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Abstract. The asymptotic symmetries and the conserved quantities of asymp-
totically flat spacetimes are investigated by extending the canonical analysis of
vacuum general relativity of Beig and Ó Murchadha. It is shown that the algebra
of asymptotic Killing symmetries, defined with respect to a given foliation of the
spacetime, depends on the fall-off rate of the metric. It is only the Lorentz Lie
algebra for slow fall-off, but it is the Poincaré algebra for 1/r or faster fall-off.
The energy-momentum and (relativistic) angular momentum are defined by the
value of the Beig–Ó Murchadha Hamiltonian with lapse and shift corresponding
to asymptotic Killing vectors. While this energy-momentum and spatial angular
momentum reproduce the familiar ADM energy-momentum and Regge–Teitelboim
angular momentum, respectively, the centre-of-mass deviates from that of Beig and
ÓMurchadha. The new centre-of-mass is conserved, and, together with the spatial
angular momentum, form an anti-symmetric Lorentz tensor which transforms just
in the correct way under asymptotic Poincaré transformations of the asymptotically
Cartesian coordinate system.

1 Introduction

Conserved quantities in various areas of physics play distinguished role, be-
cause they reduce the number of equations of motion to solve. In particular,
in mechanical systems with only a few degrees of freedom the conserved quan-
tities can (and e.g. in the Kepler problem do) specify the whole dynamics.
It is true that in (not completely integrable) field theories they do not, but
they can be used to parameterize the solutions of the field equations. In many
cases they provide an essential characterization of the states of the physical
system. For example, in Newtonian astrophysics the classification of stars is
based on their total mass and the total angular momentum with respect to
their own centre-of-mass, which classification is essential in the sense that
even the qualitative feature of the history of the stars depends critically on
the value of these parameters.

Apart from cosmology, both in general relativity and in non-gravitational
physics primarily we are interested in localized systems. These systems are
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modeled by appropriately decaying fields near infinity, whenever physical
quantities, like total energy-momentum and angular momentum, can be as-
sociated with the whole system. However, as is well known, we should make a
distinction between null infinity and spatial infinity. If we are interested e.g.
in radiative problems then null infinity and physical quantities defined there
will have significance. The familiar physical quantities are not conserved in
general, rather they change in time characterizing the main aspects of the
dynamics, telling us e.g. how much energy is carried away by radiation. (For a
recent review see e.g. [1].) On the other hand, if we are interested only in the
structure of the theory, e.g. to understand the gauge freedom or the genuine
conserved quantities in the theory, then we usually consider decaying at spa-
tial infinity. (For a possible, viable unification of the null and spatial infinities
and the connection between these two, see for example [2].) One of the most
natural frameworks in which these quantities are introduced is based on the
Hamiltonian [3–5]. Several remarkable statements have been proven on their
properties [6–8], among which the most important is probably the positive
energy theorem [9,10] and its extensions.

However, the recent investigations of the energy-momentum and (rela-
tivistic) angular momentum at the quasi-local level raised the question of
whether or not these are the “ultimate” expressions that any reasonable
quasi-local expression should reproduce at spatial infinity. (For a general dis-
cussion of these questions see e.g. [11], and for a recent, potentially promising
particular expression for the centre-of-mass see [12,13].) In fact, a systematic
reexamination of these classical results showed that although the energy-
momentum and the spatial angular momentum expressions seem to be the
“ultimate” ones, the centre-of-mass should probably be completed by an ad-
ditional (time dependent) term [14].

The main goal of the present contribution is to give a more detailed dis-
cussion of those issues of [14] that were not spelled out in detail. In particular,
we extend and refine the analysis and the results of Beig and Ó Murchadha [5]
on the structure of asymptotically flat spacetimes, and, especially, on the rel-
ativistic centre-of-mass. The novelty of the present approach is that we define
the total energy-momentum and relativistic angular momentum as the value
of the boundary term in the Beig–Ó Murchadha Hamiltonian using the 3 +1
parts of asymptotic Killing vectors as the lapse and the shift. This makes
it possible to find the correct explicit time dependence of the Hamiltonian,
yielding the familiar energy-momentum and spatial angular momentum, but
the centre-of-mass deviates from the Beig–Ó Murchadha expression by a term
which is the linear momentum times the coordinate time. We will see that
the angular momentum 4-tensor built from the spatial angular momentum
and the corrected centre-of-mass has much better transformation and con-
servation properties than the previous expressions.

Many questions in connection with the gravitational energy-momentum
and (relativistic) angular momentum can be formulated even in connection
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with the matter fields in Minkowski spacetime too, and it could be interesting
and useful to compare the gravitational and the non-gravitational cases. Thus
in Sect. 2 we discuss matter fields in Minkowski spacetime, and then, only in
Sect. 3, we consider general asymptotically flat spacetimes. That section is
devoted to the evolution equations and the boundary conditions. In Sect. 4 we
recall the main points of the analysis and results of Beig and ÓMurchadha [5],
and we formulate our questions.

The key objects in the present investigations are the asymptotic Killing
vectors. These will be introduced and discussed in Sect. 5. In Sect. 6 we
return to the discussion of the Beig–Ó Murchadha Hamiltonian, but, instead
of the original time independent lapses and shifts, we use the lapse and shift
parts of the asymptotic Killing vectors. Finally, in Sect. 7, we define the
total energy-momentum and relativistic angular momentum and discuss their
transformation and conservation properties. We summarize the main results
in Sect. 8.

Although we aimed at giving a logically complete treatise, several im-
portant issues, e.g. the discussion of the background (in) dependence of the
physical quantities, had to be left out. These can be found in [14]. We consider
metrics with faster than 1/r fall-off as well. If the conditions of the positive
energy theorem are satisfied then these fast fall-off metrics correspond only
to flat spacetime configurations. However, in our investigations the 3-space
Σ is not assumed to be complete, and its inner boundaries are not assumed
to be marginally trapped surfaces. Hence the positive energy theorem does
not imply flatness for fast fall-off. Thus it might be worth considering the
fast fall-off case as well.

We use the abstract index formalism, and only the underlined and bold-
face indices take numerical values. The signature of the spacetime metric
is −2, and the Riemann and Ricci tensors and the curvature scalar e.g. of
the spacetime covariant derivative ∇e will be defined by −4Ra

bcdX
bY cZd :=

∇Y (∇ZX
a)−∇Z(∇Y X

a)−∇[Y,Z]X
a, 4Rab := 4Rc

acb and 4R := 4Rabg
ab, re-

spectively. Thus Einstein’s equations take the form 4Gab := 4Rab− 1
2
4Rgab =

−Λgab − κTab, and we use the units in which c = 1.

2 Symmetries and Conserved Quantities
in Minkowski Spacetime

2.1 The Killing Fields of the Minkowski Spacetime

It is well known that the Killing vectors of the Minkowski spacetime form a
ten dimensional Lie algebra K, which contains a four dimensional commuta-
tive ideal T , and the quotient K/T is isomorphic to so(1, 3). The elements
of T are the constant vector fields, called the translations, which inherit a
natural Lorentzian metric from gab. If a point o of the Minkowski spacetime
is fixed, then the quotient K/T can be identified as the Lie algebra of those
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Killing fields that are vanishing at o : They are the rotation-boost Killing
vectors. Thus while the ideal of the constant vector fields is canonically de-
termined by the geometric structure of the spacetime, the quotient K/T can
be realized by Killing fields only if the ‘origin’ o has been specified.

If an orthonormal basis {Ea
a }, a = 0, . . . , 3, of constant vector fields and

the “origin” o have been chosen, then the familiar Cartesian coordinate sys-
tem {xa } is fixed by Ea

a = (∂/∂xa )a and xa (o) = 0. (Underlined Roman
indices from the beginning of the alphabet are concrete spacetime name in-
dices.) Thus this is not only a coordinate system in the sense of differential
topology, but it has a metrical content as well. Obviously, if we change the
vector basis by a Lorentz transformation, Ea

a �→ Ea
bΛ

b
a , and the origin o is

shifted to a new point, then the Cartesian coordinates change according to
the Poincaré transformation: xa �→ xbΛb

a + Ca , where Λc
bΛc

a = δ
a
b , and

Ca ∈ R
4 characterizes the shift of the origin.

If the basis vector Ea
0 is future pointing and timelike, then we usually

write the Cartesian coordinates as xa = (t, xi), i = 1, 2, 3. Thus the boldface
Roman indices from the middle of the alphabet are concrete spatial name
indices. In a fixed Cartesian coordinate system the general form of a Killing
1-form, given both in its covariant and its 3 + 1 forms, is

Ka = Ta ∇ax
a +Ma b

(
xa ∇ax

b − xb ∇ax
a
)

=
(
2xkMki + Ti − 2tMi0

)
∇ax

i +
(
2xkMk0 + T0

)
∇at. (1)

This is a linear combination of the independent translation and rotation-boost
Killing 1-forms, Ka

a := ∇ax
a and K

a b
a := xa ∇ax

b − xb ∇ax
a , respectively,

by constant coefficients Ta and Ma b = −Mb a . T0, Ti, Mij and Mi0 are the
components of the time and space translations, and the rotation and boost
parts of Ka, respectively, in the coordinates {xa }. Note that the spatial
components (in the 3 + 1 form) of the boost Killing 1-forms depend linearly
not only on the spatial coordinates, but on the Cartesian time coordinate as
well.

2.2 Quasi-Local Energy-Momentum and Angular Momentum

Let Σ be any smooth, compact, spacelike hypersurface with smooth boundary
S := ∂Σ. If ta is its future directed unit timelike normal, dΣ is the induced
volume element on Σ and T ab is the energy-momentum tensor of the matter
fields, then we can form the flux integrals

Qm
Σ [Ka] :=

∫

Σ

KaT
abtbdΣ (2)

for any vector field Ka. If, however, Ka is a Killing vector, then Qm
Σ [Ka] is

conserved in the sense that if Σ′ is another compact spacelike hypersurface
with the same boundary S, then the flux integrals defined on Σ and Σ′
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coincide. In particular, if D(Σ) is the domain of dependence of Σ and ξa is
a “general time axis” compatible with a foliation Σt of D(Σ) (in the sense
that the Lie dragging of one leaf of the foliation along the integral curves of
ξa with a given parameter value is another leaf), then the Lie derivative of
Qm

Σt
[Ka] along ξa is vanishing provided that Ka is a Killing field. Therefore,

for Killing vectors Ka the flux integral (2) is in fact associated with the
closed spacelike 2-surface S: Qm

Σ [Ka] = Qm
S [Ka]. Note that the lapse function

N of the foliation Σt is vanishing on S, and the shift vector Na is tangent
to S on S. The “general time axis” ξa need not be timelike or related to the
symmetry generators Ka in any way.

Since Qm
S [Ka] is linear in Ka, by (1) in a fixed Cartesian coordinate sys-

tem it has the structure Qm
S [Ka] = Ta Pa + Ma b Ja b . The coefficients of the

parameters Ta and Ma b define the quasi-local energy-momentum and (rela-
tivistic) angular momentum of the matter fields, respectively, associated with
the closed spacelike 2-surface S. If µ := T abtatb and ja := P a

b T
bctc are the

energy-density and the momentum density of the matter fields seen by the
observer ta, where P a

b := δa
b − tatb is the orthogonal projection to Σ, then

these quasi-local quantities can be given explicitly in terms of the indepen-
dent translation and rotation-boost Killing vectors as

Pa =
∫

Σ

Ka
a (µta + ja) dΣ, Ja b =

∫

Σ

Ka b
a (µta + ja) dΣ . (3)

(For a more detailed discussion of these concepts see e.g. [11].) These integrals
depend on the choice for the Cartesian coordinate system, but it is easy to see
that under the Poincaré transformation xa �→ xbΛb

a +Ca of the coordinates
Pa and Ja b transform just in the expected correct way: Pa �→ PbΛb

a and
Ja b �→ Jc dΛc

aΛd
b +Pc (CaΛc

b −CbΛc
a ). Note that, as a consequence of the

special linear time dependence of the boost Killing fields in (1), the centre-
of-mass part Ji0 of the angular momentum also depends on the Cartesian
time coordinate. Without this time dependence it would not be conserved
and would not have the correct transformation properties.

2.3 Total Energy-Momentum and Angular Momentum

The flux integral (2) can be defined even if Σ is not compact, e.g. if it extends
to spatial infinity of the Minkowski spacetime, provided the integral exists. To
ensure the finiteness of this integral, i.e. to have finite total energy-momentum
and (relativistic) angular momentum given by (3), certain boundary condi-
tions must be imposed on the energy-density µ and momentum density ja on
Σ. Such a boundary condition e.g. on a t = const hyperplane in the Cartesian
coordinates xa = (t, xi) might be the fall-off conditions

µ =
1
r4
µ(4)
(
t,
xk

r

)
+ o
(
r−4
)
, (4)

ji =
1
r4
ji(4)

(
t,
xk

r

)
+ o
(
r−4
)
, (5)
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for some functions µ(4) and ji(4), where r2 := δijx
ixj, the square of the radial

distance in the hyperplane Σ, and o(r−k) denotes a function f(r) for which
limr→∞(rkf(r)) = 0. o(r−0) denotes logarithmic fall-off and o(r+0) logarith-
mic divergence. We will use O(r−k) to denote a function f(r) for which the
limit limr→∞(rkf(r)) exists. These fall-off conditions ensure the finiteness
of the total energy-momentum, but the angular momentum is still diverging
logarithmically. Thus to have finite total angular momentum as well, stronger
or additional conditions must be imposed. One apparently natural condition
could be to require slightly faster than 1/r4 fall-off in (4) and (5). Since,
however, the typical fall-off rate of the energy and momentum densities of the
electromagnetic field is 1/r4, by a faster fall-off condition we would exclude
the electromagnetic field from our investigations. Thus we retain the 1/r4

fall-off, and seek for additional conditions.
Evaluating the total angular momentum expression with the energy and

momentum densities satisfying (4) and (5), one arrives at the additional nec-
essary and sufficient conditions

∮

S
v[ijj] dS1 = o

(
r−4
)
, (6)

∮

S
viµdS1 = o

(
r−4
)
. (7)

Here va is the outward directed unit normal to the large sphere S of ra-
dius r in the hyperplane Σ, and dS1 is the area element on the unit sphere.
However, the global integral conditions (6)–(7) are only implicit restrictions
on the asymptotic behaviour of µ and ja, and hence it is difficult to use
them in practice. If we are not interested in the exact boundary condi-
tions, as in the present discussion, then we prefer to have only an explic-
itly given sufficient condition. Such a sufficient condition might be the global
parity condition: The leading terms in (4) and (5) are required to be even
parity functions of their second argument: µ(4)(t, xk

r ) = µ(4)(t,−xk

r ) and
ji(4)(t, xk

r ) = ji(4)(t,−xk

r ). Then the fall-off and parity conditions together
ensure the finiteness of the total energy-momentum and (relativistic) angular
momentum of the matter fields.

It is easy to check that if the fall-off and parity conditions above are
imposed not only on a single spacelike hyperplane but on boosted hyperplanes
as well, then the spatial stress part of the energy-momentum tensor, σab :=
P a

c P
b
dT

cd, must also have the asymptotic structure

σij =
1
r4
σij(4)

(
t,
xk

r

)
+ o
(
r−4
)
, (8)

and the leading term σij(4)(t, xk

r ) must be an even parity function of xk

r .
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2.4 Asymptotically Cartesian Coordinate Systems

By the results of the previous two subsections the Cartesian coordinates ap-
pear to play a fundamental role in the definition and the study of the prop-
erties of the conserved quantities in Minkowski spacetime. But as we saw
in Subsect. 2.1, the Cartesian coordinates have metrical content, because,
by their very definition, they are adapted to exact geometric symmetries
of the spacetime. However, primarily we are interested in general, non-flat
asymptotically flat spacetimes, where we do not have any exact geometric
symmetry. Thus the question arises naturally whether or not there is some
natural generalization of the familiar Cartesian coordinates, at least asymp-
totically, even in a general asymptotically flat spacetime, which could play
an analogous role in constructing the conserved quantities.

Such an asymptotically Cartesian coordinate system (τ, ηi) may be based
on a foliation Στ of the asymptotically flat spacetime, which foliation can
be characterized on a typical leaf Σ of the foliation by the lapse function N .
Furthermore, we need to have a shift vector Na as well, which tells us how
the spatial Cartesian coordinates ηi, introduced on one leaf of the foliation,
is extended to the neighbouring leaves. Thus we would like to find a crite-
rion, formulated in terms of the lapse and the shift, when to consider the
corresponding coordinate system (τ, ηi) to be asymptotically Cartesian.

In Minkowski spacetime the lapse of the Cartesian coordinate system is
the constant function with value 1, and the shift is identically vanishing.
Therefore, it seems natural to consider the coordinate system (τ, ηi) to be
asymptotically Cartesian only if N → 1 and Na → 0 at infinity uniformly,
independently of the direction in which the limit is taken on Σ. This naive
criterion can also be supported by a formal analysis of the coordinate systems
in the conformally compactified Minkowski spacetime near the spatial infinity
i0 [14]: There exists a flat metric 0qab on Σ such that qij − 0qij and χij,
the components of the difference of the induced and the flat metrics and
of the extrinsic curvature in the 0qab–Cartesian coordinates ηi, respectively,
tend to zero as R2 := δijη

iηj tends to infinity, and moreover N(τ, ηk) =
1+O(R−1) and N i(τ, ηk) = O(R−1). In fact, an asymptotically vanishing N
would correspond to a foliation in which the time separation of the different
leaves tends to zero, while an asymptotically diverging N would correspond
to one in which this time separation is diverging. Thus, in particular, in
Minkowski spacetime the coordinate transformation connecting the Cartesian
coordinate system to a system (τ, ηi) based on an asymptotically vanishing
lapse is getting to be singular, i.e. (τ, ηi) is “collapsing” asymptotically.

If (τ, ηi) is an asymptotically Cartesian coordinate system in Minkowski
spacetime based on a smooth spacelike Cauchy surface Σ extending to the
spatial infinity, then the Killing field (1) takes the form

Ke = Mij

(
ηiDeη

j − ηjDeη
i
)

+ 2Mi0

(
ηiτe − τDeη

i
)

+ siDeη
i + sτe . (9)
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Here De is the intrinsic derivative operator, τe the future pointing unit
timelike normal to Σ and s(τ, ηk) = s(0)(τ, ηk

R ) + O(R−1), si(τ, ηk) =

s
(0)
i (τ, ηk

R ) + O(R−1). Thus s and se := siDeη
i, which would be the time

and space translation parts of Ke in (1), respectively, depend on τ , ηi and
1/R. Therefore, they are analogous to the supertranslations of the cuts of
future null infinity, and the proper translations correspond only to special
supertranslations. We will see in Subsects. 3.2 and 4.1 that these are pre-
cisely the ηi-independent supertranslations, while those that are odd parity
functions of ηk

R are the proper supertranslations and have only gauge content.

2.5 Conservation Properties

We saw in Subsect. 2.2 that the quasi-local energy-momentum and angular
momentum are conserved with respect to a time evolution characterized by
a vector field ξa if the evolution preserves D(Σ), i.e. the lapse part of ξa is
vanishing on S and the shift part is tangent to S on S. In the present sub-
section we formulate the analogous question for the total energy-momentum
and angular momentum.

Thus let Στ be a foliation of the Minkowski spacetime by smooth Cauchy
surfaces, let ta be its future pointing unit timelike normal and N the lapse of
the foliation. Let Na be the shift vector and define the “general time axis”
ξa := Nta +Na. Then we can take the integrals (3) defining the total energy-
momentum and angular momentum on the leaves Στ and calculate their
Lie derivative along ξa. Our question is what asymptotic conditions should
the lapse and the shift satisfy such that these Lie derivatives be vanishing.
However, this analysis consists of two things. The first is that even though the
integral (3) on a specific hypersurface is finite, it is not necessarily finite on
the hypersurfaces obtained by “time evolution” along ξa; i.e. we should ensure
that the boundary conditions ensuring the finiteness of (3) be preserved. The
second is to ensure that these finite integrals be the same.

Nevertheless, this analysis can be, and in the next section will be, car-
ried out even in general asymptotically flat spacetimes with vector fields Ka

having the asymptotic structure more general than (9). We will see that the
total energy-momentum and (relativistic) angular momentum are conserved
even if N and Na are linearly diverging (see (21)–(22)).

3 Asymptotically Flat Spacetimes

3.1 The Boundary Conditions

The definition of the asymptotic flatness of a spacetime that we adopt in the
present paper is probably the oldest one. We say that a spacetime is asymp-
totically flat at spatial infinity if it contains an asymptotically flat spacelike
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hypersurface Σ. Thus we should define the asymptotic flatness of such a hy-
persurface. We say that the spacelike hypersurface Σ is (k, l)-asymptotically
flat, if (1) there is a (negative definite) background metric 0qab on Σ, which is
flat outside a large compact subset K ⊂ Σ such that Σ−K is diffeomorphic
to R

3 minus a solid ball; (2) for some positive k and l the components qij
and χij of the physical induced metric and of the extrinsic curvature, respec-
tively, in the 0qab-Cartesian coordinate system on Σ −K satisfy the fall-off
conditions

qij − 0qij =
1
rk
q
(k)
ij + o

(
r−k
)
, (10)

χij =
1
rl
χ

(l)
ij + o

(
r−l
)

; (11)

and, (3) the leading terms q(k)
ij and χ

(l)
ij are even and odd parity functions

of xk

r , respectively. Here r is the radial coordinate defined by r2 := δijx
ixj.

In general these conditions do not imply that every component e.g. of the
derivative 0Dcqab tends to zero as 1/rk+1, where 0Dc is the derivative opera-
tor determined by the background metric, which would be a useful property
in practice. Similarly, still not every component of 0Dcχab tends to zero as
1/rl+1. If, however, we assume that the “rests” mab := qab − 0qab − r−kq

(k)
ab

and kab := χab − r−lχ
(l)
ab also satisfy

0Dcmab = o
(
r−k−1

)
, 0Dd0Dcmab = o

(
r−k−2

)
, . . . (12)

0Dcχab = o
(
r−l−1

)
, 0Dd0Dcχab = o

(
r−l−2

)
, . . . (13)

then, together with (10) and (11), these imply 0De1 . . . 0Des
qab = O(r−k−s)

and 0De1 . . . 0Des
χab = O(r−l−s) for any s = 1, 2, . . ., and the parity of

these derivatives is (−)s and (−)s+1, respectively. The properties mab =
o(r−k), 0Demab = o(r−k−1), . . . of mab will be denoted by mab = o∞(r−k).
Although it would be enough to require 0De1 . . . 0Des

mab = o(r−k−s) only
for some finite s depending on the order of the derivatives that appears in the
actual calculations, for the sake of simplicity we assume that mab = o∞(r−k).
Similarly, we require that kab = o∞(r−l).

We assume that the matter fields satisfy boundary conditions that yield
energy density µ, momentum density ja and spatial stress σab satisfying
the fall-off and parity conditions that we discussed in Subsect. 2.3, defined
with respect to the 0qab-Cartesian coordinate system. Furthermore, again by
technical reasons, we assume that the “rests” appearing in (4), (5) and (8)
are also o∞(r−4). Then we can form the integral

Qm
[
M,Ma

]
:=
∫

Σ

(
Mta +Ma

)
T abtbdΣ , (14)

and, as a consequence of the boundary conditions for µ and ja, this integral
exists if the asymptotic form of M and Ma is given by
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M
(
t, xk

)
= rAM (A)

(
t,
xk

r

)
+ o∞

(
rA
)
, (15)

Mi

(
t, xk

)
= rBM

(B)
i

(
t,
xk

r

)
+ o∞

(
rB
)
, (16)

where A,B ≤ 1 and if the equality holds in these inequalities then M(t, xk

r )
and Mi(t, xk

r ), respectively, must be odd parity functions of xk

r . Note that
(9), and hence (1) also, are special cases of (15)–(16). In the next subsection
we discuss the time dependence of Qm[M,Ma].

3.2 The Evolution Equations

Let the spacetime be foliated by smooth spacelike Cauchy hypersurfaces Σt,
and let a “general time axis” ξa = Nta + Na be also given. Then the 3 + 1
form of the equation T ab

;b = 0 is well known to be

µ̇ = N
(
−Daj

a + σabχab −
2
N
jaDaN − µχ

)
+ �LNµ, (17)

j̇b = N
(
−Daσ

ab − 1
N
σbaDaN + µ

1
N
DbN − 2jaχba − χjb

)
+ �LNj

b , (18)

where the dot denotes the projection to the leaves of the foliation of the Lie
derivative along ξa. They describe the evolution of the energy density and
the momentum density of the matter fields along the integral curves of ξa.
Similarly, the evolution equations for the geometry are

q̇ab = 2Nχab + �LNqab, (19)

χ̇ab = N
(
−Rab + 2χacχ

c
b − χχab

)
+ �LNχab −DaDbN

+ ΛNqab + κN
(
−σab +

1
2
σe

eqab +
1
2
µqab

)
. (20)

The first is a simple consequence of the definitions, but the second is the
space-space projection of the Einstein equations.

Next suppose that the spacetime is asymptotically flat (whenever the cos-
mological constant Λ is zero), and characterize the foliation and the general
time axis on a typical Cauchy surface Σ by the lapse N and the shift Na.
In the previous subsection we defined the asymptotic flatness of the space-
time by the existence of an appropriately defined asymptotically flat spacelike
hypersurface. However, the existence of such a single hypersurface does not
imply that the evolution of such a hypersurface will be asymptotically flat,
i.e. the boundary conditions are not necessarily preserved by the dynamical
equations. Thus our question is what conditions should we impose on the
lapse and the shift such that the evolution equations (17)–(20) preserve the
fall-off and parity conditions, both for the matter fields and the geometry.

Assuming that the lapse and the shift have the a priori asymptotic form
N(t, xk) = rCN (C)(t, xk

r )+ o∞(rC) and Ni(t, xk) = rDN
(D)
i (t, xk

r )+ o∞(rD)
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for some C and D, we can evaluate the right hand side of the evolution
equations. If we require that the leading orders and parities on both sides
coincide, we obtain two results. The first is a link between the fall-off rates
for the metric and the extrinsic curvature: In the generic case l = k+ 1. (For
the exceptional cases see [14].) The other is the detailed asymptotic structure
of the lapse and the shift, given by

N
(
t, xk

)
= 2xkβk

(
t
)

+ τ
(
t
)

+ rEν(E)
(
t,
xk

r

)
+ o∞

(
rE
)
, (21)

Ni

(
t, xk

)
= 2xkρki

(
t
)

+ τi
(
t
)

+ rF ν
(F )
i

(
t,
xk

r

)
+ o∞

(
rF
)
. (22)

Here the coefficients βk(t), τ(t), ρki(t) and τi(t) are arbitrary functions of
t, the powers E and F are bounded from above by the fall-off rate of the
metric: E,F ≤ (1−k), and if the equality holds in these inequalities then the
functions ν(E)(t, xk

r ) and ν
(F )
i (t, xk

r ) are odd parity functions of their second
argument, respectively.

Since the structure of Ni is similar to that ofN , it is enough to discuss only
e.g. (21). By k > 0 the leading term in (21) is the first, but to decide whether
the next order is the second or the third, we should consider the disjoint cases
k > 1, k < 1 and k = 1. If k > 1, which corresponds to a fast fall-off metric,
then the third term tends to zero at infinity as rE , where E is negative,
whenever the next order term is the second. If k < 1, which corresponds
to a slow fall-off, E may be positive, and if E is actually positive, then the
third term is diverging. In this case there is no reason to keep the second
term, because that cannot be isolated in the presence of the uncontrollable
diverging term. If k = 1, then E may be zero, and if it is actually zero, then
both the second and the third terms are asymptotically of the same order.
However, in spite of the fact that the third term is uncontrollable and of the
same order asymptotically as the second, we can make a natural distinction
between these: The second, being independent of the spatial coordinates, is an
even parity, while the third is an odd parity function of xk

r . Thus the structure
of N and Na resembles the structure of the timelike and spacelike projection
of the Killing fields of the Minkowski spacetime given by (1) or rather (9). In
particular, βk(t), ρki(t), τ(t) and τi(t) are analogous to the boost, rotation,
time translation and spatial translation generators, and the terms rEν(E) and
rF ν

(F )
i are similar to the proper temporal and spatial supertranslations of

(9). However, while the components of the Killing fields have a special time
dependence, the parameters βk(t), ρki(t), τ(t) and τi(t) may have arbitrary
time dependence.

Defining the integral Qm[M,Ma], given by (14), on each of the leaves Σt

of the foliation, one can compute its time derivative. It is
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Q̇m
[
M,Ma

]
=
∫

Σt

(
µ
(
Ṁ +MaDaN −NaDaM

)

+ ja
(
Ṁa +NDaM −MDaN − [N,M ]a

)

+ σabN
(
Mχab +D(aM b)

)

+ Da

((
µM + jbM

b
)
Na −

(
jaM + σabMb

)
N
))

dΣt . (23)

Taking into account the boundary conditions and substituting the asymptotic
form (21)–(22) here we find that Q̇m[M,Ma] is finite (such that the integral
of the total divergence in (23) is zero). We will see in Subsect. 5.1 that the
coefficients of µ, ja and σab in the volume integral of (23) are precisely the
various 3+1 parts of the Killing operator ∇(aKb) acting on Ka := Mta+Ma.
Thus for Killing vectors Qm[M,Ma] is constant in time even if the “time
evolution” is defined by ξa = Nta+Na with asymptotically linearly diverging
N and Na given by (21)–(22).

The question of whether the evolution equations preserve the boundary
conditions was investigated first by Beig and ÓMurchadha [5]. However, they
considered only the vacuum equations with the 1/r and 1/r2 a priori fall-off
of the metric and extrinsic curvature, respectively, and they assumed a priori
that the lapse and the shift are time independent. While the first two are not
serious limitations of their investigations, we do not see any reason to assume
the time independence of N and Na. In fact, the evolution equations allow
their arbitrary time dependence, and, as we will see, the assumption of their
time independence is too restrictive and we should abandon this.

Finally, for later convenience, it seems natural to introduce two notations
here. We will denote by A the set of all the pairs (N,Na) of lapses and shifts
with the asymptotic form (21)–(22). Such pairs may be called the “allowed
time axes”, and obviously A can be endowed with a natural real vector space
structure. We denote by G the subspace of A consisting of those pairs in which
the ‘parameters’ βk(t), ρki(t), τ(t) and τi(t) are all vanishing identically. We
will see in the next subsection that, for k ≥ 1, the generators of the gauge
transformations in the phase space of vacuum general relativity are precisely
the elements of G. Thus we refer to G as to the space of the gauge generators
even for k > 0.

4 The Hamiltonian Phase Space of Vacuum GR

4.1 The Phase Space
and the General Beig–Ó Murchadha Hamiltonian

The configuration space Q for the asymptotically flat spacetimes is the set
of the (negative definite) metrics on the 3-manifold Σ, a typical spacelike
Cauchy surface in spacetime, satisfying the fall-off and parity conditions of
Subsect. 3.1. Recalling that a curve in Q is a smooth 1-parameter family of
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metrics qab(u) and the tangent vector of this curve at the point qab := qab(0) ∈
Q is defined to be the derivative δqab := (dqab(u)/du)|u=0, the tangent vector
δqab satisfies the same boundary conditions as the metric qab itself does. The
space of the tangent vectors at qab is denoted by Tqab

Q. Recall also that
a 1-form at the point qab ∈ Q is a symmetric tensor density on Σ, which,
at the same time, is a linear mapping p̃ab : Tqab

Q → R defined explicitly
by 〈p̃ab, δqab〉 :=

∫
Σ
p̃abδqabd3x. However, the requirement that its action on

the tangent vectors be finite restricts its asymptotic structure. Indeed, if we
write p̃ab = 1

rm p̃(m)ab + o(r−m) for some m > 0, then from 〈p̃ab, δqab〉 < ∞
we obtain that m ≥ 3 − k, and if the equality holds in this inequality then
the components p̃(m)ij of the leading term must be odd parity functions of
xk

r . The space of these 1-forms at qab, the cotangent space of Q at qab, is
denoted by T ∗

qab
Q.

The phase space of vacuum general relativity is the cotangent bundle
T ∗Q := {(p̃ab, qab)| + boundary conditions } of the configuration space with
its natural symplectic structure: If X := (δp̃ab, δqab) and X ′ := (δ′p̃ab,
δ′qab) are any two tangent vectors at some point (p̃ab, qab) ∈ T ∗Q, then
let 2Ω(p̃ab,qab)(X ,X ′) :=

∫
Σ

(δp̃abδ′qab − δ′p̃abδqab)d3x. Then the boundary
conditions for the metrics and the canonical momenta ensure that Ω(X ,X ′)
is already finite.

On the other hand, the canonical momentum p̃ab is well known to be the
expression

p̃ab =
1
2κ

√
|q|
(
χab − χqab

)
=

1
rk+1

P̃ (k+1)ab + o∞
(
r−k−1

)
(24)

of the metric and the extrinsic curvature, where we gave its asymptotic expan-
sion too. Here the components of P̃ (k+1)ab in the 0qab-Cartesian coordinates
are odd parity functions of xk

r . Therefore, comparing this fall-off rate with the
condition m ≥ 3−k obtained above, we find that the applicability of the basic
concepts of the symplectic framework already excludes the slow fall-off met-
rics, i.e. k ≥ 1 must be assumed. Thus the a priori fall-off 1/r considered by
Beig and Ó Murchadha is the slowest possible in the symplectic framework.

Four of the vacuum Einstein equations, 4Gabt
atb = 0 and 4GbcP

b
at

c = 0,
play the role of constraints in the initial value as well as in the Hamiltonian
formulation of the theory. In the phase space context they are represented by
the vanishing of the so-called constraint functions

C
[
ν, νa

]
:=
∫

Σ

(
− 1

2κ

(
R+

4κ2

|q|

[
1
2
p̃2 − p̃abp̃ab

])√
|q|ν − 2

(
Dap̃

ab
)
νb

)
d3x ,

(25)
parameterized by pairs (ν, νa) of functions and vector fields, which may be
functions of the external time coordinate as well. A tedious but straight-
forward calculation shows that the constraint functions are finite and func-
tionally differentiable with respect to the canonical variables on the whole
phase space and close to a Lie algebra if and only if (ν, νa) ∈ G. Since, via
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the symplectic 2-form, they generate gauge motions in the constraint sur-
face Γ ⊂ T ∗Q, G can be identified with the space of the infinitesimal gauge
generators of Einstein’s theory of the vacuum asymptotically flat spacetimes.

The dynamics in the phase space is generated by the Hamiltonian, whose
general form is the sum of a constraint function and the integral of an ap-
propriately chosen total divergence. This total divergence should be chosen
in such a way that the corresponding Hamilton equations be just the correct
evolution equations (19) and (20) [4]. Beig and Ó Murchadha [5] showed that
the Hamiltonian

H
[
M,Ma

]
:= C

[
M,Ma

]
+
∫

Σ

2Da

(
p̃abMb

)
d3x

− 1
2κ

∫

Σ

Da

(
Mqabqcd

(
0Dcqbd − 0Dbqcd

)

+
(
0DbM

)
qabqcd

(
qcd − 0qcd

)

−
(
0DcM

)
qabqcd

(
qbd − 0qbd

))√
|q|d3x (26)

is finite and functional differentiable with respect to the canonical variables on
the whole phase space and close to a Lie algebra if and only if (M,Ma) ∈ A.
Thus we call H given by (26) the Beig–Ó Murchadha Hamiltonian. Note that
M and Ma need not be time independent, they may still have arbitrary time
dependence. The Poisson bracket of two Beig–Ó Murchadha Hamiltonians,
parameterized by (M,Ma) and (M̄, M̄a), respectively, is

{
H
[
M,Ma

]
,H
[
M̄, M̄a

]}

= −H
[
�LMM̄ − �LM̄M ,

[
M,M̄

]a −
(
MDaM̄ − M̄DaM

)]
. (27)

Furthermore, for infinitesimal gauge generators the Hamiltonian of Beig and
ÓMurchadha reduces to a constraint function: H[ν, νa] = C[ν, νa]. There-
fore, the Beig–ÓMurchadha Hamiltonians, parameterized by the elements of
A, form a Poisson algebra H, in which the constraints, parameterized by the
elements of G, form an ideal C. The quotient H/C, which is again a Lie al-
gebra, is the set of the Hamiltonians modulo the “gauge transformations”.
However, this quotient Lie algebra is spanned by the time dependent para-
meters βk(t), ρki(t), τ(t) and τi(t), and hence it is infinite dimensional.

4.2 Physical Quantities from the Beig–Ó Murchadha
Hamiltonians with Time-Independent Lapses and Shifts

As we mentioned, Beig and ÓMurchadha concentrated on the k = 1 case
and assumed that M and Ma were time independent:

M
(
xk
)

= 2xkBk + T + ν(0)
(xk

r

)
+ o∞

(
r−0
)
, (28)

Mi

(
xk
)

= 2xkRki + Ti + ν
(0)
i

(xk

r

)
+ o∞

(
r−0
)
. (29)
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Here Bk, Rki, T and Ti are real constants. The space of such pairs (M,Ma)
will be denoted by 0A, and the subspace of the “infinitesimal time indepen-
dent gauge generators” by 0G. Then the Beig–Ó Murchadha Hamiltonians
parameterized by the elements of 0A form a Poisson algebra 0H, in which
the constraints parameterized by the elements of 0G form a Lie ideal 0C. The
quotient Lie algebra 0H/0C is spanned by the ten real parameters Bk, Rki,
T and Ti, and, as Beig and ÓMurchadha showed, this is isomorphic to the
Poincaré Lie algebra.

Since H[M,Ma] is linear in M and Ma, its restriction to the constraint
surface Γ is a 2-surface integral at infinity of the boundary expression in (26),
which involves the parameters T , Ti, Rki and Bk linearly. The coefficients of
these parameters define the total energy, linear momentum, spatial angular
momentum and centre-of-mass, respectively:

H
[
M,Ma

]
|Γ =: TP0 + TiP

i +RijJ
ij + 2BiJ

i0 . (30)

The total energy and linear momentum defined in this way is precisely the
familiar ADM energy and linear momentum [3], and the spatial angular mo-
mentum is just the angular momentum of Regge and Teitelboim [4]. However,
the centre-of-mass expression deviates slightly from that given by Regge and
Teitelboim. While the Regge–Teitelboim centre-of-mass is not always finite,
the expression given by the Beig–Ó Murchadha Hamiltonian is. We call the
latter expression the Beig–Ó Murchadha centre-of-mass.

4.3 Transformation and Conservation Properties

We saw in Subsect. 2.2 that even the quasi-locally defined energy-momen-
tum and (relativistic) angular momentum of the matter fields transform in
the correct way under the Poincaré transformations of the Cartesian coor-
dinates. Since these transformations can also be interpreted as the action of
the symmetries of the Minkowski spacetime, it is natural to ask about the
transformation properties of the total energy, linear momentum, spatial an-
gular momentum and centre-of-mass, introduced in the previous subsection,
under the action of the “asymptotic symmetries” of the spacetime. Roughly,
the structure of (28) and (29) is similar to the structure of the time and space
projections of the Killing fields (1), thus it seems natural to identify them as
the “asymptotic symmetry generators”. Hence we would have to define the
action of them on the physical quantities in question.

However, since P0, Pi, Jij and Ji0 were introduced in the phase space
rather than the spacetime, one may think that it is enough to clarify their
transformation properties in the phase space. To do this we need an imple-
mentation of the “asymptotic symmetry generators” in the phase space in
the form of some functionally differentiable function. However, we already do
have such an implementation, namely the Beig–Ó Murchadha Hamiltonian
parameterized by the ‘symmetry generators’, and hence we can define its ac-
tion. The action of the “symmetry generator” (M̄, M̄a) ∈ 0A on the total
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energy, linear momentum, spatial angular momentum and centre-of-mass is
defined by the value on the constraint surface Γ of the Poisson bracket of the
Hamiltonian implementing the ‘asymptotic symmetry’ and the Hamiltonian
defining the physical quantities. Formally it is

δ(M̄,M̄a)

(
TP0+TiP

i+RijJ
ij+2BiJ

i0
)

:=
{
H
[
M̄, M̄a

]
,H
[
M,Ma

]}
|Γ . (31)

Evaluating the right hand side of (31) by using (27), the result can be sum-
marized as follows: If we form the column vectors

Pa :=
(
P0

Pi

)
, c̄a :=

(
T̄ 0

T̄ i

)
,

and the 4 × 4 anti-symmetric matrices

Ja b :=
(

0 −Ji0

Ji0 Jij

)
, λ̄a b :=

(
0 −2B̄j

2B̄i 2R̄ij

)
,

then we obtain

δ(M̄,M̄e)P
a = −Pb λ̄b

a (32)

δ(M̄,M̄e)J
a b = −

(
Jc b λ̄c

a + Ja c λ̄c
b +
(
c̄a Pb − c̄b Pa

))
. (33)

This is precisely (minus) the action of the infinitesimal Poincaré transforma-
tion, parameterized by c̄a ∈ R

4 and the Lorentz Lie algebra element λ̄b
a ,

on an energy-momentum 4-vector and a relativistic angular momentum 4-
tensor. Therefore, the total energy, linear momentum, spatial angular mo-
mentum and the Beig–Ó Murchadha centre-of-mass form Lorentz-covariant
quantities, and transform in the phase space in the correct way.

The next issue that we should discuss is whether these quantities are
conserved in time, or, more generally, under what conditions on the lapse
and shift defining the time evolution do we have conserved total energy-
momentum and (relativistic) angular momentum. Thus let (N,Na) ∈ A be
any allowed (maybe time dependent) time axis, given explicitly by (21) and
(22) with k = 1. Then we define the time derivative of Pa and Ja b by the
value on the constraint surface of the Poisson bracket of the Hamiltonian
defining the time evolution via the dynamical equations and the Hamiltonian
defining the physical quantities:

d
dt

(
Ta P

a +Ma b J
a b
)

:=
{
H
[
N,Na

]
,H
[
M,Ma

]}∣∣∣
Γ
. (34)

Evaluating the right hand side of (34) by using (27), for the time independence
of the physical quantities above we obtain the following list:

Ṗ0 = 0 iff βk(t) = 0 , (35)
Ṗi = 0 iff βk(t) = 0 , ρki(t) = 0 , (36)
J̇ij = 0 iff βk(t) = 0 , ρki(t) = 0 , τi(t) = 0 , (37)
J̇i0 = 0 iff βk(t) = 0 , ρki(t) = 0, , τi(t) = 0, τ(t) = 0 . (38)
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Therefore, the total ADM energy-momentum Pa and the relativistic angular
momentum Ja b , built from the spatial Regge–Teitelboim angular momentum
and the Beig–ÓMurchadha centre-of-mass, are conserved only with respect to
gauge evolutions, i.e. when (N,Na) ∈ G.

4.4 Three Difficulties

In Subsects. 2.5 and 3.2 we found that the lapse and the shift that ensure
the conservation of the total energy-momentum and (relativistic) angular
momentum of the matter fields may even be asymptotically linearly diverging,
i.e. they may be any element of A. In the light of this result it is quite
surprising that the analogous gravitational quantities are conserved only with
respect to considerably more restricted lapses and shifts: These must tend to
zero at infinity, and, in particular, the Beig–Ó Murchadha centre-of-mass is
not conserved even with respect to time evolution that is a pure asymptotic
time translation at infinity. Thus we raise the question of whether the total
energy-momentum and (relativistic) angular momentum introduced above
are really the “ultimate” expressions, or whether there is a slightly different
definition for them with better conservation properties. We expect that these
total quantities must be conserved at least with respect to pure asymptotic
time translations.

However, there is a second difficulty too. Although we noted in Sub-
sects. 3.2 and 4.3 that the structure of the allowed lapses and shifts are only
roughly similar to that of the time and space projections of the Killing fields
in Minkowski spacetime, respectively, in Subsect. 4.3 we swept this observa-
tion under the rug, and we considered the elements of 0A as the lapse and
shift parts of the generators of the ‘asymptotic symmetries’ of the spacetime.
Nevertheless, strictly speaking, neither the elements of A nor of 0A can be
identified with the generators of the asymptotic symmetries of the spacetime.
Indeed, while the elements of A have arbitrary time dependence and the ele-
ments of 0A are completely time independent, the components of the Killing
vectors of the Minkowski spacetime have a very specific, namely linear time
dependence. In particular, the familiar boost Killing vectors of the Minkowski
spacetime cannot be recovered, neither from A nor from 0A, in the weak field
approximation.

The third difficulty is that while the centre-of-mass of the matter fields in
Minkowski spacetime depends on the Cartesian time coordinate, the Beig–
ÓMurchadha centre-of-mass is completely time independent. But the time
dependence of the centre-of-mass was needed to prove not only its conserva-
tion, but also its correct transformation properties in the spacetime. Although
the relativistic angular momentum built from the spatial angular momentum
and the Beig–Ó Murchadha centre-of-mass transforms in the correct way in
the phase space, this does not imply its correct transformation in the space-
time.
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In the rest of this contribution we try to resolve these three problems
by showing first how the “correct” time dependence of the lapse functions
can be obtained. Since these resolutions grew up from the need to have a
systematic spacetime interpretation of the results and the analysis of Beig
and Ó Murchadha, we go back to spacetime.

5 The Asymptotic Spacetime Killing Vectors

5.1 The 3 + 1 Form of the Lie Brackets and the Killing Operators

Let Σ be a smooth spacelike hypersurface with future pointing timelike unit
normal ta and induced metric qab. Let Ka and K̄a be two arbitrary vector
fields on M , and let their 3+1 decomposition on Σ be Ka = Mta +Ma and
K̄a = M̄ta + M̄a. Then the 3 + 1 decomposition of their Lie bracket with
respect to Σ can be written as
[
K, K̄

]a
=
(
tatb + 2qab

)(
M∇(bK̄c) − M̄∇(bKc)

)
tc

+ ta
(
�LMM̄ − �LM̄M

)
+
([
M,M̄

]a −
(
MDaM̄ − M̄DaM

))
. (39)

Observe that the first two terms on the right are the time-time and the time-
space projections of the spacetime Killing operators acting on Ka and K̄a.
The third term on the right is precisely the combination of the lapse and
shift parts of Ka and K̄a that appeared as the new lapse in the calculation of
the Poisson bracket of two Beig–Ó Murchadha Hamiltonians (27). Similarly,
the last term is built from M , Ma, M̄ and M̄a precisely in the same way
as the new shift from the old lapses and shifts in (27). Thus one can expect
that the Lie bracket of spacetime vector fields plays some role in the Poisson
algebra of the Beig–Ó Murchadha Hamiltonians. Parts of the Killing operator
are vanishing in some sense. Therefore it is worth decomposing the Killing
operator in the 3 + 1 way as well.

Although the space-space projection of the Killing operator can be ex-
pressed by three dimensional quantities defined with respect to Σ, the time-
time and the time-space projections can be done only if we have not only
a single spacelike hypersurface, but a whole foliation and a notion of “time
flow” ξa as well. Thus we fix the vector field ξa, which will be represented
by a lapse and a shift according to ξa = Nta + Na. If Ẋa denotes the pro-
jection of the Lie derivative of the spatial Xa along ξa, then the full 3 +1
decomposition of ∇(aKb) is

Ntctd∇(cKd) = Ṁ + �LMN − �LNM , (40)
2NP a

c td∇(cKd) = Ṁa +
(
NDaM −MDaN

)
−
[
N,M

]a
, (41)

P a
c P

b
d∇(cKd) = D(aM b) +Mχab . (42)
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Recall that precisely these projections appeared in (23). Furthermore, apart
from the dot-derivatives, the right hand side of (40) and (41) are precisely
the special combinations of the lapses and shifts that already appeared in
(27). Equations (39–41) will be our key equations.

5.2 The Asymptotic Killing Vectors

In Subsect. 3.2 we introduced A as the space of the allowed, most general
lapse-shift pairs compatible with the boundary conditions via the evolution
equations. Thus in this picture A is the space of the allowed spacetime co-
ordinate systems based on a single, fixed asymptotically flat spacelike hy-
persurface Σ. Two elements of A, say (M,Ma) and (M ′,M ′a), determine
two different foliations of the spacetime, and the corresponding unit timelike
normals, ta and t′a, are different.

However, we can look at the space A from a slightly different perspective
too. Let us fix a vector field ξa, which determines a foliation of the spacetime
that is based on the single asymptotically flat Σ. Let ta be the future pointing
unit timelike normal of the leaves of this foliation, and let the lapse and the
shift parts of ξa be chosen to be allowed: (N,Na) ∈ A, where Nta +Na = ξa.
Then for any (M,Ma) ∈ A define the spacetime vector field Ka := Mta+Ma.
Note that we use the same ta to define Ka for all (M,Ma). Thus the role of ξa

is to provide a differential topological background to build spacetime vector
fields from the pairs (M,Ma). The space of such spacetime vector fields will
be denoted by Aξ, and let Gξ be its subspace whose elements are constructed
using G instead of A.

Next observe that the space-space projection of the Killing operator (42)
acting on any vector field Ka ∈ Aξ is vanishing asymptotically at least as
O(r−k), and if this fall-off is actually O(r−k) then the leading term has
even parity. However, its time-time and time-space projections can still be
arbitrary. This motivates us how to define the asymptotic Killing vectors: The
vector field Ka ∈ Aξ will be called an asymptotic Killing vector with respect
to ξa if tctd∇(cKd) and P c

a t
d∇(cKd) are also vanishing asymptotically at least

as O(r−k), and if this fall-off is actually O(r−k) then the leading terms have
even parity. We can introduce a slightly stronger notion: Ka ∈ Aξ will be
called a strongly asymptotic Killing vector with respect to ξa if tctd∇(cKd) = 0
and P c

a t
d∇(cKd) = 0, i.e. when the right side of (40) and (41) is vanishing

not only asymptotically, but pointwise as well. Note that although the Killing
equation has only the trivial solution in a general spacetime, the asymptotic
Killing and the strong asymptotic Killing equations can always be solved
among the vector fields Ka ∈ Aξ.

Indeed, tctd∇(cKd) = O(r−k) and P c
a t

d∇(cKd) = O(r−k) are not partial
differential equations, they are only ordinary differential equations for the
time dependence of M and Ma. In particular, if the asymptotic structure of
the lapse N and the shift Na is given by (21) and (22), respectively, and the
asymptotic structure of (M,Ma) ∈ A is
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M
(
t, xk

)
= 2xkBk

(
t
)

+ T
(
t
)

+ rGµ(G)
(
t,
xk

r

)
+ o∞

(
rG
)
, (43)

Mi

(
t, xk

)
= 2xkRki

(
t
)

+ Ti

(
t
)

+ rHµ
(H)
i

(
t,
xk

r

)
+ o∞

(
rH
)
, (44)

where G,H ≤ (1 − k), then both the asymptotic and the strong asymptotic
Killing equations give the ordinary differential equations

Ḃi = −2
(
Rijβ

j − ρijB
j
)
, (45)

Ṙij = 2
(
Biβj − βiBj

)
− 2
(
Rikρ

k
j − ρikR

k
j

)
, (46)

and if k ≥ 1, we also have

Ṫ = −2
(
Tiβ

i − τiB
i
)
, (47)

Ṫi = 2
(
Tβi − τBi

)
− 2
(
T jρji − τ jRji

)
. (48)

(45)–(48) is a system of ordinary differential equations for Bi(t), Rij(t), Ti(t)
and T (t). For given βi(t), ρij(t), τi(t) and τ(t) this can always be solved, and
the solution depends on six, and if k ≥ 1 then on ten constants of integration.
Here raising and lowering of the boldface Roman indices are defined by the
spatial projection of the constant Minkowski metric: ηij = −δij. Thus the role
of the asymptotic Killing equations is that they restrict the unspecified time
dependence of M and Ma. In particular,

• if ρij = 0, βi = 0, τi = 0 and τ = 0, i.e. if ξa is a pure gauge generator
(N,Na) ∈ G, then the spacetime coordinate system that ξa defines is
asymptotically collapsing. Then the solution of (45)-(48) is that Bi, Rij, Ti

and T are all constant;
• if ρij = 0, βi = 0, τi = 0 and τ = 1, i.e. if ξa is a pure asymptotic time

translation, then the corresponding coordinate system is an asymptotically
Cartesian coordinate system. Then Bi, Rij and T are constant but Ti(t) =
Ti − 2tBi for some constants Ti ;

• if ρij = 0, τ = 0, βi = const. with βiβjδ
ij = 1 and τi(t) = −2tβi, then

the corresponding coordinates form an asymptotically Rindler coordinate
system. Then the solution of (45)–(48) is considerably more complicated:
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Bi(t) = −βiβ
kBk +Πk

i Bk cosh(2t) −Rikβ
k sinh(2t) ,

Rij(t) = Πk
i Π

l
jRkl

+
(
βiRjk − βjRik

)
βk cosh(2t) −

(
βiΠ

k
j − βjΠ

k
i

)
Bk sinh(2t) ,

T (t) = βkBk +
(
T − βkBk

)
cosh(2t) − βkTk sinh(2t) ,

Ti(t) = Πk
i Tk +Rikβ

k + 2tβiβ
kBk

−
(
βiβ

kTk2tΠk
i Bk +Rikβ

k
)

cosh(2t)

+
(
βi

(
T − βkBk

)
+Πk

i Bk + 2tRikβ
k
)

sinh(2t) ,

where Πk
i := δki + βiβ

k is the projection to the 2-plane orthogonal to βi

and T , Ti, Bi and Rij are constants.

Therefore, both the time independent generators of Beig and Ó Murchadha
and the familiar Killing vectors of the Minkowski spacetime can be recovered
as asymptotic Killing vectors by an appropriate choice for ξa, and the latter
is connected with the asymptotically Cartesian coordinate system discussed
in Subsect. 2.4.

The space of the asymptotic Killing vectors and of the strong asymp-
totic Killing vectors (with respect to ξa) will be denoted by AK

ξ and A0
ξ ,

respectively, and obviously A0
ξ ⊂ AK

ξ ⊂ Aξ.

5.3 The Algebra of Asymptotic Symmetries

Contrary to expectations, the space Aξ does not close to a Lie algebra
with respect to the spacetime Lie bracket. To see this, it is enough the
consider the ta component of the Lie bracket given by (39) and take into
account that �LMM̄ − �LM̄M has the form of an allowed lapse for any
(M,Ma), (M̄, M̄a) ∈ A, while the leading term in tatb(M∇(aK̄b)−M̄∇(aKb))
has the formN−1xixj, which deviates from the structure of the allowed lapses.

If Ka and K̄a are any two asymptotic Killing vectors then by (39) their Lie
bracket, K̂a := [K, K̄]a, belongs to Aξ. Furthermore, the (time dependent)
parameters in its asymptotic expansion according to (43) and (44), B̂i and
R̂ij, and if k ≥ 1 then T̂i and T̂ also, are built from those of Ka and K̄a as

B̂i = 2
(
RijB̄

j − R̄ijB
j
)
, (49)

R̂ij = 2
(
RikR̄

k
j − R̄ikR

k
j + B̄iBj −BiB̄j

)
, (50)

T̂i = 2
(
T jR̄ji − T̄ jRji + T̄Bi − TB̄i

)
, (51)

T̂ = 2
(
TiB̄

i − T̄iB
i
)
. (52)

Now it is a direct calculation to show that B̂i, R̂ij, T̂i and T̂ satisfy (45)-
(48). Thus the leading, and if k ≥ 1 then the leading two terms in [K, K̄]a
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satisfy even the strong asymptotic Killing equations. However, in general
[K, K̄]a does not satisfy the asymptotic Killing equations even if both Ka

and K̄a are strong asymptotic Killing vectors. To see this we should calculate
the projections P c

aP
d
b �L[K,K̄]gcd, P c

a t
d �L[K,K̄]gcd and tctd �L[K,K̄]gcd. Using the

differential geometric identity L[K,K̄] = �LK �LK̄−�LK̄ �LK, it is a straightforward
calculation to show that P c

a t
d �L[K,K̄]gcd is not of order O(r−k) for general

Ka, K̄a ∈ AK
ξ , and it is not zero for general Ka, K̄a ∈ A0

ξ . Therefore, neither
AK

ξ nor A0
ξ close to a Lie algebra. Nevertheless, by the fact that B̂i, R̂ij, T̂i

and T̂ satisfy (45)–(48) the Lie bracket of any two asymptotic Killing vectors
deviates from an asymptotic Killing field only by an element of Gξ. This
observation makes it possible to introduce a natural Lie algebra structure
on the quotient vector spaces AK

ξ /GK
ξ and A0

ξ/G0
ξ , where GK

ξ := Gξ ∩ AK
ξ

and G0
ξ := Gξ ∩ A0

ξ . These quotient spaces are spanned by the (special time
dependent) parameters Bi and Rij, and if k ≥ 1 then also by Ti and T . Hence
they are isomorphic to each other and their dimension is six for k < 1 and
ten for k ≥ 1. The Lie multiplication of them is given by (49)–(52), and it
is easy to see that this Lie algebra is the Lorentz Lie algebra for k < 1 and
the Poincaré algebra for k ≥ 1. Therefore, the structure of the Lie algebra
AK

ξ /GK
ξ is connected with the fall-off rate of the metric: for slow fall-off it

is only the Lorentz Lie algebra, and the displacements of the origin of the
coordinate system emerge as asymptotic symmetries only for 1/r or faster
fall-off.

6 Beig–Ó Murchadha Hamiltonians
with Asymptotic Spacetime Killing Vectors

In this section we return to the discussion of the properties of the Beig–
ÓMurchadha Hamiltonian, but instead of the elements of the time indepen-
dent (M,Ma) ∈ 0A we parameterize them by the asymptotic Killing vectors.

Thus let us fix ξa, and define H[Ka] := H[M,Ma] for any Ka := Mta +
Ma ∈ AK

ξ . Then by (39) the Lie multiplication law (27) in the Poisson algebra
of the Beig–Ó Murchadha Hamiltonians can be written in the remarkably
simple form

{
H
[
Ka
]
,H
[
K̄a
]}

=





−H
[[
K, K̄

]a]+ constraints for Ka, K̄a ∈ AK
ξ ,

−H
[[
K, K̄

]a] for Ka, K̄a ∈ A0
ξ .

(53)
Therefore, apart from constraints, the Beig–ÓMurchadha Hamiltonian pre-
serves the spacetime Lie bracket of the asymptotic spacetime Killing vectors,
and it preserves the spacetime Lie bracket of the strong asymptotic spacetime
Killing vectors.
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The second issue that we consider is the conservation of the Hamiltonian.
Thus let (M,Ma) ∈ A, and calculate the total time derivative of H[M,Ma],
where the time evolution is generated by ξa = Nta +Na. Then

d
dt

H
[
M,Ma

]
= H

[
Ṁ, Ṁa

]
+
{
H
[
N,Na

]
,H
[
M,Ma

]}

= H
[
Ṁ +MeDeN −NeDeM,Ṁa +NDaM −MDaN − [N,M ]a

]

=
{

constraints for Mta +Ma ∈ AK
ξ ,

0 for Mta +Ma ∈ A0
ξ .

(54)

Here we used (27), and, in the last step, the definition of the asymp-
totic Killing and the strong asymptotic Killing vectors. Thus, the Beig–
ÓMurchadha Hamiltonian is constant (constant modulo constraints) with
respect to the time evolution defined by ξa if Ka = Mta + Ma is strongly
asymptotic Killing (asymptotic Killing) with respect to ξa.

7 Physical Quantities
from the Beig–Ó Murchadha Hamiltonians
with Asymptotic Spacetime Killing Vectors

7.1 The General Definition of the Physical Quantities

Independently of the details of the canonical analysis of the vacuum Einstein
theory, we can consider the Beig–Ó Murchadha Hamiltonian as a functional
of the initial data on an asymptotically flat spacelike hypersurface even in the
presence of matter fields and even if the fall-off rate of the metric is assumed
only to be positive. Thus for any (M,Ma) ∈ A let us define

Q
[
M,Ma

]
:= H

[
M,Ma

]
|Γ + Qm

[
M,Ma

]

= − 1
2κ

∫

Σ

Da

(
Mqabqcd

(
0Dcqbd − 0Dbqcd

)

+
(
0DbM

)
qabqcd

(
qcd − 0qcd

)

−
(
0DcM

)
qabqcd

(
qbd − 0qbd

)

− 2Mb

(
χba − χqba

))√
|q|d3x . (55)

Apparently, for zero Bi and Rij but non-zero T or Ti this expression is finite
only if k ≥ 1. However, as it was pointed out in [6], [7], [8] in the vacuum
case, Q[M,Ma] is finite even if k > 1/2 and the fall-off rate G and H in
(43)–(44) satisfies the stronger restriction G,H ≤ −k: Relaxing the fall off
for the matter fields analogously, the right hand side can be written as the
sum of a finite and a would-be divergent term, but the latter in fact vanishes
by the constraint parts of the field equations. (Of course, in this case the
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energy-momentum of the matter fields is not finite.) Similarly, apparently
Q[M,Ma] can be finite for non-zero Bi and Rij only for k ≥ 2, but, as an
analogous analysis shows [14], the slowest possible fall-off rate ensuring the
finiteness of (55) is in fact k ≥ 1 .

7.2 Total Energy, Momentum, Angular Momentum
and Centre-of-Mass

Next let us restrict Ka := Mta +Ma to be an asymptotic Killing vector and
introduce the notation Q[Ka] := Q[M,Ma]. Then since AK

ξ /GK
ξ ≈ A0

ξ/G0
ξ is

coordinatized by the integration constants Bi and Rij, and for k ≥ 1 by Ti

and T too, Q[Ka] is a linear expression of them:

Q[Ka] = TP0 + TiP
i +RijJ

ij + 2BiJ
i0. (56)

This defines the total energy, linear momentum, spatial angular momentum
and centre-of-mass, respectively. However, these quantities depend on the
choice of the vector field ξa. In particular,

• if ξa is chosen to be a pure gauge generator, then we recover the ADM
energy P0

ADM , the ADM linear momentum Pi
ADM , the Regge–Teitelboim

spatial angular momentum Jij
RT and the Beig–Ó Murchadha centre-of-mass

Ji0
BOM , respectively;

• if ξa is a pure asymptotic time translation, then the energy, linear mo-
mentum and spatial angular momentum coincide with the ADM energy
and linear momentum and the Regge–Teitelboim angular momentum, but
the centre-of-mass deviates slightly from the Beig–Ó Murchadha centre-of-
mass; it is Ji0 = Ji0

BOM − tPi
ADM ;

• if ξa defines an asymptotically Rindler coordinate system, then the energy,
linear momentum, spatial angular momentum and centre-of-mass will be
complicated time dependent combinations of the ADM energy and lin-
ear momentum, the Regge–Teitelboim angular momentum and the Beig–
ÓMurchadha centre-of-mass:

P0 = P0
ADM cosh(2t) + βkP

k
ADM sinh(2t),

Pi = Π i
kP

k
ADM − βi

(
P0

ADM sinh(2t) + βkP
k
ADM cosh(2t)

)
,

Jij = Π i
kΠ

j
lJ

kl
RT + 2β[iJ

j]k
RTβk cosh(2t) + 2β[iJ

j]0
BOM sinh(2t)

− β[iP
j]
ADM

(
1 − cosh(2t) + 2t sinh(2t)

)
,

Ji0 = −βiβkJ
k0
BOM +Π i

k

(
Jk0

BOM cosh(2t) + Jkl
RTβl sinh(2t)

)

+
1
2
Pi

ADM sinh(2t) + t
(
βiβk −Π i

k cosh(2t)
)
Pi

ADM

+
1
2
βi
(
1 − cosh(2t)

)
P0

ADM .
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Thus the definition of the physical quantities, defined by the value of the
Beig–Ó Murchadha Hamiltonian parameterized by the asymptotic spacetime
Killing vectors, do depend on the vector field ξa that we used to define the
asymptotic Killing vectors. Hence we should have a selection rule for ξa.
Based on the discussions in Subsect. 2.4, such a selection rule could be the
requirement that the spacetime coordinate system determined by ξa be as-
ymptotically Cartesian. Our suggestion is to take such a ξa. In fact, this
choice should be justified by the properties of the corresponding physical
quantities.

The analysis of Subsect. 4.3 to clarify the transformation properties of
this total energy, linear momentum, spatial angular momentum and centre-
of-mass can be repeated. It is easy to see that they have exactly the same
transformation properties in the phase space that the quantities defined in
Subsect. 4.3 had: They form a Lorentzian 4-vector Pa and an anti-symmetric
tensor Ja b , and transform according to the Poincaré transformation. How-
ever, defining the Cartesian spacetime coordinates by xa := (t, xi), we can
consider the transformation of Pa and Ja b under the Poincaré transforma-
tion of the Cartesian coordinates, xa �→ xbΛb

a + Ca , in the spacetime too.
Using the explicit form of M and Ma in terms of the spacetime Cartesian
coordinates and the defining equation (56), it is a straightforward calcula-
tion to show that Pa and Ja b transform just in the correct way. It might be
worth noting that the special linear time dependence of the centre-of-mass is
needed to derive the correct transformation properties. In fact, the relativistic
angular momentum tensor built from the Regge–Teitelboim angular momen-
tum and the Beig–Ó Murchadha centre-of-mass does not transform in the
expected way under Poincaré transformations of the Cartesian coordinates
xa in the spacetime.

Next let us consider again a general ξa, and calculate the total time deriv-
ative of Q[Ka] with respect to ξa. Now the coefficients in the asymptotic
spacetime Killing vectors Ka have explicit time dependence. Using the evo-
lution equations of Subsect. 3.2, we have

d
dt
Q
[
Ka
]

= Q
[
Ṁ +MeDeN −NeDeM,Ṁa +NDaM −MDaN − [N,M ]a

]

= 0 (57)

for any Ka ∈ AK
ξ . Therefore, the energy-momentum and angular momentum,

defined by Q[Ka] with the vector fields Ka that are asymptotic Killing with re-
spect to ξa, are conserved in time provided the time evolution is defined by the
same ξa. Thus, just as in Subsects. 2.5 and 3.2, the vector field ξa defining the
time evolution is required only to be an allowed time axis, but the generators
Ka for the physical quantities do depend on ξa. In particular, both the con-
servation (35)–(38) of the time independent quantities with respect to gauge
evolutions in Subsect. 4.3 and the conservation of the energy-momentum and
relativistic angular momentum defined in the present subsection with respect
to pure asymptotic time translations are special cases of (57).
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7.3 Translations for Slow Fall-Off Metrics

In Subsects. 5.2 and 5.3 we saw that the asymptotic translations emerge as
genuine asymptotic symmetries only for 1/r or faster fall-off, while for slow
fall-off they are lost in the sea of the “generators of gauge evolutions” and
the genuine asymptotic symmetries are only the asymptotic rotations and
boosts. On the other hand, by the results of Subsect. 7.1, for slow, 1/rk,
1/2 < k < 1, fall-off we can define energy-momentum but not relativistic
angular momentum. The aim of the present subsection is to resolve this
apparent contradiction by showing what the translations in the slow fall-off
case might be.

The key observation is that Q[M,Ma] can be finite for the slow fall-off
metrics provided the structure of M and Ma is

M
(
t, xk

)
= T

(
t
)

+ rKµ(K)
(
t,
xk

r

)
+ o∞

(
rK
)
, (58)

Mi

(
t, xk

)
= Ti

(
t
)

+ rLµ
(L)
i

(
t,
xk

r

)
+ o∞

(
rL
)
, (59)

where K,L ≤ −k, i.e. the xk-dependent parts of M and Ma tend to zero as
r−k rather than diverging as r(1−k) as in (43) and (44). This motivates us to
consider for some q ≤ (1 − k) the spacetime vector fields Ka = Mta + Ma

whose asymptotic structure is given by (58)–(59) and K,L ≤ q. We say that
they have q-fast fall-off. In general, these vector fields do not form a Lie
algebra.

Next consider the space qT K
ξ of such vector fields which are asymptotic

Killing vectors too: Let the tatb∇(aKb) and P a
c t

b∇(aKb) parts of the Killing
operator acting on them tend to zero at least as O(rq−1). Then the Lie
bracket [K, K̄]a of Ka ∈ qT K

ξ and K̄a ∈ AK
ξ contains terms of order r−k.

Thus the Lie bracket operation preserves the index q of the space qT K
ξ and

the components of [K, K̄]a have the structure (58)-(59) only if q ≥ −k. The
quotient qT K

ξ /qT K
ξ ∩ GK

ξ is isomorphic to R
4 and inherits a commutative

Lie algebra structure from AK
ξ /GK

ξ . Equations (47) and (48) show that T (t)
and Ti(t) are in fact constant for ξa generating e.g. an asymptotically col-
lapsing or asymptotically Cartesian coordinate system. (If ξa generates an
asymptotically Rindler coordinate system, then they still depend on time as
T (t) = T cosh(2t) + T ∗ sinh(2t) and Ti(t) = Ti + βi(T ∗ cosh(2t) + T sinh(2t))
for constants T , T ∗ and Ti satisfying Tiβ

i = 0.) Thus qT K
ξ may be inter-

preted as the space of the “q-fast fall-off asymptotic translations” in AK
ξ

even if k ∈ (0, 1), provided −k ≤ q ≤ (1 − k). On the other hand, by the
results of Subsect. 7.1 the translations yielding finite energy-momentum can
be the elements of qT K

ξ for any q ≤ (1 − k) if k ≥ 1, but for 0 < k < 1 only
those “q-fast fall-off” translations yield finite energy-momentum for which
q ≤ −k. Therefore, the space of the fast fall-off translations yielding finite
energy-momentum is precisely −kT K

ξ .
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8 Summary

The present investigation grew from the need to give a systematic space-
time interpretation of the results and the main points of the analysis of
canonical vacuum general relativity by Beig and Ó Murchadha. However,
while the centre-of-mass components of the relativistic angular momen-
tum of matter fields in Minkowski spacetime depend linearly on time, the
Beig–Ó Murchadha centre-of-mass expression for asymptotically flat space-
times is completely time independent. As a consequence of this the Beig–
ÓMurchadha centre-of-mass is conserved only with respect to “gauge evolu-
tions”, and although it transforms in the correct way in the phase space, it
does not in the spacetime.

To find the correct time dependence we suggest to parameterize the Beig–
ÓMurchadha Hamiltonian by the lapse and shift parts of appropriately de-
fined asymptotic Killing vector fields. A natural Lie algebra structure can be
introduced on the quotient of the space of the asymptotic Killing fields and
the subspace of “gauge generators”, and we showed that this Lie algebra is
only the Lorentz Lie algebra for slow fall-off, but it is the Poincaré algebra
for 1/r or faster fall-off metrics.

We define the total energy-momentum and relativistic angular momentum
by the value on the constraint surface of the Beig–Ó Murchadha Hamiltonian
parameterized by the asymptotic translation or rotation-boost Killing vectors.
This definition is completely analogous to that of the (quasi-local or total)
energy-momentum and angular momentum of matter fields using the Killing
vectors of the Minkowski spacetime. The energy-momentum obtained in this
way is just the standard ADM energy-momentum and the spatial angular
momentum is that of Regge and Teitelboim. However, the centre-of-mass
deviates from that of Beig and ÓMurchadha by a term, which is the linear
momentum times the coordinate time. This centre-of-mass has the correct
transformation properties, known for the matter fields in flat spacetime, both
in the phase space and in the spacetime with respect to asymptotic Poincaré
transformations, and it is conserved if the time evolution is generated by
asymptotic time translations.
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