwise stated. The future and past sets are assumed to be open [ 5 ] .  

2. General framework for causal boundary 

To introduce some kind of boundary for the spacetime ( M ,  g) one has to have a 
topological space (G, 9) and an embedding CP: ( M ,  .7) -+ (fi, 9) such that @( M )  c M 
is an open dense subspace and the set d := - CP( M )  is interpreted as the boundary 
of M [7]. ( Y  is the Alexandrov or manifold topology, which coincide in strongly 
causal spacetimes [ 51.) 

By causal boundary we mean a boundary construction using only conformally 
invariant concepts, TIP and TIF [2] to represent the boundary points themselves. If 
M +  and M -  denote the collection of I F  and IP, respectively, then, because of the 
distinguishing conditions [SI, the mappings I’ : M -+ M’ : p H I*( p )  are injective. On 
the disjoint union M +  U M -  one can define the equivalence relation go that identifies 
PIP with the corresponding PIF: for F E  M + ,  P E  M - (  P, F )  E Bo if P = I - ( p )  and 
F = I + ( p ) f o r s o m e p ~  M (i.e. P = ( I - o ( I ’ ) - ’ ) ( F ) ) a n d f o r V F ~  M + , V P E  M-(F ,  F ) ,  
(P, P ) E % ~ .  If M”:= M + U M - / % ~ ,  then the map i : M - + M # : p - i ( p )  is injective, 
where i (  p )  stands for the identified pair ( I T ( p ) ,  I - ( p ) ) ;  furthermore, M #  is the disjoint 
union of i ( M ) ,  the collection d- of TIP (‘future preboundary’) and the collection dt ,  
d- of TIP (‘past preboundary’). Thus one can think of M #  as the spacetime with 
additional ‘preboundary’ points. However, if we want to recover the boundary structure 
of certain well known simple spacetimes obtained earlier by the conformal technique 
[9], then certain preboundary points in M #  have to be identified. Therefore we need 
a further identification on M # ,  which is an equivalence relation 3 on M #  such that 
for each pair ( A ,  B )  E % A # B implies A,  BE^+ U d-, i.e. 9 is trivial on i( M ) .  (The 
identification of inner and preboundary points cannot be allowed, as otherwise 
originally inextendible non-spacelike curves would become curves having endpoints 
in M. Thus, in constructing the boundary, the structure of M itself would change.) 
The completed spacetime is M := M # / %  and 3, := A? - i( M )  is the causal boundary 
for M. The points b E d, can be considered as endpoints of inextendible non-spacelike 
curves. 

The minimal requirement for the topology 9, beyond the ones mentioned above, 
is the T, separation of inner and boundary points [lo]. In every mathematical model 
where more than one structure exist together, the cooperation, or rather the compatibil- 
ity, of these structures is expected. In the present case two notions of endpoints of 
the non-spacelike curves, which are endless in M, are introduced. The first one is 
given by causality: it is the 3 equivalence class determined by the corresponding TIP 

or TIF. The second one is defined by the topology: a point x is said to be an endpoint 
of the curve y ( t )  if for every neighbourhood U of x there exists a parameter value to 
such that for V t  > t o ,  y (  t )  E U [6,9, lo]. Thus it is expected that the causal endpoints 
of inextendible non-spacelike curves be topological endpoints too. The requirement 
of the uniqueness of the endpoints of (not only inextendible) non-spacelike curves 
can be considered as a separation axiom for 9 between the axioms T,  and T2: in a 
Hausdorff space each non-spacelike curve has a unique past and future endpoint, and 
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if every 9 neighbourhood of x contained a point y f x ,  then x would also be an 
endpoint of all the curves for which y is an endpoint. 

Inextendible spacelike curves may not have any endpoints, or may have more than 
one endpoint. Thus, outside of mathematical convenience, we cannot see any reason 
to require the Hausdorffness of the space. In fact, the occurrence of certain non- 
Hausdorff separated points is inevitable in the NUT extension of Taub’s spacetime 
[6,10-131. The uniqueness of the endpoints of non-spacelike curves, however, seems 
to be a reasonable ‘physical’ separation axiom which, thus, can be expected to hold. 

One can easily show that no generality is lost if the topology 9 is considered as 
the quotient topology 9#/% of an appropriate 9# given on M # .  Following Geroch 
et a1 [2], we too prefer this way and in the rest of this section some of the general 
properties of a quotient topology will be considered. 

Let us start with a topology 9# on M”,  for which i :  ( M ,  9) + ( M # ,  T#) is an 
open dense embedding and, for every inextendible non-spacelike curve y, P := I-[ y] 
and F := I+[ y] are future and past endpoints of i 0 y, respectively. 

Proposition 2.1. If 3 is any equivalence relation, being trivial on i( M ) ,  and 7~ : M #  + 
M # / %  is the corresponding canonical projection, then 7~ 0 i : ( M ,  9) + ( M # / % ,  9#/%) 
is an open dense embedding. Moreover T(P) and 7r( F )  are future and past endpoints 
of 7r 0 i 0 y, respectively. 

ProoJ: i is injective and % is trivial on i( M ) .  Thus 7~ 0 i is injective too. Both i and 
7r are continuous and hence 7r 0 i is also continuous. To prove that 7r 0 i is open, let 
U be a 9-open subset of M. Then i ( U )  is 9#-open  and i ( U ) = . r r - ’ ( ( r o i ) ( U ) ) ,  
because 7r is injective on i ( M ) .  Therefore the set V : =  (7r 0 i)( U )  has an open preimage 
in M #  by the continuous map T, i.e. V is open in 9#/%. In particular ( T O  i ) ( M )  is 
also open. If W is a F#/%-open neighbourhood of bE d + u d - / %  then T-’( W )  is a 
9#-open  neighbourhood of VBE 7r-’(b). i ( M )  is dense in ( M # ,  T#) and thus 
T- ’ (  W )  n i( M )  # 0, i.e. W n i ( M )  # 0. Therefore T 0 i is an open dense embedding. 

If P := I - [  y] is a future endpoint of i 0 y, then let V be a 9#/%-open neighbourhood 
of .rr(P). Then T - ’ (  V )  is 9#-open  and P E  T-’( V). Thus for some parameter value 
to and for V t  > to,  i 0 y ( t )  E T- ’ (  V ) .  This, however, implies that 7~ 0 i 0 y(t)  E V, i.e. 
T ( P )  is a future endpoint of n- 0 i 0 y. Similarly, v ( F )  is a past endpoint of 7~ 0 i 0 y, 
or simply i 0 y. 

As a corollary to proposition 2.1 each point of M # / %  is a past or future endpoint of 
some non-spacelike curve. Furthermore each such curve has (topological) past and 
future endpoints. These endpoints, however, are not necessarily unique; their unique- 
ness depends on the separation properties of the space. First, the separation of inner 
and boundary points is considered. 

Proposition 2.2. ( a )  The boundary points are TI separated from the inner points in 
the topology 9#/% iff all the single point sets { i ( q ) } ,  q E M, are closed in Y#. 

( b )  If the points bEa+ud-/%, i ( q ) ( q E  M )  are T2 separated in 9#/%, then 
V B E  T-’ (b)  are T2 separated from i ( q )  in T#. 

( c )  If the point p E M has a 9-open neighbourhood V such that each B E di U a- 
has a 9#-open  neighbourhood UB for which U, n i (  V )  = 0, then all the boundary 
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points b E 8 + u a - / %  are T2 separated from i ( p )  in Y"/%. (The neighbourhood V 
above will be called a Y*-universal neighbourhood of p.)  

Prooj ( a )  Inner points are T2 separated in Y#/%. Thus, if for V q E  M,  i ( q )  is TI 
separated from the boundary points in Y*/%, then { i ( q ) }  is closed in T#/% and thus 
in Y# too. Conversely, for V b  ~ d + u a - / %  and Vq E M,  i ( M )  is a T*/%-open neigh- 
bourhood of i ( q ) ,  not containing b. If { i ( q ) }  is closed in T*, then M # - { i ( q ) } =  
n- - ' (n- (M#-{ i (q)} ) )  isopenin Y#. Thus M * / %  - { i ( q ) } =  n-(M#-{i(q)})isa Y-#/%- 
open neighbourhood of Vb. 

( 6 )  If W and U are disjoint Y*/%-open neighbourhoods of b and i ( p ) ,  respec- 
tively, then n - - I (  W) and T- ' (  V )  are disjoint Y#-open neighbourhoods of all the 
B E  n-- '(b) and i ( p ) ,  respectively. 

( c )  If 

U : =  i, U, w:= n-( U )  
B E J  u J -  

then b E W and, as a consequence of U n i ( M )  = W n i ( M ) ,  W n i( V )  = 0. But W 
is T*/%open, since n - - l (  W )  = a'v a-u ( U  n i ( M ) )  = U is open in Y#. 

In terms of the topology Y#, proposition 2.2 gives an equivalent condition for the TI 
separation, a necessary condition, and a sufficient condition for the T2 separation of 
inner and boundary points, respectively. Thus if each inner point has a T#-universal 
neighbourhood, then for any non-spacelike curve y with endpoints in M the endpoints 
of i o  y in ( M # / % ,  Y#/%) are unique. 

The topology T* is expected to be defined in terms of causality, and now the 
notion of causal topology will be defined. A set U is called causal if no non-spacelike 
curve leaving U can re-enter U ;  and the topology Y# is said to be causal if every 
point has a neighbourhood base consisting of causal open sets. The next proposition 
gives equivalent statements for two separation properties of the entire space 
( M # / % ,  Y#/%). 

Proposition 2.3. ( a )  The space ( M * / % ,  Y*/%) is a TI space iff the set [ X I : =  
{ Z  E M # l  ( X ,  2 )  E %}  is closed in Y# for V X  E M # .  

( b )  Let Y# be a causal topology such that each point of M has a Y#-universal 
neighbourhood; let y be a non-spacelike curve, P:= I - [  y ]  and b := r ( P ) .  b is the 
unique future endpoint of i o  y in ( M # / % ,  Y"/%) iff [PI is closed in T# and every 
future endpoint of i 0 y in ( M * ,  Y#) are %equivalent to P. 

Proof: ( a )  Let X E  M # / %  and X E  T - ' ( x ) .  If the space ( M * / % ,  Y#/%) is TI then 
{x} is closed in T#/%. Thus [ X I  = { Z  E n- - ' (x ) }  = n--'L{x}) is closed in Y#. If [ X I  
is closed in Y* then M * - [ X I  is open. Moreover M # - [ X ] =  n - - ' ( n - ( M # - [ X ] ) ) .  
Thus M # / %  - { x }  = n - ( M " - [ X ] )  is open, i.e. { x }  is closed in Y#/%. For V X E  M #  
this, however, implies that the quotient space is TI. 

( b )  Let b be the unique future endpoint of i 0 y in the quotient space. If B is a 
future endpoint of i 0 y in ( M # ,  Flip(), then n-( B )  is an endpoint of i 0 y in the quotient 
space too. Thus B must be %-equivalent to P. Since b is unique, [PI is closed in Y#. 

Let [PI be closed in Y# and all the future endpoints of i 0 y in Y# be %-equivalent 
to P. Let [0, 1) be the parameter domain of y. First we show that for VS E (0, 1) the 
portion i 0 y ( [O ,  S I )  is closed in Y*. y([O, S I )  is closed in the manifold topology T. 
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Thus for V p  E M - y([O,  SI) the set i(M - y([O,  81)) is a Y#-open neighbourhood of 
i ( p ) ,  which does not intersect i 0 y([O,  S I ) .  y ([O,  SI) is compact in the manifold 
topology and so it can be covered by finitely many Y#-universal neighbourhoods: 
y([O,  S ] )  c VI U . . . U V,. If B E d + u  a- and U,, , . . . , U,, are the T#-open neighbour- 
hoods of B having an empty intersection with i (  VI), . . . , i( Vr) ,  respectively, then 
U := U,, n . . . n U,, is a Y#-open neighbourhood of B having an empty intersection 
with i 0 y([O,  SI). Thus i 0 y ( [ O ,  SI)  is closed in Y#. 

Let B E a+ U a- - [ P I .  Y# is a causal topology _and B is not an endpoint of i 0 1 in 
T#. Thus B has a Y#-open neighbourhood U, and 366 (0 , l )  such that U, n 
i ;  y ( [ S , 1 ) ) = 0 .  [PI  and i o  y([O, SI) are closed in F# and thus UB:= 
U,  - [PI  - i 0 y (  [0 ,  SI) is open too. Define 

U:= U U,. 
B E ~ + V J - - [ P ]  

Then T (  U )  n i 0 y = 0, b ' E  T (  U )  for Vb 'E  a+u a - / %  - { b }  and T - ' ( T (  U ) )  = 
T- ' (  U T (  U,)) = ~ - ' ( ( J + u a - / %  - { b } )  u ( U  n i ( M ) )  = (a'ua--[P])u ( U  n i ( M ) )  
= U, i.e. T (  U )  is a F-#/%-open neighbourhood of every boundary point different 
from b, into which i 0 y does not enter. Thus b is unique. 

The main problem is therefore to determine which points of a+ U a- should be identified 
and how should the topology be defined. 

3. The topology 3' and the CKP identification rule 

A candidate for Y# is the topology proposed by Geroch et a1 [2]. For each non-empty 
irreducible future set F they define the sets 

F'"':= { P E  i ( M )  U a'l P n F # 0} 

FeXt := { P E i (  M )  U 1 if P = I-[ SI for some S c M, then I+[  SI g F }  

and similarly PI"', Pext  for each irreducible past set P. Naturally, F'"'n Fe"' = 0 and 
the collection %'# := {PI"', Pext, F'"', FextI P E  M - ,  FE M + }  is a covering of M # .  Thus 
there is a coarse topology YgKp, or in this section simply T#, on M #  for which %'# 
is a subbase [2]. 

Proposition 3.1. ( a )  The map i : ( M ,  9) + ( M # ,  Y#) is an open dense embedding. 

future endpoint of i 0 y in the topology Y'. 
( b )  If y is a future endless non-spacelike curve in M, then P := I - [  y ]  E a' is a 

( c )  P is a causal topology. 

Proof ( a )  Due to the distinguishing conditions, i is injective. i is continuous, because 
i-'(F'"') = F, i - ' (  Fe'') = M - for V F  E M +  and similarly i-'(P'"') = P, i-l(Pext) = 
M - p, where the bar denotes closure in the manifold topology. For V p  E M, i( I+( p ) )  = 
( I + (  p) ) '" '  n i (  M ) .  But ( I + (  p)) '"'  c i( M )  u a' and the collection {PInt 1 P E a'} con- 
stitutes a covering of i (  M )  U a-.  Thus i (  I+( p ) )  = U {( If( p))'"' n P'"'1 P E a'}, which is 
open in F#. Similarly i ( I - ( p ) )  is also open in Y#. Thus i is an embedding. i ( M )  
is open in F# because i (  M )  = u { i (  I+(  p )  n I - (  q ) )  I p << q } ,  If U is a Y#-open neigh- 
bourhood of P E a' then for some point p E P and I F  F ,  , . . . , F,,, P E (If( p))'"' n F:" n 
. . . n F Y I c  U. Then P n I+( p )  f 0 and P c ( M  - PI) n . . . n ( M  - E,) and there is 
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a set S c M  such that P = Z - [ S ]  and S c Z + ( p ) n ( M - F , ) n  . . .  n ( M - F , ) =  
i-'((I+(p))'"'n F;"'n . . , n F',"')c i - ' ( U ) ,  i.e. i ( M )  is dense in ( M ' ,  9'). 

( b )  If U is a Y"-open neighbourhood of P then for some p E P and I F  Fl, . . . , F,, 
P E  (I+(p)) lntn F;"n . . . n Fe,X'c U. y :  [0, l ) +  M is a generator of P and thus for 
sufficiently small E > 0 and final segment S, := y ( [  1 - E ,  1)) one has P = Z-[S,]. P E  
F;"'n . . . n FPt implies I '[S,] FT F, U . , . U F, from which s & I', U . . , U F, follows 
for Vs E S,. Therefore there is a parameter value to such that for V t  > to ,  y (  t )  E Z' (p)  n 
( M  - F1) n . . . n ( M  - Fn), This, however, implies i 0 y(  t )  E U, i.e. P is a future endpoint 
of i o  y. 

(c )  If P E i( M )  U dt then the sets of the form ( I + (  p))'"'n F;"n. . , n F:"', p E P, 
constitute a Y#-neighbourhood base of P. These neighbourhoods, however, are causal 
sets. 

In the rest of this section the separation properties of ,'7# will be considered. 
Since i is an  embedding, any two different points of i ( M )  c M #  (inner points) are 

T, separated in 9'. 
Let q E M and P E  a+. If q E p then let V be a causally convex 9 - o p e n  neighbour- 

hood of q with compact closure. For all r E V n  P there is a timelike generator y of 
P starting at r. y is future endless, so it has to leave V and cannot re-enter V [5,6]. 
Thus 3 p  E y such that Z'(p)  n V = 63. Therefore i( V) and (If(p))'"' are disjoint 
Y'-open neighbourhoods of i ( q )  and P, respectively. If q E t P  then there is an I F  F 
such that q E F c t P (TP  is the chronological common future of P [ 141). Then i( q )  E F'"' 
and if Fe"' did not contain P then there would be a set S c M such that P = Z-[S] 
and It[S] c F. But then S c p n I' would hold which, however, would imply that the 
strong causality condition is violated at the points of S. If q E M - p -7'p then there 
exists a causally convex neighbourhood V = I+( U )  n I - (  U )  of q and a point p E P such 
that V n  p = 0 and V n  I + ( p )  = 0. (If( p))'"' and i( V) are disjoint 9 # - o p e n  neigh- 
bourhoods of P and i ( q ) ,  respectively. Finally, if qEdTP then Z + ( q ) c T P .  Thus 
P ~ ( l + ( q ) ) ~ ~ ~ ,  i ( q ) & ( Z + ( q ) ) e x '  and i ( q ) E  i ( M ) ,  P $  i ( M ) ,  i.e. P and i ( q )  are TI 
separated in 9'. Thus we have proved the next statement. 

Proposition 3.2. For all q E M and B E a+ U a- the points i ( q )  and B are TI separated 
in 3'. 

A simple consequence of propositions 2.2(a) and 3.2 is that the inner and boundary 
points of the quotient space (M"/9? ,  Y#/%) are TI separated for any identification 9. 

In general, however, inner and preboundary points of ( M # ,  9#) are not T2 separ- 
ated; moreover, for non-spacelike curves y with endpoint q in ( M ,  Y) the endpoint 
i ( q )  of i 0 y is not necessarily unique in ( M " ,  9') either. Figure 1 shows a two- 
dimensional spacetime in which the TIP P and the point i ( q ) ,  q E dTP, are TI separated 
in ( M # ,  9'); but the TIP P is a future endpoint of the timelike curves ending at q, 
and thus P and i ( q )  are not T2 separated. This spacetime is obtained from that shown 
by figure 37 of [6], cutting out the countable many closed segments Lo,  L1, L 2 , .  . . . 
This spacetime satisfies Carter's nth-order strong causality condition [15] for V n  E N  
(i.e. the 'moth' strong causality condition) but is not stable causal [ 6 ] .  

Proposition 2.2(b) gives us a necessary condition for the existence of an  iden- 
tification g H  yielding T2 quotient topology: inner and preboundary points of M #  
must be T2 separated in 5#. Thus in general strongly causal spacetimes an  identification 
gluing together only preboundary points and yielding a Hausdorff quotient topology 
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& Identlfled - 
Figure 1. The TIP P is an endpoint of all the timelike curves i 0 y in YEKp, for which 
q E JTP is an endpoint in 9. 

might not exist. Geroch et a1 [ 2 ]  defined 92 as the minimal identification yielding T2 
quotient space or, more precisely, 9lGKP is the intersection of all the equivalence 
relations % H  above [ 2 ] .  Consequently, unfortunately the identification rule of Geroch 
et a1 might not exist in general. For the uniqueness of the Y#/% endpoints of a 
non-spacelike curve in the quotient space the 9 equivalence of the F# endpoints in 
M #  is necessary (see the proof of proposition 2.3(b)).  Thus an identification 9l gluing 
together only preboundary points and yielding unique endpoints for world lines in 
( M # / % ,  F#/92) might not exist either. 

In stable causal spacetimes, however, such situations cannot occur, as follows from 
proposition 2.2(c) and 3.3 below. 

Proposition 3.3. If M is stable causal then every point p E M has a Y#-universal 
neighbourhood. 

ProoJ: Suppose, on the contrary, that for some point p E M and every 9-open 
neighbourhood (a,, b,) of p there is a preboundary point B, with no Y#-open 
neighbourhood having an empty intersection with i((a,, b,)), ((a,,, b,) is the chrono- 
logical interval I+(a , )  n Z-(b,).) Let B, be a TIP and B, = Z-[SL] for some SL c M. 
But Z-[SL]g Z-(b,,) implies the existence of a point r,  E I - [ S L ] -  Z-(b,,), from which 
B, E (Z+(r,))int and (I+(r,))i"tn ;((a,, b,)) =0 follow. Thus, according to our 
hypothesis, Z-[SL] c I - ( b n )  must hold. If for every set S satisfying Z-[SL] = Z-[S]  
Z+[S] @ Z+(an)  held, then B, E ( I + ( u , , ) ) ~ "  and ( I+(a, ) )extn i((a,,, b,)) = 0 would hold. 
Using a similar argument for the case B, being a TIF, it follows that for every (a,, b,) 
there is a set S, c M such that both I'[S,,] c I + ( a n ) ,  I - [ & ]  c Z-(b,,) hold and at least 
one of the sets I'[S,], Z-[S,] is terminal and indecomposable (see [ 2 ] ) .  If ( U ,  U) is a 
9-open neighbourhood o f p  with a compact closure, then, without loss of any generality, 
one can assume that S, n ( U ,  U) = 0. 

Let t be the global time function on M and E > 0. Let {a,}  and {b,} converge to 
p ,  let s, be a point of S, and W,, a Y-open neighbourhood of s,. There are points 
x, E I - ( s , )  n W, and yn E Z+(s,) n W,, such that 

It(s,) - t(x,)l< Ei4n l l ( Y n ) -  t(s,)l< s i 4 n .  

Since If(s,) c Z'[S,]c I+(a , )  and I-(s, ,)  c I - ( & ) ,  the causal relations x,, << b,, and 
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a,  << y ,  follow, implying that 

t(a,,) - ~ / 4 n  < t (  y n )  - ~ / 4 n  < t ( s , )  < t ( x , , )  -t & / 4 n  < t (  b,) + ~ / 4 n .  

t is continuous and {a, ,} ,  { b,} + p .  Thus 

t (an) ,  f ( Y n ) ,  t(sfl), t(xn), t ( b n ) +  t ( p )  

lt(p)-t(an,l<:. l t (a , , ) - - t (y , ) /<& It(yfl)- t(sfl)l <b. 
i.e. 3 n , E  N such that for Vn > no 

For VS > 0 let U, := { r E (U,  v)i t (  p) - 6 < t (  r )  < t (  p) + S}. Let A be any future direc- 
ted timelike curve starting at a point a E I - ( p )  n lJFI2, and let p be any past directed 
timelike curve starting at a point y E A n Then for sufficiently small E the increment 
of the time function t along the segment of every such A lying in U,/z is not less than 
:E .  Furthermore the decrement of t along the segment of these p lying in U, is not 
less than 4.. Hence the causal relations a, << p ,  a, << y,, s, << y ,  and the corresponding 
convergences imply that s, E U, c ( U ,  U), which, however, contradicts S, n ( U ,  v) = 0. 

For the sake of completeness consider the separation of preboundary points and let 
P, P ' E ~ +  and FEX. If FPTP, then 3 q E F  such that P-I-(g)#M and let P E  
P -m. Then ( I + (  p))'"' and ( I - (  9))'" ' are disjoint T#-open  neighbourhoods of P 
and F, respectively. If y is a generator of P and F c  TP, then y =  p and FE  P'"'. 
Thus F cannot be an endpoint of i 0 y. If P'P P and y is a generator of P then for 
every point p '  E P' - P' E ( I + (  p'))'"' and p n I+(  p ' )  = 0, i.e. P' cannot be an endpoint 
of i o  y. 

If P P P' = P then, however, P and P' are not necessarily T,  separated even if M 
is stable causal. Figure 2 shows a two-dimensional spacetime, obtained from the 
quarter Minkowski spacetime by cutting out the countable many closed segments 
L , ,  L2 , .  . . , in which the T I P  P and P' are not T,  separated in Tiff. One can also find 
stable causal spacetimes in which neither the TIP nor the TIF are T2 separated. 

If, however, M is causally continuous, then each non-spacelike curve has a unique 
past and future endpoint in ( M # ,  T') and if M is globally hyperbolic then the space 
( M ' ,  F') is T2. 

Finally, one can therefore conclude that either or both the topology FEKp and the 
identification rule gGKP have to be abandoned. Though a great variety of modified 
forms of FEKP, for which a statement like proposition 3.1 holds, can be introduced, 
but all these have a pathology like that is shown by figure 1. The 'violation of strong 
causality conditicn at the preboundary point P' prevents the T2 separation of P and 

Figure 2. The T I P  P, P' are To but  not 7, separated in S E K P .  
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i( q ) ,  q E aTP; and consequently gGKP does not exist either. In particular, although 
the topology proposed by RAcz [ 161 yields the intuitively expected boundary structure 
for Taub’s spacetime, it also has this defect. 

4. Naked TIP 

If an explicit identification rule were given, then it would be easier to construct the 
causal boundary for a given spacetime. Moreover, beyond this practical advantage, 
the boundary structure would be more transparent. Thus, following Budic and Sachs 
[4], we would like an identification rule 9 given explicitly as far as possible. 

In this section a construction is presented that might be an appropriate candidate 
for such an identification. As is suggested by examples (e.g. the Reissner-Nordstrom, 
Kerr, anti-de Sitter spacetimes), certain preboundary points on the naked part of d’ 
should be identified with certain preboundary points of the naked part of X. A TIP 

P is said to be naked if, for some point p of M, P c  I - ( p )  [17,18]. One can show 
that does not have a naked element iff M is globally hyperbolic [19] and this is 
also equivalent to T P = W  for every TIP P e d f .  Since global hyperbolicity is time 
symmetric, the existence of a naked TIP implies the existence of a naked TIF. The next 
proposition shows that slightly more is true. 

Proposition 4.1. If P E  at is naked then there is a naked TIF F such that for V q  E F 
P c I - (  q )  (such a TIF is called a naked counterpart of P )  and F is maximal, i.e. F is 
not a proper subset of any naked counterpart of P. 

Prooj Let y : [0, 1) + M be a timelike generator of P and { t , }  a sequence in [0, 1) with 
no accumulation point and t ,  = 1. P is naked and thus there is a point p E M 
such that, for all n EN, y(t,)<< p. Let A, be a timelike curve from y( f , )  to p. y is 
future endless and thus there is a past endless non-spacelike limit curve A of the family 
{A,} through p. M is future distinguishing and therefore F‘:= I f [ h ]  is a TIF such that 
for V q  E F’, P c  I - ( q ) .  To prove maximality, we use Zorn’s lemma (see also [20]). 
Let 9 be the collection of the naked counterparts of P. 9 is not empty and is a 
partially ordered set with respect to the inclusion relation. If 9o is a linearly ordered 
subset of 9 then Fo := U Po is a TIF and a naked counterpart of P. Thus Fa E 9 and 
hence, because of Zorn’s lemma, 9 has a maximal element, i.e. each naked T I P  has a 
maximal naked counterpart. 

In general there may be naked TIP with more than one maximal naked counterparts. 
Based on the definitions one can prove easily the next statement. 

Proposition 4.2. For a naked T I P  P TP = U, F,, where the F, are the maximal naked 
counterparts of P. 

Note that if F is a maximal naked counterpart of P, then P is not necessarily a maximal 
naked counterpart of F. 

Now, we turn to the problem of finding an appropriate identification. Of course, 
a relation is needed by means of which one can identify a naked T I P  with those naked 
TIF only, which are naked counterparts of the TIP. Trivially, we wish to identify any 
naked TIP  with some of its naked counterparts only if ‘they lie arbitrarily close to each 
other’, i.e. they are maximal with respect to each other. 
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Following the idea above we define the relation - : for the terminal indecomposable 
past set P and future set F, we write P -  F if they are maximal naked counterparts 
of each other. A naked TIP need not to be --related to any naked TIF or may be 
--related to more than one naked TIF. However, one can show easily that each naked 
TIP is contained in a naked TIP being --related to some naked TIF: if F is a naked 
counterpart of the naked TIP P then there is a naked TIP Po and a naked TIF Fo such 
that P c Po, F c Fo and Po - Fo. If P is a TIP and F is a TIF such that P = 4 F and 
F = t P  then, as a corollary to proposition 4.2, P - F, i.e. our relation - is an extension 
of the identification proposed by Budic and Sachs [4] for causally continuous space- 
times. 

Until this point of the present section only the past and future distinguishing 
conditions have been used, without the strong causality condition - yields unsatisfac- 
tory results. Let the strong causality condition be violated at P E  M and define 
P:= I - ( p )  and F:= I + ( p ) .  If we cut out p from M then F becomes a naked TIF and 
P becomes a naked TIP in M ‘  := M - { p } .  While we think of F and P as representing 
the same point of the boundary of M’,  P + F. If the strong causality condition holds, 
then such pathologies cannot occur. 

We define 3 as the smallest equivalence relation generated by -: for VX E M # ,  
let ( X ,  X )  E 3 and for B, B’ E d+ U a-, B # B’, let (B ,  B’) E 3 if for a finite number of 
preboundary points B1, . . . , B,, B - B ,  - . . . - B, - B’ holds. 

In Taub’s spacetime [3] our equivalence does not shrink the one-parameter family 
of pairs of null-finite TIP and TIF into a single point; it identifies only the TIP and TIF 

labelled by the same parameter value c, according to our intuitive picture. Recalling 
that Taub’s spacetime is causally continuous, and hence is stable causal too [ 141, every 
non-spacelike curve has a unique past and future endpoint in ( M # / 3 ,  ygKp/%) 
(proposition 2.3( b ) ) .  Figures 3 and 4 show two-dimensional stable causal spacetimes, 
which are additional examples for the difference of 9 and 3 G K p .  The spacetime of 
figure 3 is obtained from the half Minkowski plane by cutting out two series of closed 
segments L1, L 2 , .  . . , and  L:, L;, . . . . Here F and P are identified by our 92, but not 
by 3 G K P ,  as they are T2 separated in YgKp/%GKp. In figure 4, which is the spacetime 
given by figure 9 of [2], the situation is just the reverse of the previous one: PAGKp 
identifies F, P, F‘ and P’, while our 3 glues together only F with P and F‘ with P’. 

Figure 3. The T I P  P and the T I F  F are identified by d but not by % G K P .  
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Figure 4. The TIP P, P' and the TIF F, F '  are all identified by 9liZ,,,, but our % identifies 
F only with P and F' only with P'. 

Of course, the topology YzKp/9? is not T2,  but the non-spacelike curves have unique 
endpoints. 

5. PIP are naked 

To identify PIP with the corresponding PIF the relation go, and to identify points of 
a+ U d- the relations - and ?i? were introduced. The completed space A?, therefore, 
was obtained from M + u  M -  in two steps. Thus it would be simpler and more 
convincing if the 'product' of equivalences 3, ?i?o could be defined in a unified single 
procedure. 

In the present section we show that the notion of naked counterpart, as well as the 
relations -, ?i? themselves can be extended to the IP  and IF,  and for PIP and PIF of a 
strongly causal spacetime the extended relations -, ?i? are just the equivalence P7i0, i.e. 
both -, 92 are extensions of %!o. 

For any point p E M and the PIP P = I - (  p )  there is a point q E M such that P c I-( q) ,  
i.e. PIP are naked. Naked counterparts and maximal naked counterparts of a naked 
IP  can be defined too. For naked I P  and IF, - will be defined in a similar way as we 
have done for TIP and TIF. While a PIP  may have a maximal naked counterpart which 
is a TIF, no naked TIP can have any maximal naked counterpart being a PIF. (The 
proof is a simple application of the well known 'limit-curve technique' [ 6 ] . )  Con- 
sequently, no inner point can be --related to any preboundary point, and hence the 
relation - defined for I P  and I F  is an extension of that introduced in 5 4 for T I P  and 
TIF. To prove that this - is an extension of ?20 too, the strong causality condition is 
needed, as is suggested by figure 38 of [ 6 ] .  

Proposition 5.1. ( a )  M is strongly causal iff I+(  p )  - I - (  p )  for V p  E M. 
( b )  If M is strongly causal then I - (  p )  - F iff F = I+( p ) .  

ProoJ ( a )  If the strong causality condition is violated at p E M then there is a 
neighbourhood U of p such that for every neighbourhood V,, of p contained in U 
there are points x, E Z - ( p ,  V n ) ,  y ,  E I + ( p ,  V,,) and a timelike curve A, from x,, leaving 
U and returning to y ,  [S, 61. The family {A,} has a non-spacelike limit curve A through 
p ,  which is actually a null geodesic. Trivially, I + ( p )  is a naked counterpart of I - ( p )  
and, using the family {A,,}, one can show that Z + ( r )  is a naked counterpart of Z - ( p )  
too for V r  E J - (  p )  n ( A  - { p } ) .  Now I + (  p )  = I + (  r ) .  But then I+(  p )  can be a maximal 
naked counterpart of I - (  p )  only if I+(  p )  = I+(  r )  which, however, contradicts the 
future distinguishing condition. 
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Conversely, suppose, on the contrary, that for some point p and future directed 
timelike curve U (with or without endpoint) F = Z'[a] is a naked counterpart of I - ( p )  
and I+(  p )  c F $ I + (  p ) .  Then there is a point r E v n F and a causally convex neigh- 
bourhood V of p such that ( I - ( r )  U F )  n V = 0. If y E If( p )  n V then there is a point 
s E a n I - ( r )  n F such that s << y, i.e. there is a timelike curve p from s to y.  On the 
other hand, however, F is a naked counterpart of I - (  p ) .  Thus for V x  E I - (  p )  n Vx << s, 
i.e. there is a timelike curve meeting V twice, which contradicts the causal convexity 
of v. 

( b )  If F = It( p )  then I - (  p )  - F, according to the first part of this proposition. 
Conversely, suppose that I - ( p )  - F, where F is a naked IF. Then F must be a PIF, 

i.e. F = I f ( q )  for some q E M. Since I ' ( p )  - I - (  p ) ,  one has to show that p = q, i.e. 
the uniqueness of IT( p ) .  On the contrary, suppose p # q. If { p n }  and {q,} are sequences 
of points from I - ( p )  and I + ( q ) ,  converging to p and q, respectively, then there is a 
timelike curve A,, from pn  to 9,. The family { A n m }  has a future directed non-spacelike 
limit curve A from p .  Since both I + ( q )  and I t (p)  are maximal naked counterparts of 
I - (  p ) ,  It( q )  @ It( p )  @ It( q ) ,  implying that h is a null geodesic. If r E A - { p } ,  then 
I - ( p ) c  I - ( r )  and, since r is a limit point of {A,,,,,}, I - ( r )  is a naked counterpart of 
I + ( q ) .  Consequently, I - ( p )  can be a maximal naked counterpart of I f ( q )  only if 
I - (  r )  = I - (  p )  which, however, contradicts the past distinguishing condition. 

6. Causal structure for M 

With the natural causal relations << , < ( M ,  << , <) is a causal space. Furthermore M' 
can also be equipped with causal space structure such that the mappings I' are causal 
morphisms [2,6,  81. 

As far as possible, our aim is to extend the causal relations <<, < to the completed 
space M. Although the causality relation between two points of the spacetime can 
change if boundary points are added to M, the chronology relation, however, is expected 
to remain the same, because the chronological futures and pasts are open in M and 
i ( M )  is dense in M. This implies that, from our 'extension' point of view, neither of 
the definitions of [2,4] for these relations is acceptable: the points q, p in figure 4 are 
not causally related in M, but I + ( q ) ,  as a PIP, chronologically predicts I + ( p )  if the 
chronology coming from [2,4] is used. 

Recalling that each point m of M is a class [PI, P 2 ,  . . . ; F,  , F 2 ,  . . . ] of $22 -equivalent 
I P  and IF, define m 7 m' if, for some F, E T - ' (  m )  and PL E K1( m') ,  Fa n PL # 0 (see 
also [lo]). Based on these definitions one can easily prove the next statement. 

Proposition 6.1. ( a )  7 is an antireflexive and transitive relation on M, 
( b )  For p ,  q E  M p < <  q iff i ( p ) z i ( q ) .  

Thus A? with << is a chronological space [21] into which M is chronologically embedded 
by i. For example, since our 3 does not identify the boundary points b := T (  P )  = T (  F )  
and b' := T (  P' )  = T (  F ' )  in figure 4, one has b ' 7  i (  q )  7 b;  while if 9?,ZGKP were used then 
the structure of M#/9iGKp would contradict to any reasonable chronology relation [2]. 

one can define causality z B  on A? [8]: m T B m '  if 
I + (  m ' ,  M )  c It( m, a)  and I - (  m, A?) c I - (  m', M), where I + (  m, A?) := 
{m' E fi 1 m 7 m'}. Then (M, T, 2 ") is a causal space for which i is a causal morphism 
and is a causal isomorphism iff M is causally simple. However, in certain situations 

Using the chronology 
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we would like to consider the points m, m' as causally related even if either or both 
of the defining relations of Z B  do not hold, or sometimes as causally unrelated even 
if both of the defining relations hold. Thus we do not consider Z' as a satisfactory 
causality relation on fi. 

7. Conformally embedded spacetimes 

If the spacetime can be embedded, in some sense, into a larger spacetime then, as far 
as possible, causal boundary construction is expected to reproduce the boundary 
structure obtained from the embedding [6,9,22]. In this section some remarks are 
given about how the identification 3 works if the spacetime is conformally embeddable. 

The spacetime ( M ,  g )  is said to be (totally) conformally embedded into the strongly 
causal spacetime (A?, g), if there is an embedding 0 : M + h;r and a function R : A? + 

[0, CO) such that B*g = (B*,R*)g; furthermore, for V P  E a+ there is a point @ E  A? such 
that O ( P ) = I - ( b ,  B ( M ) ) ,  and similarly for v F ~ a - 3 6 ~  A? such that 0 ( F )  = 
I+(6,  B ( M ) ) .  Of course, 5, 6 E aB(M)  (the boundary of 0 ( M )  in the manifold topology 
of A?). Based on arguments similar to those used in proposition 5.1, one can prove 
that P -  F implies p" 6, and conversely, if @ =  6 but P +  F, then P and F are not 
naked counterparts of each other either. These results suggest that, at least in the 
present case, - is the minimal identification we have to carry out, but it does not seem 
to be reasonable to identify further points. 

8. Conclusions 

To assign causal boundary a, to the spacetime M, i.e. to obtain the (causally) completed 
spacetime A?, a topology Y# and an identification rule 3 is needed on an auxiliary 
set M # .  For certain properties of the topology of fi, e.g. separation properties, 
necessary and sufficient conditions can be given in terms of Y# and 3. 

A detailed examination of the topology 9 g K P ,  a possible candidate for 9#, shows 
that in general there might be points of M which are not unique endpoints, in the 
topology 9 Z K P / % ,  of the timelike curves ending there, for any 3. This implies, 
first, that the identification 32,K, might not exist in general, and hence a new iden- 
tification rule is needed; second, the problem cannot be solved if the topology 9zKP 
is used further on and only the equivalence 3 is changed. 

There might be, however, a more annoying consequence of this difficulty, namely 
that it does not seem to be possible to find an appropriate causal topology Y# if 'the 
strong causality condition is violated at a preboundary point', i.e. when the neighbour- 
hoods of a preboundary point B are 'not concentrated on B'. (Think of the Alexandrov 
neighbourhoods of a strong causality violating point.) Though such situations cannot 
occur for stable causal spacetimes but, in general, we might have to give up our claim 
of unique endpoints (and hence the Hausdorffness too), or we have to restrict ourselves 
to stable causal spacetimes. 

To overcome half of the difficulties we propose a new explicit identification rule 
for general strongly causal spacetimes. Our 3, which is an extension of the equivalence 
gluing together PIP  with the corresponding PIF, yields the intuitively expected point 
set structure of a, onto which the chronology relation can be extended. The equivalence 
3 is built up from elementary TIP-TIF gluings. Thus at this point one can ask the 
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rather speculative question whether 2 is complete or, for example, certain TIP-TIP and 
TIF-TIF gluings should be included as well. There is some indication, suggested by 
examples like that shown by figure 2 ,  that 2 may be incomplete, but it is not clear 
how it ought to be completed. However, any reasonable identification should contain 
our 3. 
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