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Causal Measurability in Chronological Spaces
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We show that the causal structure determines a volume measurability up to sets
of zero measure. In space-time manifolds this causal measurability, apart from
sets of zero measure, agrees with the a priori four-dimensional Lebesgue
measurability, provided the strong causality condition holds.

1. INTRODUCTION

The standard model of space-time is a smooth manifold equipped with a
Lorentz metric [1,2]. The points of this manifold represent events, the
Lorentz metric up to conformal factor describes the causal relations
between them, and, finally, the conformal factor fixes the affine and metric
properties. This model contains numerous mathematical (e.g., topological,
analytical, measure theoretical, causal, geometrical) structures. We think,
however, that from a physical point of view these structures have different
significance: the deepest one is causality and some others are introduced for
their mathematical usefulness only.

As is well-known, by mans of causal structure it is possible to define
topologies. Such is the Alexandrov topology, which agrees with the
manifold topology provided the strong causality condition holds. One can
think this causal topology is the “true,” the physical topology of the collec-
tion of events. Similarly, if the causal structure were able to determine some
other mathematical structures, then these structures would be the deepest
ones. It is expected that these new structures reflect the properties of
causality and agree with the usual ones at least in the absence of certain
causal pathologies.
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In this paper we examine the problem of volume measurability.
Measurability, in the form of volume integrals on subsets of the space-time,
appears in different areas of physics. Although the value of the integral or,
more generally, the volume of a measurable set, is determined by physical
quantities, e.g., the metric, the fact that a given set is measurable or not is
independent of the physical properties of the events that make up the set.
This measurability comes from Euclidean spaces, similar to the manifold
topology. Although, based on the local R* character of space-time, it seems
reasonable to define the measurable subsets of the space-time as the ones
inherited from R* no direct physical experience exists implying that we
have to do this: measurability is given a priori.

In the present paper we show that the chronology relation determines
a measurability of the Lebesgue type. This causal measurability is unique
up to sets of zero causal measure; more precisely, each measurable set with
respect to the outer measure induced by a physically reasonable
premeasure is a union of a set of zero outer measure and a set which is
measurable with respect to the outer measure induced by any other
physically reasonable premeasure. It will be shown that in a space-time
manifold each causally measurable set, apart from sets of zero causal
measure, is measurable with respect to the ordinary four-dimensional
Lebesgue measure. Furthermore, if the strong causality condition holds,
then each Lebesgue measurable set, apart from sets of zero Lebesgue
measure, is causally measurable. Therefore, at least in strongly causal
space-times, we have shown that, apart from sets of zero measure, the a
priori Lebesgue measurability is justified and derived from causality.

In Section 2 we review the Lebesgue measurability in (space-time)
manifolds, where we stress again that the ordinary Lebesgue measurability
is a priori given. Section 3 is then main part of this article: it contains the
construction and some of the properties of the causal measurability. In
Section 4 we examine the relations between the causal and the Lebesgue
measurabilities in space-time manifolds.

The notions of causality and measure theory we use are those of Refs.
1 and 3, respectively. In general, capital script letters denote collections of
subsets of the base space M, while italic capital and small letters denote
subsets and points of M, respectively.

2. MEASURABILITY IN (SPACE-TIME) MANIFOLD

Let M denote the set of events. We have to impose several
assumptions on M, some are motivated by physical observations, others
are purely mathematical to handle M. M is a connected, Hausdorfl,
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paracompact topological space, homeomorphic locally to R% on which a
smooth atlas is given. (For the discussion of these assumptions see Refs. 1
and 2.)

The local R* character of M defines a class of four-dimensional
Lebesgue measures on M, being absolutely continuous [3] with respect to
each other, and if the measure A is fixed then an integration with respect to
A is also given. A is naturally connected to the manifold topology: it is a
so-called regular Borel measure [3].

Although the metric g, determining all the geometrical properties of
space-time, has not been specified, the whole collection .# of measurable
sets of M is given. Thus % is independent of both the causal structure and
the conformal factor. Thus one may raise the question of whether or not it
is possible to determine measurability in a natural way by making use of
the causal structure alone. .

3. CAUSAL MEASURABILITY

In what follows we try to outline the beginnings of a causal measure
theory. The idea we use is the construction of the #-dimensional Lebesgue
measure: an application of the extension problem of measure theory [3].
The extension is made in two steps: (1) a nonnegative set function g,
defined on a class s of subsets of the base space M, induces an outer
measure u* on the power set (M) of M; (2) if s# is at least a semiring
and u is additive and subadditive on s, then the collection .# of
p*-measurable sets and the outer measure p* itself are extensions of 2# and
U, respectively.

3.1. Chronological Spaces

The construction of # is based on chronology; thus, we define the
notion of chronological spaces [4-6] as follows: The pair (M, <) is a
chronological space if M is a nonempty set and < is a transitive relation
on M satisfying the following condition: if x <x, then there is a point
y€ M such that y#x, x < y <x. The points of M are the events and < is
called the chronology relation. A special but physically very important
class of chronological spaces is called full [5]: (M, <) is full if for Vp,, p,,
X, q,, 9, € M satisfying p,, p, €x <gq;, g, there are points p, ge M such
that p,, p,< p<x<g<gq,,q,; furthermore, for Vxe M there are points
D, g€ M such that p<x<gq.

The chronological future of the set Zc M is I"Z:={xe M|3ze Z:
z<x}. A subset S< M is called achronal if SNnI*S= (. The set FS M is
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called future set [1] if I*FS F and the collection of future sets will be
denoted by . *. Of course, every definition and statement has a dual form
[5] interchanging the future and the past. Based on the definitions one can
show easily the next proposition.

Proposition 3.1.1. (1) FeS* iff (M—F)eS~; (2) M, FeF*; (3)
for arbitrary collection {F,|ye I} of future sets we have

" (V{F,lvelys () {Flvel}

i.e.,, the intersection of arbitrary collection of future sets is a future set (I is
an arbitrary indexing set); (4) the union of arbitrary collection of future
sets is a future set.

By means of < a reasonable topology can be defined on M: The
Alexandrov topology [5] is the coarsest topology 4 on M in which each
I*Z is open for VZ = M. One can show that the interior, int F, and the
closure F of a future set F, with respect to Z, are also future sets.

Full chronological spaces have simple topological properties [5]. The
collection ¥ of intervals (u, v) :=I*{u} NI~ {v}, u<v, is a base of 7,
and for VFesS™* intF=I*F, F={xeM|I"{x}<F}. While in an
arbitrary topological space the existence of a countable dense subset of the
base space (i.e., the separability) does not imply the existence of a count-
able base; in full chronological spaces these concepts coincide.

3.2. The Chronological Semiring

Since we want to build up a construction similar to the Lebesgue
measure on R”, we need a class of subsets of M, defined only by means of
<, having a ring or semiring structure [3]. The next proposition shows
that the collection # :={FNnP|FeSf™*, Pe S~} is a S-semiring with
identity element M.

Proposition 3.2.1. (1) M, Jes#; (2) for arbitrary collection
{H,|yeI} of sets from # we have

N {H,|lyel}ex

.av If H, H, € o such that H, < H then there exist sets H,, H; e # satisfy-
:uW mHDmM“mHme”memeE N.HHQ mu.cmwcmu”m.

Proof. (1) follows trivially from Proposition 3.1.1. For VH,,
yel, there exist sets F,e #*, P,e S~ such that H,=F,n P,. Hence,
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because of Proposition 3.1.1, we have (\{H,|yelI'}=( {F,lyerl}
N {P,|y el'}e#. For the sets H, H e # satisfying H, < H there exist
sets Fef*, P,esS~ such that H,=F nP,cH Then the sets
H,=Hn(M-—F,), Hy:=HnF,n(M—P,) belong to #; H,, H,, H;
are disjoint sets and their union is H.

H is called the chronological semiring. To characterize minimal
elements of #, it is useful to introduce the concept of atom, borrowed
from lattice theory: The nonempty set 4 € # is called an atom if for every
set HS A, He # implies either H=¢ or H=A. If 4 is an atom and
He s, then either A H or An H={J. Of course, a set containing a
single point and belonging to s is an atom and is called a trivial atom.
Conversely, every achronal set containing at least two points cannot be an
atom. )

The following statement gives us the physical meaning of nontrivial
atoms: they are irreducible parts of the chronology violating sets [6].

Proposition 3.2.2. A set 4 is an atom containing at least two points
iff A=<x, x) for some xe A.

Proof. If for some xeA, A=<{x,x), then A4, according to the
properties of <, contains at least two points. If H is a nonvoid subset of
{x, x> belonging to 4, then IFe #*, Pe ¥~ such that H=Fn P. Then,
for Vze PnFS (x,x), {x,x) = {z,z) = I*{z} n I {z} < I"F n
I"P < FNnP < {x,x);ie, H={x,x)=A is an atom.

Let 4 be an atom containing at least two points and let Fe.# ™,
Pes~ such that A=FnP. Then IxeAd for which PnI™{x}+,
because otherwise A4 would be achronal: AnNnItA < PnIt4 =
PrU{I"(x)|xed}=U{PnI"(x)|xeAd}=. Hence, PnI*{x}+#,
which belongs to #, and PnI*{x}sPnI*4A < PnI*"F < PnF=A.
But 4 is an atom; thus, xe A=A nI*{x}, implying <{x, x> # ¢ and
{x,x) N A# . Because of the first part of this proposition {x, x> is an
atom too, {x,x>=4. |}

In the rest of this section some topological properties of s# are given.

Proposition 3.2.3. If He s, then int H, He #.

Proof. If H=Fn P for some Fe #* and Pe.#~ then, because of
int Fes*, intPes~, int H=int Fnint Pe #. From FNnP<Fn P it
follows that H<FnP. Then I"THcI*(FAP)cI*F=]I"F<F and
similarly I"H<P. If F:=FUH and P :=PUH, then I'F =
I"FUITHcFsF and I P <Pie,Fesf* and P e s . Since HS H,
it follows that H=(FNPYUH=F nPe#. |
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Corollary. For VHe # there are disjoint empty-interior sets 4, H,
A, HeH# such that int Hnd,;H=int Hnd,H=, intHud Hu
d,H=Hand A, HU4,H<0H. If H=H, then 4, Hu 4, H=0H.

Proof. 1f He # then, as in the proof of Proposition 3.2.1, for int H
define A H:=Hn(M—intF), A,H:=Hnint Fn(M—int P). Then
int4,H = int Fnint Pnint(M ~int F) € int Fnint Pn (M —int F) =
& and similarly intA,H= Q. A simple calculation shows that
A4, HUAd,H=Hn (M- H); thus if H=H, then 4, Hu4,H=0H. |

Proposition 3.2.4. Let (M, <) be a full chronological space. For the
subset H& M, HNI"H=J iff He # and int H= (.

Proof. Let He &, int H= J and, on the contrary, suppose 1z, we H
such that z<w. But H=FnP for some Fef$* and Pef~; thus
FG# L, wYSITFnI"P< Fn P=H, contradicting the hypothesis
int H= (.

If HhItTH=(, then F:=HUI"He$", P:=Hul HeJJ ", and
H=FnP; ie, Hes. If there were points u,veM such that
& # {u, vy < H then, because of the fullness of (M, <), there would be
points x, y € M satisfying u < x < y <v; which would imply x, ye H. |

3.3. The Causal Measurability

Every set function wu: # — [0, c0] defines a (subadditive) outer
measure u*: Z(M)— [0, co], but, in general, the elements of 5 are not u*
measurable, and for He s, u*(H) is not necessarily equal to u(H).
However, if u is additive and subadditive on 4, then these difficulties
“cannot occur [3].

Each of our observations and measurements is a localized event or
process. This means, within the framework of measure theory, that the
event or process is contained in a region with finite measure. Thus, if some
region had infinite measure we would expect to have a countable covering
of it consisting of sets of finite measure; ie., the ¢ finiteness [3] of the
measure is expected.

A set function u: # — [0, co] which is additive, subadditive, and o
finite on # is called a causal premeasure. One can show that if (M, <) is
full then a causal premeasure always exists. (For a constructive proof see
Appendix 3 of an earlier, preprint version of this paper [7].)

If #(2) denotes the ¢ algebra generated by 2, 2 < #(M), then the
next statement, which is a direct consequence of the theorems of standard
measure theory [3] and the properties of ## and p, lists the main proper-
ties of the causal measure and measurability.
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Theorem- 3.3.1. Let (M, <) be full, let u* denote the outer measure
on M induced by the premeasure p, and let .# be the collection of
u*-measurable subsets of M. Then (1) u*(N)=0 implies Ne #, (2) 4 is a
o algebra with identity element M and

M =RB(H) :={BUN|BeB(H), »*(N)=0}

(3) u* is subadditive, additive, and o finite on .#; (4) for VHe #,
w(H)=p*(Hy, (5) for VXS M, 3Ec #: X< E and u*(X)=pu*(E). p* is
called a causal outer measure, and the restriction ji of u* to .# is a causal
measure; the elements of 4 are called causally measurable subsets of M.

As Theorem 3.3.1 shows, each element of # is causally measurable
and [ is an extension of y from 5 to . Let u,, u, be causal premeasures
with the corresponding causal measures fi;, {,, and o algebras #,, 4,,
respectively. If Ee ., then, according to the theorem above, ABe Z(H#)
and N M such that E=BUN and j,(N)=0. Then Be.#, too, and
fiy(B) < i (BU N) < fiy(B) + fiy(N) = i, (B) which implies f,(E)= j1,(B).
Thus for each E,e.#, there is a set E,e.#, such that E,<E, and
A (E)=ji,(E,). Causal measurability is, therefore, unique up to sets of
zero causal measure. .

A nonmeasurable subset of M is, for example, a proper subset X
of a nontrivial atom {x, x> having positive masure: for the test
set Ti=(x,x) p*(T)=p*({x, x3)=p*(TnX)=p*(T—X), implying
¥ (T)# p*(T N X) + p*(T— X).

3.4. Topological Conditions

Without further restrictions, there might be situations in which a
chronologically extended region has zero measure, while the measure of the
boundary of a closed or open subset of M is positive. We expect, however,
that such situations cannot occur.

To rule out these topological pathologies of the measure, we have to
impose certain topological conditions. We will say that the set function
w2 —10,00], defined on a collection <P (M) of subsets of the
topological space (M, J), satisfies the first topological condition if
u(D)=0 implies int D = ¢, for D e 9, and satisfies the second topological
condition if int D= ¢ implies u(D)=0, for De Z. The next statement
shows if the causal premeasure satisfies the first topological condition, then
the first of the pathologies cannot occur.

Proposition 34.1. The causal outer measure p* satisfies the first
topological condition iff the causal premeasure u does.
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Proof. u* is an extension of y; thus, if u* satisfies the first topological
condition, u does. .

Conversely, suppose, on the contrary, that for some X < N§., int X#J
and p*(X)=0. Then 3<{u, v) € ¥ such that {u, v> < X. But p* is an exten-
sion of u [ie., for VHe A, Emvnt*@:ﬁ Ezm.v we have u[{u,v>]1<
1*(X) =0, contradicting the first topological condition. 1

u* may not satisfy the second topological condition even if u satisfies
both of the topological conditions: for the subset X at the end of the
preceding paragraph int X = but t*C.m v = pu({x, x)) Wo. In fact, ,Mm
would like to require the topological conditions only for i mua not Mow. u*.
Trivially, to ensure the existence of such a causal measure [, the mﬁmﬁ@:o.m
of a causal premeasure p satisfying both o.m the topological conditions is
necessary, but we do not know if it is sufficient or not.

4. CAUSAL MEASURABILITY IN SPACE-TIME MANIFOLD

If (M, g) is a space-time manifold, then (M, <)isafull orao=o_om~mm_
space with the natural chronological R_mm@ .A defined by g[1, 2, 4-6, 8].
Thus, on (M, g) there are two measurabilities: Eo.omcm& and E.o four-
dimensional Lebesgue measurabilities. In this section, we examine the

relations between these two.

Theorem 4.1. In a space-time manifold #(#) < Z.

Proof. For YFe$*, the boundary 9™F of F (with respect to the
manifold topology ™) is a C'~ hypersurface [1]; thus, ommw subset of
0" F has zero Lebesgue outer measure and, as a consequence, 18 Lebesgue-
measurable. But each 7 ™-open set is also Lebesgue Bo.mmﬁmzﬂ therefore,
F=int"FuU(FN0"F)e ¥, which implies S* <% (int"F denotes the
interior of F with respect to J ™). Similarly, #~ c%; therefore,
BHY<L. 1

Theorem 4.1 implies that for each causally masurable set E e M there
is a set E'e./# being Lebesgue measurable, too, and E'<E, m:or. that
f(E—E')=0. Thus every causally measurable subset of M FH. arbitrary
causal premeasure, apart from sets of zero causal masure, is Lebesgue
measurable. . .

The next statement shows that the converse is also true provided the
strong causality condition [1, 8] holds. :

Theorem 4.2. If (M, g) satisfies the strong causality condition, then
BIT™NCBH)= M.
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Proof. 1f (M, g) is strongly causal, then [1, 5, 8] 9™ =7 ; therefore,
(M, J) is second-countable. Thus there is a countable subcollection
% =% which is a base of ™. Then 7 "< %B(%)<B(#), implying
BITY=B(AH). | v

One can construct space-times, with no closed timelike but with
closed nonspacelike curves, in which there is a subset belonging to %#(7 ")
but to #(#°), and space-times as above in which #(J ™) S B(H#). These
examples suggest that the chronological condition cannot ensure #(7 ™) =
%('), but the causality condition is not necessary.

5. CONCLUSION AND REMARKS

By means of the chronology relation we were able to create a §-semi-
ring s with identity element M. Every nonnegative set function y on #
defines an outer measure u* and a measurability with respect to u*. If y is
additive, subadditive, and o finite (such a u always exists in full
chronological spaces and is called causal premeasure), then u* will be an
extension of u and every set He s# will be u*-measurable. If My, U, are
causal premeasures and E; is ujf-measurable, then there is a set E,cE,
being pf- and p¥-measurable such that uf(E,—E,)=0; ie., causal
measurability is unique up to sets of zero measure. In space-time manifolds
every causally measurable subset, apart from sets of zero causal measure, is
Lebesgue measurable and vice-versa, provided the strong causality con-
dition holds. Thus, observing the chronological relation in a strongly
causal space-time, Lebesgue measurability, apart from sets of zero
Lebesgue measure, is recovered; i.e., it is derived from causality. Hence we
were able to reduce the number of unjustified assumptions in the
mathematical model of space-time.

One of the most interesting open questions is what kind of conditions
are able to guarantee the uniqueness of the causal measurability. For exam-
ple, can physically reasonable topological conditions on the premeasure be
required such that every such premeasure gives the same measurability; ie.,
pf(N) =0 iff u¥(N)=0 for every two such premeasure u,, i,.
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