Commutation properties of cyclic and null Killing symmetries
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In a space-time admitting cyclic and nonspacelike Killing symmetries the commutation
properties of the Killing vectors are examined. It is shown that cyclic and null Killing vectors
can be noncommuting only if a Killing vector of stationarity is also admitted. Two

consequences of this commutativity are also discussed.

I. INTRODUCTION

Stationary, axisymmetric space-times have distin-
guished importance in general relativity, e.g., the final state
of black holes is thought of as stationary and axisymmetric.’
It is usually assumed that the Killing vectors of stationarity
and axisymmetry commute. In fact, Carter? has shown that,
without loss of any generality, this can always be assumed.

Axisymmetric space-times with null Killing vectors
may also have physical significance; e.g., certain pp waves®
or the Lukécs—Perjés—Sebestyén solution* (which describes
the gravitational field of a zero-mass, spinning charged par-
ticle) have these symmetries. Recently Lessner’ has pro-
posed certain axisymmetric vacuum solutions, admitting
null Kjlling symmetry, of the five-dimensional Einstein
equations as models of extended massless particles. The
commutation of these Killing vectors is also assumed. Un-
fortunately, this commutation property does not follow
from Carter’s theorem.

In the present paper we generalize Carter’s theorem. No
fixed point is needed, so the axial symmetry is weakened to
cyclic symmetry; and the timelike Killing symmetry is re-
placed by a nonspacelike one. We show that in a cyclically
symmetric space-time, admitting a null Killing vector field,
the two Killing vectors must commute, unless otherwise, in
addition, the space-time has to admit a timelike Killing sym-
metry, too. Finally, based on this commutation property, we
give a sufficient condition on a cyclically and null Killing
symmetric space-time to be in Kundt’s class® and it is shown
that in space-times describing axial symmetric pp waves the
null Killing vector must be orthogonal to the orbits of axial
symmetry.

By space-time we mean a smooth, paracompact four-
dimensional manifold M endowed with a Lorentzian met-
ric,! but we do not use any field equation.

Il. CYCLICALLY SYMMETRIC SPACE-TIME WITH
NONSPACELIKE KILLING SYMMETRY

Space-time (M,g) is said to be cyclically symmetric? if
there is a smooth map o: SO(2) XM - M: (@.p)—o(@p)
for which each of the following conditions holds: (1)
V@eSO(2) the map o(@): M—>M: p—o(@,p) is an isometry
of (M.g); (2) Vo ,peSO(2), a(@)oo(p’) =0l +¢');
(3) ifo(¢) =1d,, then @ = 0 [i.e., SO(2) acts on M effec-

tively]; and (4) the vector X, : = (/39) ;¢ py 1 o i SPace-
like VpeM.

One can define the orbit through p as
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O(p):= {a(¢7,p) |peSO(2) }, and p s said to be a fixed point
if O(p) = {p}. 1t is easy to show that p is a fixed point iff
X, = 0, and if p is not a fixed point then there is a diffeomor-
phism of SO(2) onto O(p) and so X, defined pointwise by
p—X,,is asmooth vector field. Here X will be called a cyclic
Killing vector field.

Proposition 1: Let (M,g) be cyclically symmetric with
SO(2) action o and cyclic Killing vector field X, and let K be
a nowhere vanishing future directed smooth nonspacelike
Killing vector field on M. Then the vector field K , defined

pointwise by
21

= 1
K:=— (o(9).K), dp, peM,
27 Jo

P

is a future directed nowhere vanishing smooth nonspacelike
Killing vector field, which is invariant under the action o;
ie, [X,K] =0.

Proof: Since V@eSO(2), o(g) is an isometry, thus
o(@). K is anowhere zero smooth nonspacelike Killing vec-
tor field. Here M is time oriented, therefore o(¢).K is also
future directed. Consequently, K is a nowhere vanishing fu-
ture directed nonspacelike smooth Killing vector field.
VeS0(2)

1

2
a(gv).K:——f (ol +¢").K)dp'
27 Jo

27T
=LJ (o). K)de'=K,
27 Jo

i.e., K is invariant under the action o. However, because of
Corollary 1.8 and 1.11 of Ref. 6, this is equivalent to
[X,K] =0. O

Recall that the space-time is said to be stationary if it
admits a nowhere vanishing smooth timelike Killing vector
field.

Corollary: Let (M,g) be stationary and cyclically sym-
metric with cyclic Killing vector field X. Then there is a
future directed smooth timelike vector field ¥ which com-
mutes with X.

This statement is a generalization of Carter’s theorem?:
it guarantees the existence of a timelike Killing vector field
commuting with that of the cyclic symmetry in every sta-
tionary cyclically symmetric space-time, even in the pres-
ence of wire singularity. The existence of fixed points of ¢ is
not needed; moreover, no restriction is required for the di-
mension of the space-time: it can be used for higher-dimen-
sional Lorentzian geometries (e.g., in Kaluza-Klein theor-
ies) too.
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If X is timelike then K must be timelike too. If, however,
K is nonspacelike or null, then K may be timelike on an
(open) set and null on its complement. In the rest of this
section, where the space-time is assumed to be cyclically and
nonspacelike Killing symmetric with SO(2) action ¢ and
Killing fields X and K, respectively, the causal character of K
will be considered in fixed points of ¢ and along orbits diffeo-
morphic with SO(2) as well.

Proposition 2: If p is a fixed point of o, then K is null at p
iff K is null at p and [X,K] vanishes at p.

Proof: Here p is fixed, thus VpeSO(2), o(pp) =p and
o(@)e:T,M—T,M. Here K can be null at p only if X is nuli
at p and there is a positive smooth function f (@) such that
o(p).K, =f(@)K,. This implies f(¢ +¢")

=f(@)f(¢"), Vo,p'eSO(2). Its solution is f (@)
= exp(f'(0)@). But f(¢) =f (27 + ¢) must hold, thus
['(0) =0and o(@). K, =K, ;ie., [X,K] vanishes at p.

Conversely, if K, is null at p and [X,K] vanishes at p
then o(9). K, =K, for VeeSO(2) andK =K, isnull.U]

Now suppose p is not a fixed point of 0. Then Y ¢e0O(p)
there is a unique element ¥eSO(2) for which g = a(¥,p).
The following statement gives necessary and sufficient con-
ditions that guarantee K being null along the orbit O(p).

Proposition 3: The vector field K is null along the orbit
O(p) iff K is null along O(p) and there is a smooth positive
function ®(¢) for which [XK], = —-P(PK,,
g =o0(¢,p). [For such a ®(¢) the integral [37®(¢)dy is
necessarily zero. ]

Proof: The vector field K canbe null at geO(p) only if K
is null all along O(p) and there is a smooth positive function
f (¢,@) for which

(0(¢)*K)q =f(¢’¢)Kq i
This implies
fWe+o)=fWe) f¥—9'@), (nH

Vo,p'€SO(2) and geO(p). Let F(¢,@): =Inf (¢,¢) and,
denoting the derivative of F with respect to its first and sec-
ond argument by F; and F,, respectively, one obtains

F(he+o") =Fe)—F{—9'9), (2)

Fe+e)=F{—9¢'@). 3
The solution of Eq. (3) must have the form

F,(4p) =0 —9@), (4)

where ® is a smooth function. Using this expression, Eq. (2)
yields

F,(¢.p) =2(¢) — P (¥ — @) . (5)

The integrability conditions for the system of partial differ-
ential equations (4) and (5) hold identically, and its solu-

tion is
F(yp) = Q(u)du + F, . (6)
Y—@

Substituting (6) into Eq. (1) one obtains F, = 0. Since fis
periodic, i.e., f (¢,p + 2m) = f (¥,p), it follows that

WY+ 20
f P(u)du=0

¢
V¢e[0,27], from which ® (¢ + 27) = ®(¢). This condi-
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tion guarantees f (#,9) =f (g + 2m,p), t00. According to
Proposition 1, the vector field K is invariant under the action
o, thus

0=2r[X,K]

291 d 2
= @)de [X,K e @)dp K
J;f(z/w)tp[ ]+d¢fof(¢¢)¢

2ar

=, S (p)de [X.K ]

21
+ J F@@ @) — O — @)dpK .
But

21
L [ W)Y —p)de

20 5f
= - ——dp= —f@2r) +f(¥0) =0
o Og

thus

[XK]= —P()K.

Conversely, if there is a smooth function ®(¢) for
which [X,K] = — ®(¢)K, then in the coordinate system

(x°x',x%,1) adapted to X, where the orbits are given by
x%x,x? = const,

W
K;=K, exp(— f @(u)du) .

But p = 0(27m,p), thus K%, ,, must be equal to K ;. This
implies f2"®(u)du = 0. The action of o(¢). on K can be
calculated in the coordinate system (x%x',x*¥):

(o(@).K); = — )

% — @
=K3 exp( - f @(u)du)
(¢

¢
d(u)du .
I

Thus if K is null along O(p) then
2 P
I?q =.LJ (exp <I>(u)du)d¢ K,
2w Jo —_—

is also null for YgeO(p). a
Corollary: Let g =o(¢,p) be a point of O(p), where
g(X,K)#0. Then K is null along O(p) 1ﬁ' K is null and
[X,K] =0 along O(p).
Proof: Since K is a Killing vector field and V@eSO(2),
o(@) is an isometry, o(@).K is a null Killing vector field.
Thus along O(p) one has

=Ky exp

0= X(0(@)e K oy X* = (@) XK, X + X“Ka—g{b-
=XK.f (@) @) — 2 — ).
Since X° K, is not zero at ¢ = o(¢,p), P(¥) = P(¥ — @),

VpeSO(2); i.e., = const. But the only constant function
having zero integral on [0,27] is the zero, thus fhe)=1,
Vo, ¥eSO(2);ie., [X,K] =0 along o(p). [

Thus X is null along O(p) iff [X,K] = 0 and K is null,
except the very special case in which X and K are orthogonal
all along O(p).
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Although, if X*K, = O along O(p), ®(¥) may be non-
zero even if both K and K are null, but then, as the next
proposition shows, the whole orbit O(p) lies in the closure of
an open set on which K is timelike.

Proposition 4: If the commutator [X,K] does not vanish
at some point geO(p), then every neighborhood of each
point of O(p) contains a point where K is timelike.

Proof: If X is timelike at some point of O(p), or if K is
null along O(p) but there is no function ® required in Propo-
sition 3, then K is timelike on O(p). Thus one can assume
that X is null and [X,K] = — ®K along O(p) for some
smooth function ® ().

Let reO(p) and W be a neighborhood of r. If X is not
null at some point se W, then K is timelike on O(s). Then one
can assume that K is null on W. If there is a point se W where
the vector [X,K], is not proportional to X, then a function
®_, required in Proposition 3, could not exist along the orbit
O(s), thus K is timelike on O(s). One can assume therefore
that [X,K] is proportional to K on W. It will be shown,
however, that K being null on W and [X,K] being propor-
tional to K on W together contradict our hypothesis
(X.K], #0.

If [X,K] is proportional to K, then, because of their
smoothness, a function & exists on W for which
[X,K] = — ®K and P coincides with ® on the orbit O(p).
Here X and X are Killing fields and K is null on W, thus K
must be a null Killing vector field, therefore

0=(PK,), + (PK,), =D K, + DK, .

LetseWand {K,L,E,, } be a pseudo-orthonormalized vector
base at 7, M. Contracting the above equation with K°L?,
L°L* and E¢,L" one obtains $,K* =0, ®,L“ =0, and
513;0E @ =0, respectively; i.e., d® = 0 at 5. But s can be cho-
sen arbitrarily, therefore ® = &, = const on W.

The orbit O(p) is compact, so it can be covered by finite-
ly many neighborhoods W;,...,W,. But, due to the overlap-
pings of the W’s, ® has to be the same constant value ¥, all
along O(p). This, however, implies ¢, = 0, which contra-
dicts the hypothesis [X,K], #0. 0

At the end of this section we review the properties of the
two-dimensional orbits. If the action ¢ has a fixed point p,
then a two-dimensional timelike submanifold, called the
symmetry axis, can be foliated through p (Ref. 2), and the
integral curve of K through p lies in this axis.

Outside the axis X and K together constitute a smooth
two-dimensional involutive distribution,” thus there is a
two-dimensional integral submanifold N(p) of X, ,I~( through
each nonfixed p. Here N(p) is generated by the orbits L(q)
of the one-parameter group action generated by K, and
ge0(p). Since X and K are commuting Killing fields, all the
inner products g(X, X ), g(X,K' ), g(k,l? ) are constant on
N(p). Therefore N(p) is a cylinder with constant circumfer-
ence and its causal character does not change along the or-
bits L(g).

If K is null along O(p), then X is null on N(p) and the
integral curves of K and K. , lying in N(p), coincide. In this
case, because of the Corollary of Proposition 3, and the
equality X (g(X,K)) = g(X,[X,K]), g(X,K) is constant on
N(p), too.
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lll. CYCLICALLY SYMMETRIC SPACE-TIMES WITH
NULL KILLING SYMMETRY

If X is nonspacelike, then, in general, the causal charac-
ter of K may vary on M, due to the changing of the causal
character of K or of the commutation property of X and X.

Throughout this section K is assumed to be null. There-
fore the first possibility above is ruled out, but, as our main
theorem states, not the second one.

Theorem: Let (M,g) be cyclically symmetric with cyclic
Killing vector field X and SO(2) action o, and let K be a
nowhere vanishing null Killing vector field on M. Then ei-
ther [X,K] =0on M, or

U: = {o(g,p)|peSO(2),
PEM: AaceR for which [X,K ], =aK,}

is a nonempty open set and the Killing vector field K is time-
like on U.

Proof: If [ X,K] is not zero at some point peM, then, as a
corollary to Proposition 4, there is an open set ¥ such that
peT/and K is timelike on V. But, as Proposition 3 states, K is
timelike on U and can be timelike only on U. Here U'is open
and, because of V'C U, nonempty. O

This theorem is the main result of the present paper. It
states that the Killing vectors X and K can be noncommuting
only if the space-time admits an additional timelike Killing
symmetry on an open subset of M. Thus if we want to consid-
er space-times only with cyclic and null Killing symmetries,
we have to assume they commute, as otherwise stationarity
on an open set is also assumed implicitly. (See Note added in
proof.)

Recall that a null Killing vector field is always geodesic
and its expansion and shear vanish. Thus space-times admit-
ting a null Killing vector field X are classified as the twist @
of K vanishes or not, and in the first case as K is covariantly
constant or not.> If, however, in addition a cyclic symmetry
is also admitted, then a further subclass can be introduced.

Corollary: Let (M,g) be a cyclically and null Killing
symmetric space-time with (commuting) Killing vector
fields X and K, respectively, and SO(2) action o.

(1) If g(X,K) = 0O throughout M then X is twist-free.

(2) If K is covariantly constant then g (X,K) is constant
on M, and, in addition, if o has a fixed point then
g(X,K) =0.

Proof: (1) If p is not a fixed point of o, then in a neigh-
borhood W of p one can define a unit spacelike smooth vec-
tor field Y, being orthogonal to both K and X. This Y is
unique up to a sign. The function x: = (g(X,X))!/?is nonzero
and smooth on W, thus E,: = Y, E;: = (1/x)X constitute a
smooth two-dimensional orthonormal spacelike base field
on W, being orthogonal to K. The twist of K can be calculat-
ed in this base,

20x = xg(V g, K,E;) — xg(V K,E)
= —g(K,VyX) + 8KV Y) =g(K,[X,Y]);

i.e., if Y'is Lie propagated along X then KX is twist-free.
LetgeWand let Y’ denote the vector field along the orbit

O(p), obtained by Lie propagation of the vector Y. [Here X

is a Killing field, thus, in spite of the fact that O(p) is closed,
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Y’ is well defined all along O(p).] Then

XgX,Yy"H))=Y1Y" ,,;,,X” +X“Y;;,,X”

= XY (X"~ X, Y) =0,
X(@K.Y")) =Y K, X"+ K[, X°

=YX, K'+K°Y,, X"

=Ka(Yz’z;bXb_Xa;bY,b) =0’

W (YY) =Y Y, X =YX, ¥ " =0;

i.e., Y'is the unit spacelike vector field being orthogonal to X
and K all along O(p). Thus it coincides with Y; i.e., Yis Lie
propagated along X.

(2) Let g be a nonfixed point and let I, denote the inte-
gral of g(X,K) on O(p). As we stated at the end of the pre-
vious section, g(X,K) is constant along the orbits N(g), thus
I, =2mg, (X, ,K). On the other hand, I, can be considered as

the integral of the closed one-form field K, on the one-cycle
O(q) (K, isclosed;ie., K., =0, because K, is constant):

I, = K.
0(q)

Let ¢’ be an arbitrary point of M. Here M is connected, there-
fore there is a smooth curve u: [0,1] - M from ¢ = 1 (0) to
q¢' = u(1). The mapping

F: [0,1]1X[0,27] = M: (t,)—o(th,u (1))
is a smooth homotopy between the orbits O(g) and O(g’),
thus I, = I,, which implies g(X,K) = const. If there is a
fixed point p, then ¢’ can be chosen to be p, therefore, because
of O(p) = {p}, every orbit O(gq) is homotopic to zero and
consequently g(X,K) = 0. O
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This Corollary gives a sufficient condition on a cyclical-
ly and null Killing symmetric space-time to be in Kundt’s
class,® moreover it states that in physically important axi-
symmetric space-times describing pp waves® the Killing vec-
tor K must be orthogonal to the orbits of axisymmetry.

Finally, it is worth noting that the solution of Lukacs,
Perjés, and Sebestyén* has a twisting null Killing vector and
the second Killing vector is a cyclic one on an open domain.
These vectors commute and have nonzero inner product, as
it must be according to our Theorem and its Corollary.

Note added in proof: For the sake of completeness it
should be noted that the additional timelike Killing vector K
is independent of K and X on U; i.e., there are not functions
and B on U for which K = aK + SX would hold.
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