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It is shown that the proofs of a series of classical singularity theorems of general relativity can
be modified such that these theorems also state the maximality of the incomplete nonspacelike
geodesics. Since along maximal incomplete nonspacelike geodesics with affine parameter u
certain parts of the tidal curvature cannot blow up faster than (7 — ») ~2, where % is the
parameter value until which the geodesics cannot be extended, the classical singularity

theorems do restrict the behavior of the curvature.

I. INTRODUCTION

In the general theory of relativity the singularity theo-
rems of Hawking, Penrose, and others state the existence of
incomplete nonspacelike geodesics under very general con-
ditions; i.e., space-time is singular."* However, these theo-
rems do not show which geodesics are incomplete and in
many cases they do not tell us explicitly if these geodesics are
future or past incomplete.

In other parts of classical physics the notion of singulari-
ties is connected with the misbehavior of a characteristic
quantity; e.g., field strength. Thus, based on this intuitive
notion of singularities, certain misbehavior of the curvature
tensor is expected along the incomplete nonspacelike geo-
desics. Unfortunately, such a misbehavior does not follow
from incompleteness, furthermore the singularity theorems
say nothing about the curvature’s behavior.?

Surprisingly, while we are expecting a lower bound to
the rate of growth of some parts of the curvature along in-
complete nonspacelike geodesics approaching a ““true, phys-
ical” singularity, in certain cases the existence of an upper
bound can be proved, which is due to the causal structure.*”’
Thebasicidea’? is the fact that a nonspacelike curve is maxi-
mal iff it is geodesic without any pair of conjugate points. But
the occurrence of conjugate points is a very general phenom-
enon: if a nonspacelike geodesic gathers enough curvature in
some sense, then conjugate points must occur. Null geodes-
ics are maximal if they lie in an achronal set, furthermore
there exists a maximal nonspacelike geodesic between caus-
ally related points in a globally hyperbolic set. Thus maxi-
mality, in certain situations, follows from causality. Conse-
quently, if  is a maximal nonspacelike geodesic, then ¥
cannot gather arbitrarily large curvature; and in particular if
¥ is a maximal incomplete nonspacelike geodesic (and so it
hits a singularity), we obtain an upper bound to the rate of
the blowing up of certain parts of the curvature. This argu-
ment was used to obtain an upper bound to the rate of the
divergence of the Ricci and Weyl part of the tidal force along
incomplete null geodesics lying in an achronal set by Tipler®
and the author,® respectively: they cannot blow up faster
than (7 — u) ~?, where u is the affine parameter and # is the
parameter value until which the geodesic cannot be ex-
tended.

Unfortunately, incomplete nonspacelike geodesics are
not necessarily maximal, so we do not have any upper bound
in general. For example, if ¥ is a future incomplete null geo-
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desic [sothe TIP P: = I ~yrepresents a singular point of the
causal boundary d, (see Ref. 3)], then ¥ is not necessarily in
an achronal set, therefore ¥ is not necessarily maximal. On
the other hand, though the boundary JP is achronal and is
generated by future endless null geodesics, these geodesics
are not necessarily incomplete, even if ¥ is. Therefore one
may ask the question: Is there any “physically realistic” situ-
ation in which the incomplete nonspacelike geodesics are
maximal; i.e., in which the existence of an upper bound can
be proved?

In this paper we show that the proofs of a number of
classical singularity theorems can be modified such that they
state not the existence of incomplete nonspacelike geodesics
only, but that these geodesics must be maximal, therefore
these theorems do restrict the curvature’s behavior. We con-
clude that in “physically realistic” situations, defined by the
conditions of the classical singularity theorems, certain parts
of the curvature cannot blow up faster than (# — u) ~2along
the geodesics approaching the singularity. Furthermore, in
many cases they show where the incomplete geodesics lie.

This paper consists of four parts. In the first one we
review what restrictions on the growth of the curvature can
be obtained from the maximality of incomplete nonspacelike
geodesics. The second part contains the auxiliary statements
we need for the new proofs. Four of the most important
classical singularity theorems with modified proofs are con-
tained in the third part. Finally, in the fourth part some
remarks are given.

This paper is based on the matter given in Refs. 1 and 2,
so the continuous references to well-known statements are
omitted. Our conventions and notations are the same as
those of the book of Hawking and Ellis' except that the
chronological, causal, etc. future of the set X is denoted by
1" K,J " K, etc., respectively.

Il. MAXIMAL NONSPACELIKE CURVES

A nonspacelike curve y from p to ¢ is said to be maxi-
mal' if p and ¢ cannot be joined by any nonspacelike curve,
obtained from y by small deformation, longer than y. Since,
by definition, incomplete nonspacelike curves are inextend-
able, we are interested in nonspacelike curves without end
points. A future inextendable nonspacelike curve y starting
at p is said to be maximal if for every gey, the segment of y
between p and ¢ is maximal. Based on the statements of
Chap. 4 of Ref. 1, one can state that a future inextendable
nonspacelike curve y from p is maximal iff it is geodesic and
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contains no point conjugate to p along 7.

Ruling out the possibility of the occurrence of conjugate
points along future directed incomplete nonspacelike geo-
desics, Tipler has a restriction on the growth of the R , K °K °
part of the curvature, where K  is the tangent to the geodes-
ics.*”7

Proposition2.1: Let y: [0,i) - M be a maximal incom-
plete nonspacelike geodesic with affine parameter u and tan-
gent K °. If the convergence condition R, K “°K °>0 holds,

then, for Va > 0, the inequality

% — (1 + a)Au
lim inf( - Auf R,K°K* du)<2n
Au-0 44— Au

must be satisfied, where n = 2 for null and » = 3 for timelike
geodesics.

This proposition implies that the energy-density-like
expression R, K °K ® cannot blow up faster than (7 — u) ~2
as we approach the singularity at %, provided the metric is
C?. For timelike geodesics, the equations describing the Ja-
cobi fields (and so the conjugate points) are very complicat-
ed, therefore obtaining restrictions on further parts of the
curvature seems to be almost hopeless.

Along maximal incomplete null geodesics, however, a
restriction on the eigenvalue € of C,,,,K°K® can be ob-
tained in certain situations. Before considering the statement
giving us this restriction, we have to examine the possible
behaviors of C,,,.,K °K® as u—iu. Since C,,,,K°K"® is a
symmetric and traceless 2 X 2 matrix, it has the form

(cos 2y sin 2y )

\sin 2y —cos2y/’

Thus it is completely characterized by the functions €(u)
and y (u). Consequently, the behavior of C,,,,, K °K ® is de-
termined by those of € and y (see Ref. 7). From physical
points of view the most important case is that in which the
components of C,,,.,K °K ° diverge; i.e., there is a definite
limiting eigenframe of C,,,,,K °K ®[lim,_; y(u) exists]
and ¢ tends to infinity. Introducing the notation

Wu,,uw u, P= ’;‘J‘ (f CmaanaKb du”)

X (f CrrensK K7 du”)du'
Uy

° u’ 2
=f [(J ec052xdu”)
u’ 2
+ (f € sin 2)(du”) ]du’,

the next proposition gives us a restriction on the diverging
C....K°K"8

Proposition 2.2: Let y: [0,) —» M be an incomplete null
geodesic lying in an achronal set, # be its affine parameter,
and K“ be its tangent. If the convergence condition
R, K°K°>0holds, lim, _, y(u) exists and 36 > Osuch that
€(u) does not change sign on (z — 6,1), then for Va > 0, the
inequality

liminf ( — AuW i _awy — s —asu ) <2+ @) (1 + a)?

Au-0
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must be satisfied.

This statement implies that € cannot blow up faster than
(% — u) ~? along maximal incomplete null geodesics, pro-
vided the metric is C? and lim y () exists. Otherwise, as-
suming for example that e(u) = b(% — u) —2~" for some
b #0 and v > 0, we would obtain that

— AuW 284, —atu =D ’G(a,v) (Au) 2,

Va >0, where G(a,v) is a nowhere zero expression of a and
v; which would tend to infinity as Au —0.

lll. AUXILIARY STATEMENTS

In this section we state four lemmas that will be used in
the modification of the proofs of the classical singularity
theorems.

Lemma 3.1:1If (1) the null convergence condition holds
on M, (2) the null generic condition holds on M (i.e., on
each inextendable null geodesic with tangent K ¢ there is a
point where K|, R, ;. K, ;K °K 7 #0), and (3) the chrono-
logy condition holds on M, then the strong causality condi-
tion holds on M or there is a point p where the strong causal-
ity condition is violated and there is an incomplete null
geodesic through p lying in E ~{p}UE *{p}.

This lemma is a modified form of Proposition 6.4.6 of
Ref. 1 and its proof is almost the same.

The following lemmas state compactness of certain sub-
sets of space-time, provided the maximal nonspacelike geo-
desics generating them, in some sense, leave these sets. The
proofs are based on the standard matter given in Chap. 6 of
Ref. 1. The first one has been published yet,® so its proof will
be omitted here.

Lemma 3.2: Let K be a nonempty set. If each future
directed null geodesic y generating £ *K — K leaves E *Kin
the future direction (i.e., each ¥ has a point 7 such that the
points of ¥ following » do not belong to E * K and the points
of y preceding r belong to E *K), then E * K is compact.

Lemma 3.3: If there is no past directed past endless non-
spacelike geodesic ¥ from p such that its segment y — {p} is
maximal, or each such a nonspacelike geodesic leaves
D ~E ~{p} in the past direction, then D ~E —{p} is com-
pact.

Sketch of proof: Using the technique developed in Refs.
1 and 2, one can show that for each point ¢ of D —E —{p}
there exists a past directed nonspacelike geodesic ¥ from p
through g, such that the segment (g,p) of ¥ is maximal.

Let {g,} be an infinite sequence of points of

D ~E ~{p}. Because of Lemma 3.2, E ~{p} is compact.
Thus without loss of generality one may assume that p is not
limit point of {g, } and no point of this sequence belongs to
E ~{p}. Let y, be the past directed nonspacelike geodesic
from p through g, such that its segment (g, ,p) is maximal.
{#,} has a limit curve y from p which is geodesic. Further-
more, the segment of ¥ consisting of those points that are
limit points of the maximal segments (g,,p) of the 7,’s is
maximal. Consequently, there is a point gey — {p} such that
this maximal segment is [gq,p) or (g,p). Of course,

geD~E {p}, and ¢ is a limit point of {g,}, ie.,

D —E —{p} is compact.

L. B. Szabados 143

Downloaded 02 Jan 2007 to 148.6.176.21. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



In a similar way one can prove our fourth lemma.

Lemma 3.4: Let S be a compact C? partial Cauchy sur-
face. If there is no future inextendable maximal timelike geo-
desic orthogonal to S, or each such a timelike geodesic leaves

D *Sin the future direction, then D *.§ is compact.

IV. CLASSICAL SINGULARITY THEOREMS MODIFIED

In this section the four classical singularity theorems
contained in Ref. 1 will be reexamined and it will be clear
that the original conditions of these theorems guarantee the
maximality of incomplete nonspacelike geodesics.

The first one is Penrose’s theorem® and, since its modi-
fied proof has been published elsewhere,® its new proof,
which is based on Lemma 3.2, will not be repeated here.

Theorem 4.1: If (1) R, K °K >0 for every null vector
K% (2) (M.g) admits a noncompact Cauchy surface; and
(3) there exists at least one of the following: (a) a closed
trapped surface 7, (b) a point # such that along each future
directed null geodesic from ¢ the expansion € becomes nega-
tive (¢ may be called a future trapped point); then there
exists a future incomplete null geodesic lying in 8J * T or in
AJ *{t}, respectively.

Possibility (b) in condition (3) is due to Tipler'® and we
note that this concept of trapped point differs from the
trapped point of Krélak.'!"1?

The second theorem is that of Hawking and Penrose. '

Theorem 4.2: If (1) R, K °K °>0 for every nonspacelike
vector K % (2) the chronology condition holds on M; (3) the
generic condition holds on A; and (4) there exists at least
one of the following: (a) a compact achronal set § without
edge, (b) a closed trapped surface 7, (c¢) a future trapped
point #; then at least one of the following statements holds:
(a) there exists a compact set C 520 and an incomplete null
geodesic lying in E *CUE ~C, and/or () there exists an
open globally hyperbolic set D and an incomplete maximal
nonspacelike geodesic in D.

Proof: Let K be S or Tor {t}in case (a), or (b), or (c),
respectively. In cases (b) and (¢), E T K — K is generated by
future directed null geodesics with past end points on K. If
each null geodesic generator of E * K — K leaves E K, then
E *Kiscompact (Lemma 3.2). Thus, if E * K isnot compact
then there must be a null geodesic generator ¥ which does
not leave E * K in the future direction. However, ¥ cannot be
future complete, as otherwise a point conjugate to K would
occur on ¥, thus statement (o) holds with C = T or {¢}.
Since S is achronal without edge, one has E* § = S and so,
because of the compactness of S, E *S'is compact. Hence one
may assume that £ * K is compact (i.e., Kis a future trapped
set).

Since K is a future trapped set in a strongly causal space-
time, there exists a future inextendable timelike curve g in
intD *E *K.Theset F: = E *KN J —pis compact and ach-
ronal. Furthermore, £ ~F = FUG, where G is a connected
subset of dJ “u. Thus through each point of G there is a
future inextendable null geodesic. Here £ ~F may be com-
pact or noncompact. If E ~ F'is not compact, then by Lemma
3.2 thereis a null geodesic generator y of E —F — F that does
not leave £ ~ Fin the past direction; i.e., y is an inextendable
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null geodesic in 47 ~“u through p: = yNF. But ¥ must be
incomplete, as otherwise conditions (1) and (2) would im-
ply the existence of a pair of conjugate points along y. Thus
with C = {p}, statement (a) holds, therefore one can as-
sume that £ ~F is compact.

F is a past trapped set in a strongly causal space-time,
thus there exists a past inextendable timelike curve A in
int D —E ~ F. From this point the proofis the same one given
in Ref. 1: one can show that there is a point geE K and a
maximal inextendable nonspacelike geodesic ¥ through g in
D: = int DE ~F. This geodesic must be incomplete, because
if it were complete then a pair of conjugate points would
occur, which would contradict its maximality.

The original version of the following theorems were
published by Hawking.'*!

Theorem 4.3: If (1) R_, K °K *>0 for every nonspacelike
vector K % (2) the strong causality condition holds on M;
and (3) thereis a point p, a past directed unit timelike vector
W at p and a positive number b such that the expansion
0 =V, of the past directed timelike geodesics from p with
unit tangent V¢ becomes less than — 3|V, |b ~! within
parameter distance At = | WV, |~ 'b; then at least one of the
following statements holds: (a) there is a past directed in-
complete null geodesic frompin £ ~ {p}, and/or () thereis
a past directed maximal incomplete nonspacelike geodesic
from pin D "E ~{p}.

Sketch of proof: If E ~{p} is not compact, then by
Lemma 3.2 there is a null geodesic from p in E ~{p}. If

E ~{p} is compact, then D ~E ~{p} must be noncompact,
as otherwise there would be a past imprisioned timelike

curvein D —E —{ g_) }. Thus, because of Lemma 3.3, thereis a
past endless maximal nonspacelike geodesic in D “E ~{p}.
However, these curves must be incomplete, according to
conditions (1) and (2).

Theorem4.4: If (1) R,, K °K °>0 for every timelike vec-
tor K ¢, (2) thereis acompact C ? partial Cauchy surface, (3)
the unit normals to S are everywhere converging then there
exists a maximal future incomplete timelike geodesic orthog-
onal to Sin D *S.

Based on Lemma 3.4, a similar argument can be used to
prove this statement too.

V. DISCUSSION AND FINAL REMARKS

Since we summarized the results in the Abstract and the
Introduction, we do not repeat them, but we have some final
remarks.

The second condition of Theorem 4 of Ref. 1 is weaker
than that of Theorem 4.4: for the proof of the existence of
incomplete timelike geodesic, only a compact spacelike hy-
persurface without any edge is needed. Of course, in Hawk-
ing’s covering space My, the maximality of the incomplete
timelike geodesic y orthogonal to an S-homeomorphic pre-
image Sy of S (Ref. 15) can be proved. Thus, it would be
interesting to see whether or not the geodesic might lose its
maximality under the projection 7: My — M. If not then, of
course, the second condition of Theorem 4.4 can be weak-
ened to that of Theorem 4 of Ref. 1 (see Note added in
proof).

There is another class of singularity theorems'®'” where
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the maximality of the incomplete nonspacelike geodesics can
be proved in certain covering spaces. However, it is not clear
whether or not their maximality is preserved under the cov-
ering projection (see Note added in proof).

Among the oldest singularity theorems,'®!® there is a
great variety of statements that predict maximal incomplete
timelike geodesics. For example, one can show easily the
next theorem.

Theorem 5.1: If (1) R, V °V *>0 for every timelike vec-
tor V% (2) (M,g) admits a compact C? Cauchy surface .S;
and (3) the unit normals to S are everywhere converging;
then every future inextendible timelike curve has finite total
length measured from one of its points, furthermore for ev-
ery TIP P there exists a maximal incomplete timelike geo-
desic y orthogonal to S such that / “yCP.

Condition (3) can be replaced by one of the series of
conditions that guarantee the expansion of the timelike geo-
desics becoming negative.'®!%2° If the future causal bound-
ary of space-time has no null part,®?' then Theorem 4.1
states that each point of the singular future boundary can be
reached by maximal timelike geodesics.

Finally, it is worth noting that the incomplete null geo-
desic in Theorem 1 of Ref. 22 (which states that, roughly
speaking, chronology violation creates incomplete null geo-
desics in an asymptotically flat space-time) is also maximal.

Note added in proof: Since the covering projection is a
local diffeomorphism, the maximality of the inextendable
nonspacelike geodesics is preserved: if there were a nontdi-
vial Jacobi field along 7oy with zeros then a Jacobi field
describing conjugate points could be given along 7. (I am
indebted to C. J. S. Clarke for suggesting this idea of the
proof.)
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