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On the positivity of the quasi-local mass
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Abstract. The quasi-local energy-momenturn of Dougan and Mason, associated with 2 spacelike
topological two-sphere, is examined. It is shown that the energy-momentum four-vector is zero
iff the Cauchy development of the 3-surfaces spanned by the two-sphere is flat, and is null {i.e.
the quasi-local mass is zero) if and onty if the Cauchy development is a pure radiative pp-wave
spacetime geometry with common principle null direction of the Weyl and Ricei tensors.

PACS number: 0420

1. Introduction

One of the most important results of classical general relativity during the last decade is
the proof of positivity of the gravitational energy both at null and spatial infinity. More
precisely, it was shown [1] that the energy-momentum four-vector, associated with a
spacelike hypersurface X extending either to null or spacelike infinity, is future-directed
and non-spacelike, provided the matter fields satisfy the dominant energy condition. It has
also been demonstrated [2] that the energy—momentum is strictly timelike and is null iff the
Cauchy development of X is flat.

Recently Dougan and Mason proposed a new definition for the energy-momentum and
mass in general relativity at the guasi-local level [3]. This energy—momentum, associated
with a spacelike topological two-sphere $, has several satisfactory properties. It gives (1)
zero in fiat spacetime, (2) the correct results in linearized theory, for round spheres and for
small spheres; and (3) the ADM and Bondi-Sachs masses at spacelike and future null infinity,
respectively. Finally (4) it was also proved that the quasi-local energy, a component of the
quasi-local four-momentum, is non-negative if the dominant energy condition is satisfied
on the hypersurfaces T spanned by $ and $ is ‘concave’. This, however, does not imply
that the gravitational energy-momentum is non-zero for non-flat Cauchy developments of
Z, and would be useful to see whether the quasi-local mass may be null for certain non-flat
Cauchy developments.

In the present paper we complete the positivity analysis of Dougan and Mason showing
that, under the same conditions, the vanishing of the energy—-momentum four-vector implies
the flatness of the Cauchy development and the gravitational quasi-local mass is null iff
the Cauchy development admits a covariantly constant null Killing vector (i.e. it is a
gravitational pp-wave), the matier is pure radiation and their wavefronts coincide,
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2. The quasi-local integrals

Let § be a two-dimensional spacelike closed oriented submanifold of M, and for any pair
of spinor fields Ap and ug define

2
Isla, f] =7 f it Vaghadx® Adxl. 1)
-

(The signature of the metric is (+ — ——), the curvature and Ricci tensors are R%,4X? 1=
—(V. Vg — V4V )X° and Ry := R%,q, Tespectively. Einstein’s equations are written in the
form Ggp := Rgp — -'Z-RgmJ = —kT,p. Throughout this paper the abstract index formalism
will be used [4] and underlined indices have numerical values.) f¢[A, it], the integral of the
so-called Nester—Witten form [35], is easily seen to be 2 Hermitian bilinear functional on the
space C*($, S,) of smooth spinor fields on $. The importance of the quasi-local integral
(1) is shown by the Sparling equation [5]:

d(ia,.:vwx,qu“ A dx") = iVec fiw nablagpiads® A dx® A dx°
o
- 'il'A-AAaA Gabﬁsbcdedxc A d-xd A dx®. (2)

The first term on the right, denoted by (A, &), is the so-called Sparling form. It is
‘Hermitian® in the sense that ['(A, 2) = ['(4, A). If T is a three-dimensional spacelike
hypersurface with boundary $ then the pullback of (2} along the natural imbedding
i: X - M is eguivalent to the Reula-Tod form [1] of the Sen—Witten identity. Thus
Ig[A, i2] is related to the energy—momentum of the gravitating system surrounded by 3.

One has, however, to specify the ‘propagation law(s)’ for the spinor fields Az and pg
within $.

3. The ‘propagation laws’

It is natural to look for the ‘propagation law’ for the spinor fields in the form DAz =0,
where 2 is an elliptic first-order differential operator on C*°($, S4). Dougan and Mason
considered anti-holomorphic (holomorphic) spinor fields, i.e. those satisfying m*V,Ap =0
(m?Vyhg = 0). In the GHP formalism [4,6], where the normalized spinor dyad (04, t4) is
chosen so that m® = 0*7* is the usual complex null vector tangent to $, the condition of
anti-holomorphity and holomorphity is equivalent to

—ATA =80+ p0=0 T A=8h+or =0 (3)

and

ATr =83+ pr =0 —THth =81 +0'2=0 4)

respectively,

One can develop [7] a covariant two-dimensional spinor calculus being the two-
dimensional version of the usual Sen connection [8]. A*A and 7%A are the GHP form
of the irreducible chiral parts of the (two-dimensional) Sen-derivative of the spinor field Ap
in that formalism. A™ & A~ is the GHP form of the (two-dimensional) Weyl-Sen—-Witten,
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while 7% @ 7~ is of the (two-dimensional) twistor operators. H® := AT @7 are elliptic
first-order differential operators and index H* = 2(1 — &), where G is the genus of $. Thus
for topological two-spheres there are at least two holomorphic and two anti-holomerphic
spinor fields on §. If lﬁ‘, A =10,1 are two linearly independent anti-holomorphic spinor
fields, then m“Va(eRSlﬁ lsﬁ) = 0 and by Liouville’s theorem s’"slﬁ ;'_Sli is constant on $.
If this constant is not zero then it can be chosen to be 22, the Levi-Civit alternating
symbol, and {A%} form a normalized spinor basis at each point of $. Ther for any spinor
field Az on § there are complex functions o and B such that Ag = aA%+ BAk. If Ag is
anti-holomorphic then & and 8 are anti-holomorphic complex functions on $, and hence by
Liouville’s theorem they must be constant. Thus in this case the space of anti-holomorphic
spinor fields on a spherical $ is two-complex-dimensional. If however A%ALe®S = O then
both ).% must have a zero and 1} = A% for some anti-meromorphic function f on $ with
a pole at a zero of A%, and hence A% and AL do not form a basis in the spinor spaces. (I
am grateful to one of the referees of the previous version of this paper for clarifying this
second possibility.) As is usual, we will assume that the geometry of $ is not exceptional
in the sense that there are precisely two linearly independent anti-holomorphic spinor fields
spanning the spinor spaces at each point of § [3). Other propagation laws were proposed
by Bergqvist [9].

4. The non-negativity of the quasi-local mass

The GHP form of (1) is
- 2 = e _ ’
i 71 = £ §{ix o+ o) = i (Bh1 + ') 5, )

and hence ker(A* @ A~) = kerls. Obviously kerA™ is an infinite-dimensional subspace

of C*°($,8,) and I is a Hermitian bilinear functional on kerA™ too; and consider only
spinor fields Ap belonging to kerA™. Suppose that $ is the boundary of some spacelike
hypersurface T with unit future normal ¢2. h,p = gap — 85 is the induced negative definite
metric on T and D, := h,’ V; is the (three-dimensional) Sen operator [1,8]. If Apisa
spinor field on ¥ satisfying the Sen-Witten equation DrRig = 0 with boundary condition
Xils = A, (such a i, always exists) then one has [3] (see also [9])

2 .
5[k Al = 2 j‘gp'llo — hol? d$+
+ [ {2 % D) (D) + A Tt a3, ®)
z

Thus if o’ > 0 on $ and if the dominant energy condition holds on X then the bilinear form
Is is non-negative on kerA~. It therefore satisfies the Cauchy—Schwartz inequality

IsIA, MIslp, 2] > KA, @lislu, A) 0

for any spinor fields Ag, us € kerA™,
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Let A—ﬁ, A =0, 1 be a nommalized basis in the space of anti-holomorphic spinor fields.
Then the Dougan~Mason quasi-local four-momentumn, energy and mass [3] are

PAE = 1A, 58] ®)
1 ! ¥

Es:= — (P + P! (9
3 ‘\/i( 5 5 )

m}i=eapegp PP PEE = 2P P - PYPY”) (10)

respectively. Thus ¢’ > 0 and the dominant energy condition on E ensure the non-negativity
of Eg and, by (7), of mg; i.e. the guasi-local energy—-momentum is a future-directed non-
spacelike vector. In the rest of this paper o' > 0 and the dominant energy condition will
be assumed to hold.

5. Zero energy implies flatness

Since the quasi-local energy-momentum is zero in flat spacetime it is natural to ask
whether its converse is true or not; ie. whether there might be non-flat spacetime
regimes with vanishing energy—momentum vector. Because of the Cauchy—Schwartz
inequality and the non-negativity of Iy, Pf’ﬁ' = 0 is equivalent to E5 = 0; i.e. to
F[A0, 3% = LAY, AY] = 0. Then, because of the positive definiteness of —a¢/ and 44,
from equation (6) D% = D AL =0, and hence A% Ryporh hf 4 = K ARagerh ekl y = O
i.e. Ramerh®h¥y = 0 follow. Since X is arbitrary, this must hold for any deformation
of Z, and hence Rap.g = 0. Thus the Cauchy development D(ZX) of T is flat (see also
[2, 10]).

6. Zero-mass Cauchy developments

Aldthough the total gravitational energy-momentum is strictly timelike [2, 10], neither the
energy-non-negativity proof nor the previous argumentation imply the positivity of the quasi-
local mass; i.e. that the gravitational quasi-local energy-momentum is strictly timelike. In
fact, we show that the vanishing of m§ does not imply flatness, and the non-flat spacetime
geometries with vanishing mass are precisely the pp-wave spacetimes with pure radiation
having common principal null direction.

If m} is zero, then either at least one of P’ and PJ' is zero or both are non-zero
but the equality holds in the Cauchy-Schwartz inequality. If both PY and P}' were non-
zero then /3 would be a positive definite Hermitian inner product on the two-dimensional
complex vector space spanned by A% and A %. But then the equality in the Cauchy—Schwartz
inequality would imply the proportionality of A}, and AL. Thus I5[A, A] = O, where ig is
either A% or AL. Since Js{A,A] = O only for one independent spinor field, one should
modify the argumentation of the previous section to get restrictions for the curvature from
Isix, A] = 0. First we show that at the points of D(E) the curvature is zero or of Petrov-N
type with pure radiation [11].

Let p be a point of the interior of the Cauchy development of . One can always assume
peX —akL. Let {9, Ef}, i =1,2,3, be an orthonormal basis at T,M with t* the future-
directed timelike normal to X. Let ; (#) be 1-parameter deformations of % around p with
normal ° coshu + Ef sinhu at p € ¥ N X; (4} and hf #(u) the corresponding projections.
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if 1“‘(u) are the solutions of the Sen-Witten equation on Z; (») with the fixed boundary
condition A = L;(u}ls then by equation (6) from fg[x, 1] =0 hf,(u)ka, x{i) = 0 and,
as above, AA(u)RA B,fh C(u)hf 4(u) = 0 follow. Suppose that AR is not proportional to A%
at p for some i, say i = 3, where the dot denotes the d:fferentlatlon with respect to u at
u = 0. Then A% and AR form a basis in the spinor space at p, and hence L% = aif +y X%
and i.;f ﬁJLR +8A% for some @, B, y, 8 € C. Then for the curvature at p we have

0 = aA$ Ragerhch! 4 + X# Rupes (Hechla + h5h1 o)
0= ﬁif Ragerh®chfq + 22 R gy (h"cfz{d + iiickfd)
0= 33 Raserh®ch? a + 54 Raser (Wchla + sch! 1)
0 = A% Rugeshch’ 4.

Now it is a (rather long but} direct calculation to show that this system of equations has
non-trivial independent solutions for 1‘3“ and A4 only if Rypeq = 0. If Xf‘ is proportional to

A at pforall i =1,2,3 then A* Rugerhs (u)h]4(x) = 0 and hence A# Rageq = 0. This,
together with the dominant energy condition, is equivalent to

Wascp = Whahshchp  Gapap = Lohadsiyiy A=0 (an

where 1 is complex and ¢ is real and non-negative. The third condition A4A4' Gapt® = 0,
coming from Ig[x,A] = O and (6), is automatically satisfied. If p’ is not identically zero
on § then by the first condition p’|Ag — Ag|2 = 0, coming from fg[A, A} = 0 and (6), Ag
and Xp coincide on supp o’ C $; and hence by Liouvifle’s theorem on the whole $. Two
independent solutions to D.Az = O with the given boundary condition can exist only if
p = 0on $ and, following the argumentation of the previous section, (X)) is flat. If
therefare we fix a smooth one-parameter foliation X; of D(Z) such that 3%, = § then we
have a smooth spinor field iR on D(X) which is constant on each Z,, coincides with Ag
on § and is a repeated principle spinor of the curvature. We will show that this spinor field

is constant on D(X) and hence L7 ;= 3434 is a constant null vector.
Let the basis field {£7} be chosen so that x¥~2L% = * + £ for some non-zero

complex function . To prove that kg is constant we introduce a normabized spinor dyad
(O4, 14) and, for the sake of convenience, use the GHP formalistm [6] with the well known
notations for the operators, 8 and P, and the spin coefficients. These, however, should not
be confused with those introduced on the two-sphere §$.

Let O4 = yis and /, be such that O47* = 1 and for the vectors of the complex
null tetrad L% := Q4 0, M% := 04T, M? := O*'I* and N? := IA]# we require that
L7+ N® = /21", L — N® = +/2E] and that M®, M“ be tangents to . For fixed x
these conditions fix the spinor field /, completely. Note that x is of (1,0) type. With
this choice of the dyad the conchtlon of hypersurface orthogonality of ¢* is equivalent to
p—p—p+p =0and x — i’ -7+7 +2(8 - ﬂ) = 0. The condition D, Az = 0 can thus
be rewritten as L?V,Ap = N*V,hp = ORP(X) ~Ir%, MV, Ar =0, M*V,ig = 0; and

hence V, L, = (L,,+N,,)Lb!=(¢)— L —2(La+N, Y(Mpi+ Myk). In terms of spin coefficients
this is equivalenttooc = p=x~7 = 0 B= 13)(, B = ———8)( ande+g =1 (Dx-Ax).
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The last three can be rewritten as dx = &x = (P— F)x = 0. Recalling that the only
non-zero curvature components are 15 and ¢y;, and using the above restrictions on the spin
coefficients from the spinor Bianchi identities we have k¥4 = 0 and « ¢ = 0. For non-flat
spacetime, ¥ must therefore be zero. Thus L? is autoparallel, and we will show that By
also vanishes.

The non-trivial commutators of the edth and thorn operators are PF' —F'P = —¢'3— 7',
B8 — 8k = —7'P and P8 — 8F = p'd + 0'F— k'B. Applying the first commutator to x
and using Sy =&y = (B —¥)y =0 we get

0=(B—F)by=(D—A—25—2—2¢ — by
0=(P-F)P'x=(D-A+E+&)Fy

and hence (e+2+&'+2)Py =0, Thus Py =00r0 = g+&+&'+& = ﬁ(D(x)E)—A(x)?));
ie. EfVa(xXx) = 0. From the difference of the second and third commutators we have
O0=F-F)8y-8F-Flx = —thEy. Thus Py =0or0=fk" -7 = x—z.-a(x;?);
ie. EfVa(xX) = E5V.(x%) =0. Thus Py = 0 or y¥ is constant on each I,. )iiecause
of the definition of y, however, 'Det;E{ = —#D,( ¥¥), thus for constant y y E{ would
have to be an eigenvector of the exirinsic curvature T,¢; of I, with zero eigenvalue. For
general foliation, however, there are no such eigenvectors. The Cauchy development D(ZT)
is therefore a pp-wave geometry with pure radiation. _

Conversely, suppose that there is a constant null vector field L? = A%A4 on D(X).
Then, with an appropriate choice of the phase e, 14 := ¢4 is constant on D(E). Thus it
is constant on $ too; and hence, by (3) and (4), it is holomorphic and anti-holomorphic. Ag
can therefore be used as one of the basis spinors and by Ag € ker(AT @ A™) the quasi-local

integral J5[X, 3], and hence the quasi-local mass is zero.

7. Discussion

There is a more or less commonly accepted list of criteria of resonableness of the quasi-
local energy—momentum expressions (see introduction and e.g. [12]). This includes (1)
the requirement of the vanishing of the quasi-local energy—momentum for flat spacetimes;
and (4) the non-negativity of the quasi-local energy. (1), however, does not exclude the
possibility of zero energy-momentum for non-flat spacetimes, which would be desirable
from physical points of view. Thus it seems reasonable to strenghten (1) by requiring the
vanishing of the quasi-local four-momentum precisely for flat spacetime geometries. To
retain the four-dimensional character of the criteria of reasonableness, (4) should obviously
be reformulated by requiring the quasi-local four-momentum be a future directed non-
spacelike vector. Thus one can ask whether this four-momentum is strictly timelike or may
be nuil.

Suppose that M is the Minkowski spacetime, L is a spacelike hypersurface with
boundary $ = 5E homeomorphic to S% and consider the integral p/fsfA, 2] =
fs AafiaT®PdE,, where Ay, 4 are constant spinor fields on M. yls is a well defined
Hermitian bilinear functional on the space 84(M) of constant spinor fields on M. If
Tap satisfies the dominant energy condition then yJs is non-negative and hence satisfies
the Cauchy—Schwartz inequality. Then the quasi-local four-momentum and mass of the
matter fields associated with $ are defined by MPsﬁg" = (A2, 22"] and Mm% =

€ABEAB'M Psﬁ-'f,w Pf-é‘, respectively, where A%, A}, € §,(M) such that 242%e®S = 1, The
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dominant energy condition ensures that MPsﬁA' is a future directed non-spacelike vector.
1t is easy to see that MPsi‘i = 0 iff T,; is zero on D(T), the Cauchy development of %

and ymi =0 iff AMAAT,, =0 on D(T) for some constant spinor field A4, i.e. the matter
is 2 pure radiation on D(X). Thus the vanishing of the gravitational quasi-local mass may
be expected to characterize the pure radiative spacetime geometries and this requirement
may be added to the list of the criteria of the reasonableness of the gravitational quasi-local
energy—momentum expressions.

The present calculations can be considered as additional tests of the energy—momentum
expression of Dougan and Mason. The results are in accordance with our physical
picture: the Dougan-Mason energy—momentum satisfies the strengthen criterion (1) above,
and the vanishing of the quasi-local mass is equivalent to a pure radiative spacetime
geometry. On the other hand, having accepted this expression as the ‘correct’ gravitational
energy—-momentum, the results can also be interpreted as the determination/definition of the
‘elementary states’ of classical gravity: the minimal (zero) energy state is just the ‘ground
state’ defined by the vanishing of the field strengths and particle fields; and the non-trivial
zero-mass states are all plane waves.
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