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Abstract. In a previous paper an analysis of the general structure of the causal boundary 
constructions and a new explicit identification rule, built up from elementary TIP-TIF 

gluings, were presented. In the present paper we complete our identification by incorporat- 
ing TIP-TIP and TIF-TIF gluings as well. An asymptotic causality condition is found which, 
for physically important cases, ensures the uniqueness of the endpoints of the non-spacelike 
curves in the completed spacetime. 

1. Introduction 

To study some special problems in general relativity the introduction of certain kinds 
of boundary to spacetime seems to be useful. Several boundary constructions have 
been made [l-51 but a large class of them has unacceptable topological features [6]. 
The constructions based on causality [3-51, however, are free of these kinds of defects. 
Moreover, causal boundary constructions are probably the simplest and most 
transparent ones. 

Recently, however, certain difficulties with the traditional construction [4] have 
been pointed out. If the spacetime is not stable causal, then the traditional construction 
does not always exist [7]. Furthermore, it does not always yield the intuitively expected 
boundary structure even if the spacetime is causally continuous. Although the collection 
of null finite points of the boundary of Taub’s plane-symmetric static spacetime is 
expected to be a one-dimensional set, it consists of a single point only [8]. On the 
other hand, there are different boundary points on the causal boundary, obtained in 
the traditional way, of the four-dimensional half Minkowski spacetime that we would 
like to consider as a single boundary point [9]. 

In spite of these difficulties we do not think that the causal boundary construction 
is completely unsatisfactory. The construction is made in two steps. First, by means 
of past and future endless non-spacelike curves, additional ‘ideal’ or ‘preboundary’ 
points are added to the spacetime, and then certain preboundary points are identified. 
The difficulties above are due only to the very implicit nature of the traditional 
identification rule [lo];  a new explicit identification is therefore needed. 

In the previous paper [7] the general framework for the causal boundary construc- 
tions and the topology of Geroch et d [ 4 ]  were studied and a new explicit identification 
rule was proposed. That identification is built up from elementary gluings identifying 
certain TIP  with certain TIF of the naked part [ 111 of the preboundary. However, the 
problem has not been solved completely; two open questions remain. First, as examples 
suggest, further preboundary points should be identified, namely certain TIP-TIP and 
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TIF-TIF gluings should also be included [lo]. Thus one has to clarify how the new 
gluings ought to be defined. Second, we did not have any statement on the separation 
properties of the resulting completed spacetime. In fact, without a certain 'asymptotic 
causality condition' and additional TIP-TIP and TIF-TIF gluings, one cannot hope to 
obtain nice topological properties for the completed spacetime. On physical grounds, 
it seems reasonable to require the uniqueness of the endpoints of the world lines [7]. 
Hence one should determine what additional 'asymptotic causality condition' is able 
to guarantee the unique endpoints of the non-spacelike curves. 

The present paper is the second part of our previous work [7], and now we try to 
answer the open questions above. To recall the statements we need and to fix the 
notations, in the second section we review the main points of the construction, and 
we introduce the causal separation axiom T,. The third section is devoted to the 
analysis of certain asymptotic causal pathologies of the spacetime. To handle these 
pathologies we extend the definition of the strong causality condition to the preboun- 
dary of M, and show that the violation of this condition yields non- T,-separated points. 
If the extended strong causality condition holds then, in terms of the identification 
rule, we prove necessary and sufficient conditions for the completed spacetime (A?, <T) 
being a T, space. Section 4 is a brief review of the TIP-TIF gluing we introduced in 
our earlier paper [7]. In § 5 the new elementary gluings, identifying TIP with TIP  and 
TIF with TIF, will be introduced and a number of their causal and topological properties 
will be described. In 0 6 we build up our identification rule 9 and show that the 
completed spacetime is a T, space if the extended strong causality condition holds 
and each %-equivalence class is finite. Finally, certain concepts of the construction 
will be discussed. 

Throughout this paper the standard matter of the global technique [ 12, 131 will be 
used; thus we omit the continuous references to the well known statements. The 
standard reference for the theory of causal boundary is 141 (see also [7]). Our 
conventions and notations are the same as those used in [7, 121 unless otherwise stated. 
Spacetime is assumed to be time oriented and strongly causal, and the past and future 
sets are assumed to be open [13]. 

2. Preliminaries and the causal separation axiom 

Let M denote the spacetime manifold and M +  and M -  the collections of IF and 
IP, respectively. If d+ and d- denote the collection of TIP and the collection of TIF, 
respectively, and i': M +  M ' : p - I * ( p ) ,  then M' are the disjoint unions i ' (M)  U dF. 
The past and future distinguishing conditions hold on M iff i' are injective maps. 
Then the points of M can be represented by means of their chronological futures 
and/or pasts; and the points of a+ and d- are interpreted as additional points at the 
future and past boundary of M, respectively. To have the past and future boundary 
at the same time, the disjoint union M t u  M -  should be considered. But i ' (p )  and 
i - ( p )  represent the same point of M ;  thus they must be identified. The resulting set 
M #  is the disjoint union i ( M ) u d + u a - ,  where i ( p )  stands for the identified pair 
( i + ( p ) ,  i - ( p ) )  and the map i :  M -+ M #  is injective [4]. 

a+u a- does not have the expected point-set structure yet: further identifications 
have to be carried out [4, 101. The mathematical form of such an identification is an 
equivalence relation % on M #  that contains the identity relation and is diagonal on 
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i ( M ) .  If T :  M # +  M # / %  is the canonical projection associated with 3, then the 
completed spacetime M is expected to be obtained as a quotient M # / g  for some a, 
and a,:= M # / & - - T O i ( M )  is interpreted as the causal boundary of M. 

The causal boundary construction is expected to yield not only the right point-set 
structure of the boundary, but the topological properties as well. A natural causal 
topology, namely the Alexandrov topology T i s  given on M. To describe the topological 
properties of a,, a topology g is needed on M. g can always be considered as the 
quotient topology Y # / g  of an appropriate S# on M # .  Although there is a great 
number of candidates for Y#, which are defined by means of causality, throughout 
this paper S# = 5 g K p ,  i.e. the topology of Geroch eta1 [4], will be used. One can 
show [7] that ~ o i :  ( M ,  S)+ ( M # / % ,  Y#/%) is an open dense embedding for any 
equivalence relation 3. Furthermore, for any non-spacelike curve y in M, T(I-[ y ] )  
and T(I+[ y ] )  are future and past endpoints of T O  i o  y in M # / % ,  respectively. Before 
considering the separation properties of M # / % ,  we have to clarify which separation 
axiom can be expected to hold. 

The weakest separation axiom that should be expected is T I ,  but, as for example 
the difficulties with Taub’s plane-symmetric static-vacuum solution suggest, the require- 
ment of the Hausdorffness of A? is too strong. The requirement of the uniqueness of 
the future and past endpoints of the non-spacelike curves, however, seems to be a 
reasonable ‘physical’ separation axiom. The points x, y E M # / %  are T, separated in 
T#/% if no irreducible representative X of T - ’ ( x )  and no irreducible representative 
Y of ~ - ’ ( y )  has a non-spacelike generator y such that both x and y would be either 
future or past endpoints of ~ o i o  y in S#/%. The space ( M # / % ,  S#/%) is said to be 
a T, space if every two different points of M # / %  are T, separated in T#/%; and this 
is equivalent to the uniqueness of the future and past endpoints of the curves T O  i o  y 
in T#/% for any non-spacelike curve y in M. One can show that axiom T, is weaker 
than T, but is stronger than TI, i.e. axiom T2 implies T, and axiom T, implies TI. 
(For the motivations see [ l ,  14-17], and especially [18].) 

Assuming that the strong causality condition holds on M, one can show [7] the 
following separation properties of (kP, P). 

(i) Any two different inner points are T, separated. 
(ii) Let P E a+ and q E M. If q E aTP = p- t P, then P and i (  q )  are T2 separated, 

and if q E aTP then P and i ( q )  are T,  separated. 
(iii) If P E  a+, FE 8- and F G t P  then F and P are T2 separated, and if F c t P 

then P and F are T, separated. 
(iv) Let P‘, P E a+. If P’G P Ft P’ then P’ and P are T, separated. If P ’ c  I - (  p )  

for some p E P, then P’ and P are T, separated. If P ’ c  P and P ‘ c  I - ( p )  for no point 
p of P then P’ and P are To ‘separated’, or more precisely, P cannot be a future 
endpoint of any non-spacelike curve generating P‘. 

However, the separation properties of ( M # / % ,  5#/%) depend on the global causal 
pathologies of M and the equivalence 9 too. 

3. The asymptotic causality condition 

To study the separation properties of the quotient spaces, it seems useful to consider 
first the separation of inner and boundary points and then the separation of boundary 
points from each other. (If the strong causality condition holds on M ,  which will be 
assumed later, the inner points are always T2 separated from each other.) 
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One can show [7]  that, for VqE M, B ~ a + u a -  and any 9, r ( B )  and i ( q )  are T I ,  
but not necessarily T, separated in Y#/ 9. (Since 9 is diagonal and hence r is injective 
on i ( M ) ,  we omit r; i.e. we write i ( q )  and i o ? ,  . . . , instead of r o i ( q )  and r o i o y , .  . . , 
respectively.) Figure 1 shows a two-dimensional spacetime h;; obtained from M by 
the extension E, where the boundary point r( P )  is not T, separated from i( q ) ,  q E 8.T P, 
for any $2. Their T, separation depends on the existence of certain neighbourhoods 
of the points of M. One can show that the following statements are equivalent 
(see ~ 7 1 ) .  

(i) b and i (  q )  are T2 separated in Y#/% for all % and b E d+ U a- /%,  q E M. 
(ii) (M#/9?m,  T#/!Bm) is a T2 space, where 9,,, is the maximal identification 

yielding a single point set for the boundary. 

- I d e n t i f i e d  - 
Figure 1 .  M is a two-dimensional cylinder from which a countable infinity of vertical 
closed segments is omitted and the causal structure is shown by the light cones. If the 
extension E is not carried out then ( M ,  g )  is stable causal and the Y#-open neighbourhoods 
of Po have the form ( I + (  p o ) ) ' " ' ,  po E Po. Both P and Po are endpoints of io y in ?#. 

(iii) Each point q of M has a Y-open neighbourhood V such that there is a 
Y#-open neighbourhood U, of every B U d-  for which U, n i( V) = 0. (This V 
is called a universal neighbourhood of 9.) 

The existence of universal neighbourhoods implies the strong causality condition, 
and is implied by the stable causality condition on M. Hence the existence of the 
universal neighbourhoods implies the T, separation of inner and boundary points, but 
it does not rule out the 'bad' separation of the boundary points from each other. 

The separation properties of (A?, 9) depend also on the equivalence 4 we use. 
For example, if 9? did not identify the TIP P and P' in the two-dimensional spacetime 
shown by figure 2, then (A?, 9) would not be a T, space. In fact [7] ,  if each point of 
M has a universal neighbourhood then ( M # / % ,  Y#/$2) is a T, space iff the non-T,- 
separated points of ( M # ,  T#) are $2 equivalent and the equivalence classes [ X I  := 
{ Y E  M#I(X, Y )  E 9}, X E M", are all closed in ( M # ,  T#). Thus the simplest way to 
obtain a T, space for A? would be to define as the smallest closed equivalence 
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Figure 2. This stable causal spacetime is a part of the quarter Minkowski plane from which 
a countable infinity of closed segments is removed. Here P and P’  are endpoints of i o  y 
in y’. 

relation identifying the non- T,-separated preboundary points. Nevertheless, this 9 
would also be implicitly defined and would not yield the expected boundary structure. 
Moreover, would not necessarily exist if the points of M did not have universal 
neighbourhoods. 

But what criteria for the boundary structure can be adopted? If the spacetime can 
be conformally extended into a strongly causal spacetime, then, as far as possible, we 
want a boundary structure for a, like that obtained from the extension [7, 191. (For a 
discussion of this concept see § 7.) As a special case, we would like to recover the 
boundary of the well known special exact solutions obtained by the conformal technique 
[ l l ,  12,141. Thus, for example, if the extension E is not carried out, then must not 
identify all the T I P  at the ‘top edge’ of the two-dimensional spacetime M shown by 
figure 1. Only Po and PI are allowed to be identified. (Of course, the ‘top edge’ of M 
would be shrunk if the infinity of the closed segments were not cut, since otherwise 
the whole ‘top edge’ would be a single TIP. But then the locally extended spacetime 
A? would not be past-distinguishing.) Although M is stable causal, the T I P  Po and P 
are not T, separated in F#. This topological defect is due to the ‘violation of the 
strong causality condition at the preboundary point Po’ [7]. Consequently, one cannot 
hope for nice separation properties for M without a certain asymptotic causality 
condition excluding such neighbourhoods of the preboundary points B that are ‘not 
concentrated on B’.  

We will say that the extended strong causality condition is violated at the I P  Po E M - ,  
if there exists an I P  P such that Po c P Po and for V p  E P there is a set S c M with 
Po = I-[S] and, for Vx E I’[S], there is a future-directed timelike curve starting at p ,  
leaving P and ending at x. Recalling that the past-distinguishing condition is assumed 
to hold on M ,  we have the following lemma. 

Lemma 3.1. The extended strong causality condition holds at the PIP Po := I - (  r )  E M -  iff 
the (ordinary) strong causality condition holds at r E M. 

Proof: Let the strong causality condition hold at r E M and suppose, on the contrary, 
that the extended strong causality condition is violated at I - ( r )  E M - ,  and let P be 
the additional I P  specified in the definition above. Then r has a causally convex 
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neighbourhood W such that, for some timelike generator y of P, y n  W = O  holds. 
For V y  E W n I - (  r )  there is a point p E y for which y << p ,  and for this p there is a set 
S c M with Po = Z-[S]. Due to the past-distinguishing condition, r E 3, which implies 
that W n Z+[S] # 0. But then, for Vx E W n I + [ S ] ,  there is a timelike curve from p 
to x, implying the violation of the strong causality condition at  r E M. 

If the strong causality condition is violated at r E M,  then there is a future inextend- 
ible null geodesic y from p along which the strong causality condition is violated, and  
let q E J + ( r )  n y - { r }  and P := Z-(q) .  Then P O c  P and, because of the past-distin- 
guishing condition, P Po. For V p  E P let S := { r }  and let x be any point of Z+[S]. 
Since the strong causality condition is violated at r and q is a limit point of a family 
of timelike curves meeting arbitrarily small neighbourhoods of r more than once, there 
is a future-directed timelike curve starting at p ,  leaving P and ending at x. 

Since the ordinary strong causality condition is time symmetric, this lemma and its 
dual imply that the extended strong causality condition holds at the PIP Z-(r) iff it 
holds at the P I F  Z+(r). Therefore the extended strong causality condition is well defined 
on M #  and, together with the past- and future-distinguishing conditions, this is just 
the ordinary strong causality condition on M and an  additional asymptotic causality 
condition on a+ U a-. As figure 1 shows, stable causality does not imply the asymptotic 
causality condition, but, as our next statement states, causal continuity does. 

Proposition 3.2. If M is causally continuous then the extended strong causality condi- 
tion holds on M # .  

Proof: The ordinary strong causality condition follows from causal continuity [20]; 
thus, on the contrary, suppose that the extended strong causality condition is violated 
at the T I P  Po. If P is the I P  specified by the definition, then, due  to the ordinary strong 
causality condition, there exists a non-empty compact set K := I + ( q )  n I - ( p )  in P -  Po. 
For this p E P - I', there is a set S c M such that Po = I - [ S ]  and, for Vx E I f [S] ,  there 
is a timelike curve from p to x. Let s E S and  U be any open neighbourhood of s. 
Then K c M -m but, for any x E U n Z+(s), K c Z-(x) would follow. Therefore 
i -  would not be outer continuous at s [20], i.e. M could not be causally continuous. 

The violation of the asymptotic causality condition yields non- T,-separated IP; but 
excluding this causal pathology one can hope to obtain nice separation properties for 
M, as follows. 

Proposition 3.3. If the extended strong causality condition is violated at  Po€ a+ then 
there is an I P  P such that P 0 c  P # Po and Po is a future endpoint of io y in ( M # ,  Y') 
for every timelike generator y of P. 

Proof: The extended strong causality condition is violated at Po€ d+,  Thus for some 
I P  P, P 0 c  P f Po, and any point p E P there is a set S,, c M such that Po = Z-[S,,] and, 
for Vx E Z+[S,,], there is a timelike curve starting at p ,  leaving P and ending at x. Let 
y be any timelike generator of P with parameter domain [0, 1 )  and q E Po. Then, for 
some E > 0, y ( [  I - E ,  1)) c Z + ( q ) ;  i.e. io y enters and remains in (Z+(q))jn', which is a 
Y-#-open neighbourhood of Po. If Po were not an  endpoint of i o  y, then there would 
be an  I F  F such that P,E Fe"' and i o y  would leave F'"'; i.e. y would enter I? If 
p E y n P then I+( p )  c F, thus Fe"' c ( I + (  p) ) ' " ' ,  which would imply Po E ( I + (  p))'"'. 
But then, for p E y n Pc P, S,, could not exist with Po = Z-[S,,] and Z'[S,,] c Z + ( p ) .  
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Proposition 3.4. Let the extended strong causality condition hold on M #  and let y be 
a non-spacelike curve. 

(a) If p E M is the future endpoint of y in ( M ,  9), then i ( p )  is the unique future 
endpoint of i o  y in ( M # / % , T # / % )  for any 3. 

(b) If y is future endless in ( M ,  9) and P := I-[ 71, then T (  P) is the unique future 
endpoint of i o y  in ( M # / % ,  T"/%) iff [PI is closed in ( M # ,  9') and every future 
endpoint of i o y  in ( M # ,  9') is %-equivalent to P. 

Proofi Let [0, 1) be the parameter domain of y. First of all we show that the set 
ioy([O, SI) is closed in ( M # ,  Ye) for all 6 E (0, 1). Since y([O, SI) is closed in ( M ,  9), 
the set i ( M  - y([O, SI)) is a 9 # - o p e n  neighbourhood of i ( z ) ,  z E M - y( [O,  SI),  which 
does not intersect ioy([O, SI). Now suppose, on the contrary, that there is a pre- 
boundary point, for example a TIP Pb, such that every 9 # - o p e n  neighbourhood of PA 
intersects ioy([O, SI). Let yb be a generator of PA and (4;) be a monotonic sequence 
on yb with no accumulation point in M. Then Z'(qk) n y([O, SI) # 0 and let pk := 
inf,?{w E Z + ( q k )  n y( [O,  SI)}, where << is the natural ordering along the segment 
y([O, SI). y([O, SI) is compact in the manifold topology, thus pk E y([O, SI);  moreover, 
there is an accumulation point p '  of { p i }  in y([O, SI).  Then pk << y p '  for V n  E N, or 
there is a number no€ N such that pk = p '  for V n  > no. If p :  << p' holds for V n  E N, 
then PAC P':= Z-(p') $ PA. Moreover, for Vr'E P', there is a set S 'c  M with Pb = 
Z-[S'] and, for Vx E Z+[S'], there is a timelike curve starting at r', leaving P' and 
terminating at x; otherwise, for large enough n and for some r 'EP ' ,  (Ic(qk))intn 
(Z+(r'))ex' would be a T#-open neighbourhood of PA which would not intersect 
io y([O, SI). This, however, contradicts the extended strong causality condition. If 
pk = p '  for any n > no,  then y enters f PA at p '  and, because of PAE (Z+(P'))~'', 
V:= (Zf(qi))i"'n(It(p'))ex' is a T#-open neighbourhood of Pb. But V does not 
intersect ioy([O, SI), which is a contradiction again. Therefore ioy([O, SI) is closed 
in ( M # ,  9#). 

Let q E M. If y is any non-spacelike curve (with or without endpoint in M )  for 
which q is not an endpoint in M, then i ( q )  is not an endpoint of i o  y in ( M " / % ,  9 # / % )  
either. Thus it remains to show that no point of a+ua-/% and a+ua-/% - { r ( P ) }  
can be an endpoint of i o y  in ( M # / % ,  9 # / % )  in the cases (a) and (b), respectively. 

(a) Let p be the future endpoint of y. Then i (  p )  is a future endpoint of i o  y in 
( M # / % ,  9 # / % ) .  First suppose, on the contrary, that there is a preboundary point, 
for example a TIP Po, which is an endpoint of i o  y in ( M # ,  9#). Then for any Y^#-open 
neighbourhood V := ( I + (  q))in'n F;'' n . . . n F;'' of Po, there is a parameter value 
~ E [ O ,  1) for which y ( [ v ,  l ) ) c I + ( q ) n ( M - E ) n  . . .  n ( M - E ) ,  q E P o .  This implies 
P 0 c  P:= I - ( p )  $ Po; moreover, for any r E Z - ( p ) ,  there is a set S c  M such that 
Po= I - [ S ]  and, for any x E Z+[S], there is a timelike curve starting at r, leaving P and 
ending at x. This, however, contradicts the extended strong causality condition. Thus 
i( p )  is the unique future endpoint of i o  y in ( M # ,  Y#) and hence { i (  p ) }  is closed in 

If B ~ a ' u a -  then there is a T#-open neighbourhood fiB of B and a number 
S E (0 , l )  such that OB n ioy([S, 1)) = 0, because B is not an endpoint of i o  y and 9# 
is a causal topology [7]. If U, := fi, - i o  y([O, SI) - { i ( p ) }  and U := uBEa+ua- U,, 
then io y n U = 0 and a+ u a - / %  c T (  U ) ,  moreover ..-I(..( U ) )  = 
. r r - ' ( ( d + u a - / % ) u ( U n i ( M ) ) ) = a + u a - u ( U n i ( M ) ) =  U. Thus ..(U) is a Y#/%- 
open neighbourhood of every boundary point, and io y does not enter T( U ) .  

( M # ,  P ) .  
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(b) If B ~ d + u d - - [ P ]  then there is a 9#-open  neighbourhood f i B  of B and 
3 6 ~ ( O , l )  such that f i B n i o y ( [ S , l ) ) = O .  If UB:= fiB-ioy([0,6])-[P] and U:= 
UBea+cvd--[P]UB,  then T (  U )  is a Y#/%-open neighbourhood of any b ~ d + u  
a-/% - { 7 i ( P ) }  into which i o  y does not enter. Thus T ( P )  is unique. 

Conversely, let T(P) be the unique future endpoint of i o y  in ( M # / % ,  F#/%). If 
X is a future endpoint of i o  y in ( M # ,  F#), then . r ( X )  is a future endpoint of i o  y in 
( M # / % ,  9#/%) too. Thus XE[P]. Since . r ( P )  is unique, [PI must be closed in 
(M#,F-#).  

4. The explicit identification and the TIP-TIF gluings 

To avoid the difficulties listed in 5 1, we would like to have a new explicit identification 
rule, which is well defined even for strongly causal spacetimes. To ensure that the 
boundary has the expected and transparent structure, we want to build up 8 from 
elementary gluings. Two kinds of elementary identifications are possible: TIP-TIF 

gluings and TIP-TIP, TIF-TIF gluings. Since the TIP-TIF gluing we will use has been 
described in the previous paper [7], we only review its basic idea and its most important 
properties here. 

The conformal boundary of non-globally hyperbolic spacetimes (e.g. the Kerr, 
Reissner-Nordstrom, anti-de Sitter solutions) have points that are in the chronological 
future of some points of the spacetime and, at the same time, in the chronological past 
of others [ l l ,  12,14,21]. Within the framework of the causal boundary constructions 
these boundary points are represented by both a T I P  and a TIF. Thus, if we want that 
the causal boundary of the well known exact solutions are to coincide with their 
conformal boundary, we have to identify certain TIP  with certain TIF. 

A TIP  P is said to be naked [ l l ]  if P c  I - ( p )  for some p E M. If P is a naked TIP, 

then there is naked TIF F such that, for V q  E F, P c I - ( q )  (such a TIF is called a naked 
counterpart of P )  and F is maximal; i.e. F is not a proper subset of any naked 
counterpart of P [7]. For any P E d’, f P  = ua F,, where the F, are the maximal naked 
counterparts of P and M is globally hyperbolic iff f P  = 0. 

The ‘ideal points’ represented by the terminal irreducible past and future sets are, 
roughly speaking, the ‘top points’ and the ‘bottom points’ of these sets, respectively. 
Thus it seems reasonable to define the elementary TIP-TIF gluing - as follows. For 
the naked T I P  P and the naked TIFF we write P - F if they are maximal naked 
counterparts of each other [7, 101. The relation - is a generalisation of the gluing 
proposed by Budic and Sachs [5] for causally continuous spacetimes, but - does not 
coincide with that, because t P  is not necessarily a TIF  even if the spacetime is causally 
continuous. 

Finally it is worth noting that - can be defined for I P  and I F  too, and there is a 
deep connection between this redefined - and the strong causality condition on M [7]. 

5. The TIP-TIP, TIF-TIF gluings 

As figures 2 and 3 show, there may be different TIP  that are not identified by the 
equivalence relation generated by -, though they are expected to be identified. This 
implies that elementary gluings identifying preboundary points of the same kinds 
should be included as well. 



Causal boundary f o r  strongly causal spacetimes II 8 5  

The separation properties of the preboundary points might suggest which preboun- 
dary points ought to be identified: the T I P  P and P' ( P  # P ' )  are not T, separated only 
if P ' c  P and P ' c  I - ( p )  for no point p of P, or P c  P' and P c  I - ( p ' )  for no point p '  
of P' .  For example, the T I P  P and P' in figures 2 and 3 are not T,  separated. The 
'ideal points' represented by P' and P are the 'top points' of them. But these 'top 
points' coincide in figures 2 and 3, and this is just the reason why we want to identify 
P' and P. Unfortunately, the 'coincidence of the top points of P' and P' is mathemati- 
cally not well defined. Thus we have to formulate it by means of regular points of P' 
and P. 

For the TIP P' and P we write P'= P if, for any p E P and q E P' ,  there is a point 
r E P n I+( q )  such that I + ( r )  c I - (  p )  and I-( r )  c P';  i.e. P n I+( q )  n I+( p )  n P' # 0 
[lo]. Trivially, P ' c  P and, due to the strong causality condition, P ' c  I - ( x )  for no 
x E P. Further causal properties of = are given by the next statements. 

Proposition 5.1. (a) If M is causally continuous then P'= P implies P'= P. 
(b) If P'= P and P'#  P, then P' # P is not a stable property on P in the 

sense that, for any generator y' of P' and any metric g' on P being larger than g, 
PI:= I-( y ' ;  g') = p. 

Proof: (a) Suppose, on the contrary, that P' # P. Then P ' c  P, P - P' # 0 and let 
p E P - P'.  Then for V q  E P' there is a point r E P n I+( q )  n If( p )  n P'.  Thus I+( r )  c 
I + (  p ) ,  and, because of the causal continuity, I - (  p )  c I - (  r )  c PI; i.e. p E p' would 
follow. 

(b) Since P' = P, there is a point r E P n I ' ( q )  n I + (  p )  n IS' for Vp E P, q E P'. If 
p E P - P' then r E dP' n aI+(  p )  and thus r is a past endpoint of a future endless null 
geodesic y lying in aP' [13]. Let U be a convex normal neighbourhood of r and let 
s E U n ( y - { r } ) .  Recall that the metric g' on P is larger than the metric g if g ( X ,  X )  S 0 
implies g'(X, 3) < 0 for any X E T,M, p E P [20]. Then s E I + ( r ;  E), I + ( r ;  g) is open 
and s E P'c PI; thus 32 E F'n I + ( r ;  g') implying that r e  Pf. Since is an open 
neighbourhood of r and r E I + ( p ) ,  n I+( p )  f 0; i.e. p E PI. Thus P c and, because 
of P ' c  F c  P. ?=P. 

Thus the relation = is trivial for causally continuous spacetimes; and if = is not trivial 
then a special distinguishing instability is present. 

Before considering the topological properties of =, it may be worth noting that = 
can be defined for I P  as well and considering how this redefined = works on M - .  

Proposition 5.2. If the past-distinguishing condition holds on M, then for the I P  P , ,  
P2 and any point z E M, P,  = I - ( z )  = Pz implies PI = I - ( z )  = P 2 .  

Proof: On the contrary, suppose that P, = I - ( z )  and P, # I - ( z )  for some z E M and 
I P  PI.  Then P l c  I - ( z )  and zaE;. The manifold topology is regular and thus there 
are disjoint open neighbourhoods U and V of z and F ,  respectively. For V p  E I - ( z )  n 
U, q E P, there is a point Y E  Z-(z) n I + ( q )  n I+( p )  n r,  and a timelike curve A from 
r to z. If x E A n V, then x E I + ( r )  c I + (  p ) ;  i.e. there is a timelike curve j~ from p to 
x. Thus p and the segment of A between z and x constitute a timelike curve starting 
at z, leaving U and re-entering U. This, however, contradicts the past-distinguishing 
condition. 

Now suppose that I - (  z )  = P2 and I-( z )  # Pr for some z E M and I P  Pz.  If z E I+( p )  
for V p  E Pr ,  then z E dP,, as otherwise w << w would follow for V w  E P2 n I + ( z ) .  Let 
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U,, be a convex normal neighbourhood of z and y be a future directed null geodesic 
from z in aP, . Let z ' ,  z" E U, n ( y - { z } )  c dP2 such that z' # z". The past-distinguishing 
condition holds at z, thus J - ( z ,  U )  = J - ( z )  n U for some open neighbourhood U c U,;  
moreover, for some q E U n I - ( z ) ,  I + ( q )  n J - ( z )  n U = I+(  q, U )  n J - ( z ,  U )  must hold. 
(If for V q  E U n I - ( z )  there existed a point x E I + ( q )  n J - ( z )  n U - Z+(q, U )  n 
J - ( z ,  U ) ,  then there would exist a future directed timelike curve A starting at q, leaving 
U and returning to x E U. Since x E J - ( z ) ,  there is a non-spacelike curve p from x to 
z. Thus p and A would constitute a past directed non-spacelike curve starting at z, 
leaving U and re-entering U.) This implies that I + ( q )  nl-(z)c U, as otherwise the 
past-distinguishing condition would be violated at z. Because of I - ( z )  = P,, it follows 
that, for V p  E Pz , 3 r E Pz n I+( q )  n I+( p )  n I - (  z ) .  U is contained in a convex normal 
neighbourhood where I-(z) and J - (  z )  coincide, thus r E P2 n I + ( q )  n I+(  p )  n 
I-(z)c P2 n I+(  q )  n I-(z) n U = P2 n It( q, U )  n J - (  z, U ) ;  i.e. q << r << z', z". But then 
P2 = I - (  z ' )  = I - (  z f f )  follows, which contradicts the past-distinguishing condition. 

Thus 3 p  E PZ for which z & I+( p ) .  Then there are disjoint open neighbourhoods U 
and V of z and Z+( p ) ,  respectively. For V q  E U n I - (  z )  there is a point r E Pz n I + ( q )  n 
I + ( p )  n I - ( z ) ;  i.e. there is a timelike curve v from q to r, and, for V b  E V n  I - ( r )  n v, 
there is a timelike curve p from b to z. Thus p and the segment of v between q and 
b constitute a past directed timelike curve starting at z, leaving U and re-entering U. 

Thus for past-distinguishing spacetimes the redefined = is a diagonal relation on the 
collection i - ( M )  of PIP; i.e. = does not identify different PIP, or P I P  with TIP. 

-- 

Finally, we have two statements on the separation properties of =. 

Proposition 5.3. If PI = P2 then P, and P2 are not T, separated in Y'. 

Proof: On the contrary, suppose that there are T I P  PI, P2 for which PI = Pz but they 
are T, separated. Let y ,  be a timelike generator of P, and let { q m }  be a monotonic 
infinite sequence on y ,  with no accumulation point in M. Similarly, let y2 be a timelike 
generator of P 2 ,  lying in and let { p , }  be a monotonic infinite sequence on y2 
without any accumulation point in the manifold topology. Then for Vm,  n E N 3 r m ,  E 

P,n Z+(qm)  n I + ( p , )  n PI, and let S:= {rm,jm, n E N } .  Of course, I - [ S ]  = PI and if s" 
is any subset of S for which I - [  s"] f PI, then I - [  31 = P, for 3 := S - 5. 

Let U be a Y#-open neighbourhood of P1 . Then, for some point q f  E PI and I F  

F,  , . . . , F,, PI E V := ( I + (  q'))lnt n F?'' n . . . n F;" c U. Since PI = I - [  SI and PI E F?xt n 
. . . n F:"', I + [ S ]  G? F, must hold for i = 1, . . . , t .  Let SI := {s E S l I + ( s )  $ F,} and s", := 
S - 3 , .  Then by definition I+[$ , ]  c F1 , therefore SI cannot generate PI, and hence 
1-[3, ]  = PI and I + ( s )  G? F1 for any s E SI.  Using a similar argument for 3, inste:d 
of S, we have a subset j2 o,f S such that PI and I + ( s )  $ F ,  U F2 for any s E S2. 
Fintlly, we have a %ubset S of S such that Z-[S] = PI and I + ( s )  G? F1 U.  . . U F, for any 
s E S; i.e. for Vs E S 3 w E I+(  s) - F ,  U. . . U F,.  For this w, i (  w) E F;xt  n . . . n F;'[. 

Let z E y z .  Then 3s E 3 for which I + ( s )  c I + ( z ) ,  and for this s there is a point w 
in I+(  s )  - F,  U . . . U F,. Therefore each point of y 2  is in the chronological past of some 
point w for that i (  w) E F:" n . , . n F;'[. Thus i o  y2 cannot leave F:'[ n . . . n F;'[. Since 
q ' E  PI c P z ,  y2 enters I + ( q ' )  and i o  y2 enters ( I + ( q ' ) ) " ' [ ;  i.e. i o  yz enters and remains 
in V c  U. Therefore PI is a Y# endpoint of y 2 ,  which contradicts the T, separation 
of PI and P2. 

Therefore = does not identify T I P  that are T, separated in 9'; or, in other words, T I P  
that are =-related cannot be T, separated. We saw in 0 3 that the violation of the 

- -  
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asymptotic causality condition also creates non- T,-separated preboundary points. The 
last statement of the present section tells us that there is no other possibility. 

Proposition 5.4. Let the extended strong causality condition hold on M # .  If Po and P 
are different TIP such that Po is a Y#-future endpoint of some non-spacelike generator 
y of P, then Po= P. 

Proof: If V:= ( I + ( z ) ) i " t n  F;xt n . . . n F:"', z E Po, is a P - o p e n  neighbourhood of Po, 
then, for some E > O ,  ioy([ l -&,l))C V; i.e. ~ ( [ l - ~ , l ) ) ~ I + ( z ) n ( M - ~ ) n  . . .  n 
( M  -F). This implies that, for V p  E P, there is a set S,, c M such that Z-[S,,] = Po 
and I+[  S,,] c I+(  p ) .  Let q E Po and S,,, := S, n I+(  q ) .  Then Po = I - [  S,,] and S,,, c En 

Suppose, on the contrary, that Po+ P. Then there exist points p ,  E P, q ,  E Po for 
which P n I+( q , )  n I+( p , )  n E = 0, implying that P n I+( q )  n I+( p )  n E = 0 for V p  E 

Z+(p, )  n P, V q  E Z+(q,) n Po. Therefore S,,, n P = 0 and, because of Po c P, S,, c aPo n 
c ~ P  n I+( q )  n I+( p ) .  This implies I+[  S,,,] n p = 0 and I+[  S,,,] c I+(  p ) ;  i.e. if x E 
Z+[S,,,] then there is a timelike curve from p to x, which leaves P because x E M - p. 
Therefore the extended strong causality condition is violated at Po E a+. 

I + ( P )  n I + ( q ) .  

6. The equivalence 2 and the structure of ( M ,  3) 

& is defined as the minimal equivalence relation on M # ,  being diagonal on i ( M ) ,  
generated by - and =. For all X E M #  let ( X ,  X )  E &, and for B, B ' E  U a-, B f B', 
let ( B ,  B ' )  E if for a finite number of preboundary points B ,  , . . . , B, B = B ,  = . . . = 
By= B' holds, where Y - Z  if Y - Z ,  or Y = Z  or Z -  Y. 

& is well defined even for strongly causal spacetimes and, since it is built up from 
the elementary gluings - and =, the boundary structure is transparent. 

In general, the completed spacetime (A?, 9) is not a T, space, but the inner and 
boundary points are always TI separated [7] .  If, in addition, the extended strong 
causality condition holds on M # ,  then by the definition of & and by proposition 5.4, 
& identifies the preboundary points that are not T, separated in Y#; moreover, because 
of proposition 3.4(a), inner and boundary points are T, separated. To get T, separation 
for the whole (A?, g ) ,  according to proposition 3.4(b), the equivalence classes [ X I ,  
X E M # ,  should be closed in ( M # ,  P). Unfortunately, the &-equivalence classes are 
not necessarily closed in ( M ' ,  F#). However, in the physically important special case 
when & is finite the equivalence classes are closed. 

The equivalence 24 is said to be finite if each set [ X I  := { Z  E M # I ( X ,  Z )  E %}  has 
finite elements for V x  E M " .  

Proposition 6.1. Let the extended strong causality condition hold on M # .  If & is finite 
then it is closed; i.e. [ X I  is closed in 3# for any X E M # .  

Proof: Let X E i(M), i.e. X = i( p )  for some p E M. Then, since the inner and preboun- 
dary points are always T, separated in Y#, { i ( q ) }  is closed in F# for any 24 by 
proposition 2.2(a) of [ 7 ] .  

Let X ~ a + u a - .  If q E  M ,  then i(M) is a Y#-open neighbourhood of i (q) ,  and 
[ X ] n i ( M ) = W .  Thus every inner point of M #  has a Y#-open neighbourhood 
intersecting [ X I  in an empty set, for any 3. Therefore we have to show that each 
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preboundary point not contained in [XI has a Y"-open neighbourhood with an  empty 
intersection with [XI. 

Let Po E df - [XI and 
x, := { P  E [XI n d+l Po c P }  
xz := { P E [XI n a+/ Po P P} .  

Then x1 U x2 = [XI n d+ and  x, n x2 = 0. Since Po is irreducible, Po $ U x2 ,  because 
otherwise Po = U { P  n PolP E x 2 }  would be a proper union of future sets. Therefore 
Po - U x2 # 0 and let po E Po - U x 2 .  Then Po E (It( P ~ ) ) ~ " '  and P n It( po)  = 0 for 
V P  E x2 ; i.e. ( I + (  P ~ ) ) ~ " '  n xz = 0. Since the extended strong causality condition holds 
on  M # ,  Po and any P E  x, are T, separated (proposition 5.4). For any p 0 €  Po and 
P E  x l ,  P E ( I + (  po))'"'. Therefore, for any P E x, , there must be an  I F  F such that 
Po€ Fe"' and any non-spacelike generator of P leaves Fe"'. Then, of course, PG F'"'. 

If 9? is finite, then [XI n d+,  and therefore x, itself contains only finitely many TIP.  

If x1 = { P ,  , . . . Pr} ,  then V := ( I + (  po))l"' n F:"' n , . . n F;'' is a Y#-open  neighbourhood 
of Po intersecting [XI n d +  in an empty set. In a similar way, one can show that each 
F,E a--[XI has a Y#-open  neighbourhood W such that W n  [XI = 0. Thus [XI is 
closed in ( M # ,  F"). 

Thus we have proved the following main statement of the present and  the previous 
papers. 

Theorem. If the extended strong causality condition holds on M #  and 9? is finite, then 
(A?, 3) is a T, space. 

7. Discussion 

To get the boundary a,, a topology Y" and, in the form of an  equivalence relation, 
an  identification rule 8. should be given on M # .  They are expected to be defined in 
terms of causality. To ensure that the structure of M is not to be changed, 9? should 
be diagonal on i ( M )  and n - o i  should be an  open embedding; and to ensure a, to be 
boundary in the sense of topology, n - 0  i should be dense [6]. Beyond these requirements, 
however, no restriction comes from the basic idea of the construction and therefore 
one can ask what additional requirements for 9? and Y# can be adopted. 

The weakest reasonable additional requirement is the claim that the causal boundary 
of the well known exact solutions are to coincide with their boundary obtained by the 
conformal technique. If the spacetime can be conformally extended into a larger 
spacetime, then one could expect the causal boundary to coincide with the boundary 
(or a part of the boundary) obtained from the extension. This means that there is a 
spacetime (6, g') and a conformal embedding 6 of ( M ,  g)  into (6, g') such that each 
point b of a, is represented by some point p" of M and the neighbourhoods U of b i? 
(A?, 9) are expected to have the form fi n e( M )  for some open neighbourhoods U 
of p" in 6. (See also [7, 10, 191, but in [7] only a much more restricted form of this 
requirement was used.) Although this claim seems to be a reasonable requirement, 
there are two difficulties with this concept. First, if M can be conformally extended 
into a larger $, then, in general, there may be another inequivalent extension into 
another $; but there is no rule to choose from these extensions. Second, since 
both d + u a -  and F# are defined by causality, a, may be different from the boundary 
obtained from the extension even if the extension is unique. For example, Taub's 
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spatially homogenous vacuum solution [12] can be extended into the N U T  spaces 
through the spheres S3 [14,22]; its future boundary consists of a single TIP. This 
deviation of the point-set structure of the boundaries is due to the violation of the 
past-distinguishing condition at the points of the boundary S3 in the NUT extension. 
Unfortunately, similar deviation of the topological structures of the boundaries may 
occur even if the point-set structure is the expected one. (See, for example, the spacetime 
shown by figure 1 . )  Thus for general strongly causal spacetimes neither the topological 
nor the point-set structure of a, can be expected to coincide with those of the boundary 
obtained from the extension. It is important to note that these negative results are 
largely independent of the details of g and 9’; they come from the fact that M is 
embedded into (A?, a)  and M may have certain asymptotic causal pathologies. Thus 
without a certain asymptotic causality condition one cannot hope for nice separation 
properties for (A?, T ) .  

The simplest way to obtain a well defined explicit identification rule yielding an 
acceptable point-set structure for a,, is to build up 9? from appropriate elementary 
TIP-TIF and TIP-TIP, TIF-TIF gluings. While the ideas behind these gluings are clear, 
their mathematical formulation is not so trivial. 

Our TIP-TIF gluing, -, identifies TIP with TIF only on the naked part of d + u a - .  
- is a natural generalisation of the explicit identification of Budic and Sachs [5], and 
it is the extension of the identification of the PIP with the corresponding PIF as well. - yields the intuitively expected point-set structure for the spacetimes that are counter- 
examples to the traditional construction [7-91. 

Figure 2 shows a spacetime where the TIP P is ‘split up’ into different pieces by 
some cutting. The TIP-TIP, TIF-TIF gluings are intended to identify these different 
pieces of the TIP and TIF, respectively. Hence one can think that the new gluing = is 
to be related to certain distinguishing properties of M. Our = identifies the TIP P and 
P’ in figures 2 and 3, and, in fact, is related to both the distinguishing conditions and 
the distinguishing instabilities. However, because of the following reasons, = does 
not seem to be as permanent an element of the construction as - does. - is much 
more elegant and aesthetic than =; moreover, figure 4 shows a two-dimensional 
spacetime, embedded into the two-dimensional Minkowski plane, where the TIP P and 
P’ can be expected to be identified but = does not glue them together. Since 9? does 
not identify P and P‘, it does not necessarily yield the point-set structure inherited 
from the embedding even if both the physical and the embedding spacetimes are 
causally well behaved. This may imply that = should be replaced by new TiP-mP, 
TIF-TIF gluings, but the idea we use probably remains the same. 

To prove statements for the separation properties of (&’, g ) ,  the topology Y# 
should be specified. Such is the topology YEKp [4]. Since . i r o i  must be an open dense 
embedding and Y# must be defined by means of causality, it does not seem to be 
possible to avoid the occurrence of the neighbourhoods of the preboundary points 
like that shown by figure 1, which are not ‘concentrated on the preboundary points’. 
Thus it does not seem to be possible to get much better separation properties than 
that YEKP yields; and therefore the topology we use is 9 E K P .  

In general, (m, 9) is not necessarily a TI space. However, excluding certain 
asymptotic causal pathologies, one can obtain better separation properties. In the 
present paper we have concentrated on axiom T, that ensures unique future and past 
endpoints for the non-spacelike curves. If the extended strong causality condition 
holds, then, in terms of 3 and 9#, necessary and sufficient conditions can be proved 
for ( M e / % ,  Y#/%) being a T, space. We have proved that if the strong causality 
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Figure 3. M is the Minkowski plane from which the Figure 4. P and P' are not identified by the 
countable infinity of closed segments and its equivalence a generated by - and =. 
accumulation point are cut. Although P - F, P' is 
not identified with P and F by the equivalence 
generated by -. However, P = P'. 

condition holds at the preboundary points too, which is an asymptotic causality 
condition, and the &'-equivalence classes consist only of finitely many elements, then 
(A?, F )  is a T, space. The extended strong causality condition is implied by causal 
continuity, but it does not necessarily imply Carter's second-order strong causality 
condition. Since is diagonal on i ( M ) ,  the finiteness of &' means that the causal 
boundary points of M are not infinitely split up. 

For example, the non-spacelike curves of the plane-symmetric static-vacuum sol- 
ution of Taub [8] have unique future and past endpoints in the completed space, which 
is not a T2 space. Finally, it is worth noting that the completed space of the spacetime 
shown by figure 4, where the point-set structure of the boundary is not the intuitively 
expected one, is a T2 space. 
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