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Abstract. This paper describes a differential geometric unification and reformulation of
earlier pseudotensorial approaches, It is shown that, along coordinate sections, the pull
backs of the contravariant and duai forms of Sparling’s form, defined on the bundle
of linear frames L(M) over the m-dimensional spacetime M, are the Bergmann and
the Landau-Lifshitz pseudotensors, respectively. Although the pull backs of Sparling’s
form along rigid sections are not exactly the energy—momentum tensors of the rigid basis
description of gravity, they are always tensorial and the pull backs of the full Sparling
equation are always the equations expressing the canonical (pseudo) tensors by the
corresponding superpotentials. For any vector field on the spacetime an (m — 1} form,
called the Noether form, is defined on L{M) whose pull backs to the spacetime are,
however, always the corresponding canonical Noether (pseudo) currents. It is shown that
the Noether form is just the canonical Noether current, associated with the horizontal
lift of a vector field on M, in the sense of a Lagrangian scenario on the bundle L{M).
For certain non-horizontal lifts the canonical Noether current is the sum of the Noether
form and Komar's tensorial current. A gf(m, R) valued (m — 1) form, called the
spin form, is defined on L{M), and it is shown that its pull backs arc the various
canonical spin (pseudo) tensors. In terms of the spin form and an energy-momentum
m form a necessary and sufficient condition is found for the metric connection to be
torsion free and to satisfy Einstein’s equations. An exterior differcntial equation for the
contravariant form of the spin and energy-momentum forms is derived, the pull backs
of this equation are just the Belinfante—Rosenfeld equations for the canonical. (pseudo)
tensors. From the reformulation the possibility arises of completing the Landau-Lifshitz
pseudotensor by adding a spin term. However, in the Landau-Lifshitz approach the
orbital and spin angular momenta are separately conserved, from which it follows that
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the Landau-Lifshitz pseudotensors are probably not physical,

1. Introduction

In the classical Lagrangian field theory there are two sharply different classes of fields
on the base manifold M: the matter fields and the fields specifying the spacetime
geometry. The latter consists of the metric and the connection, which, for metric
connections, are equivalent to the metric and the torsion. The action functional
I™ for the matter fields is built up from both the matter fields, their spacetime-
covariant derivatives and the ‘spacetime’ fields; while the action [9 for the latter, the
‘gravitational action’, is a functional only of the spacetime fields and their coordinate-
derivatives. Two important consequences of this distinction are the following:

(1) The Lagrangian scenario for the matter fields yields, through the Noether
identity, tensorial (but not necessarily internal-gauge independent) canonical Noether
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currents C*[K'] for any vector field K on M. These currents are built up from
the canonical energy-momentum and spin tensors; and the very notion of energy-
momentum and angular momentum i defined by these currents [1-3]. However
for the spacetime fields a similar analysis yields only pseudotensorial or rigid-basis-
dependent. (i.e. spacetime-gauge dependent) quantities [4-8].

{2) One can take the variational derivative of /™ with respect to both the matter
and spacetime fields, the former yields the field equations while the latter defines
the dynamical energy-momentum and spin tensors. The Belinfante-Rosenfeld-like
combinations of the canonical tensors give these dynamical ones [1-3]. The only
possible variational derivative of I9 yields the field equations but we do not have
any gravitational counterpart of the dynamical energy-momentum and spin tensors,
even in principle. The dynamical energy—-momentum and spin tensors of the matter
fields become the ‘source density’ of the dynamical metric and connection. Thus if we
want to give a complete as possibie description of the energy-momentum and angular
momentum properties of gravity the gravitational counterparts of both the canonical
energy-momentum and spin tensors should be considered. (In Einstein’s theory
the Belinfante-Rosenfeld combination of the highly coordinate-dependent canonical
energy-momentum and spin pseudotensors is minus the Einstein tensor [8].)

In Einstein’s theory the gravitational canonical (pseudo) currents have two nice
properties: (i) CH[K] 4 T#¥ K, is always (pseudo) conserved and can be derived
from a (pseudo) tensorial superpotential, which can be expected since any vector field
is a symmetry of the total matter + gravity action; and (ii) if K is a Killing vector of
the geometry then C*[K] and T#¥ K, are separately conserved, in accordance with
our physical picture that a symmetry of the ‘gravitational interaction’ should imply
the separate conservation of the corresponding matter and gravitational quantities.

The usage of these spacetime-gauge dependent canonical Noether (pseudo)
currents, however, contradicts the principle of general covariance. To rule out this
conilict several tensorial and gauge independent superpotentials have been proposed
[9, 10]. However, conceptually the very notion of energy-momentum and angular
momentum is connected to the Noether identity and hence the interpretation of the
new tensorial conserved quantities is not obvious. Furthermore, neither are they
quite satisfactory even from a pragmatic point of view, as they do not always yield
the expected global energy-momentum and angular momentum of an asymptotically
fiat spacetime [5, 10].

1.1 The aim of the paper

A possible way out of this difficulty is to retain the notion of energy-momentum
and angular momentum and to resolve the contradiction to the principle of general
covariance. Since mathematically the theory of gravity iS a theory of metric
connections on the bundle of linear frames L{ M) over M [11], it seems natural first
to try to reformulate the spacetime-gauge dependent quantities and formulae in terms
of differential forms on L(M). This reformulation may yield a unification of the
different pseudotensorial and rigid-basis-dependent approaches into a single manifest
gauge invariant formalism (‘general relativity on the bundle of linear frames’). (If in
the principle of general covariance the geometric objects by means of which the laws
of nature should be able to be reformulated were not required to be geometric objects
on the spacetime manifold M but only on the manifold of frames of the spacetime, i.c.
on L{ M), then the contradiction to the principle of general covariance would have
been resolved. Since the reformulability of a pseudotensorial quantity on M as
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a differential form on L(M) is non-trivial, this revaluated form of the principle
of general covariance would not be vacuous.) The energy-momentum and angular
momentum density-like quantities on M remain gauge dependent as they are pull
backs of non-horizontal forms along local sections of L(M). If, however, we have
a 2-co-dimensional closed submanifold $ in M then, in contrast to internal gauge
theories, § may be used to reduce the gravitational gauge freedom at the points of
$. Thus if we pull back a non-horizontal superpotentiai’ form along preferred local
sections of L{ M) we may obtain weii defined quasi iocal energy-momenium and
angular momentum expressions. The usage of these quasi local expressions would
not contradict the principle of general covariance.

Our present paper is devoted to the differential geometric reformulation
and unification of the previous different pseudotensorial and rigid-basis-dependent
approaches. First, for the sake of completeness and to fix the notation, in section
1.2, the main differential geometric notions and formulae are reviewed, where, as
far as is possible, the notation of Kobayashi and Nomizu [11] is used. We do not
specify the dimension and the signature since certain properties and the structure of
a specific theory can be understood more easily from a more general one (e.g. in four
dimensions the dual of a 2-form is aiso a 2-form, thus if an integral should somehow
be formed for a two-dimensional submanifold it is not a priori clear whether the
2-form or its dual should be used), moreover the formalism can be applied for lower
and higher dimensional models, including the Euclidean onres. In subsections 2.1-2.3
Sparling’s form [12] and its relation to various pseudotensors are discussed. In section
3 the relation between the Noether form and the gravitational Noether (pseudo)
currents is discussed and then the Noether form is identified as the gravitational
canonical Noether current within the framework of a Lagrangian scenario on the
bundle L{ M ). Finally, in section 4, the differential geometric form of the Belinfante—
Rosciifeld equatlons and its E‘ﬁﬁuC&tiGi‘iS for the Landau-Lifshitz pSﬁhuutE‘;ﬁSGi’S arc
considered.

1.2, Conventions, notation and the mathematical background

Let M be an m-dimensional manifold, g a metric on M of signature p — ¢,
p+ g =m,let V, be the unique torsion-free covariant derivation determined by g
and e the natural volume m-form associated with g; ie. if (z!,...,2™) is a local
coordjnate system then ¢ = flgle,, , dz® A.. Adz*m = m!/[gldz’ A...Adz™
(€4, 18 the totally skew Levi-Civita symbol, ¢, ,, = 1, Greek indexes are
coordinate indexes and for the exterior product the convention compatible with
2dz! Adx? = da! ® de? — d2? @ dz! is used. Abstract indexes will not be used
in this paper.)

Let L(M) be the linear frame bundle over M, {§;}, i = 1,..., , be the
standard basis for R™, ie. §; = (0,...,0,1;,0,, 0) and 6 = e é the canomcal
R™valued 1-form on L(M ). The metric ¢ and the volume form ¢ of M define a
set of functions on L(M). If, for example, w = (p,{E,}) € L(M),; ie. w is a basis
{E,} at T, M, then g, (w} = ¢,(E,,Ey) and ¢, , (w):= e, (E,,...,E, )
One can define ¢?° and %%~ too, for which Eapmtrerqrmon IO =
(=)2(m — p)lgbrbr

Gjuliy

For any r_O 1,...,m let [12, 13]
1

= ————E
[ 2o - (m _ T')! QLaBrCrgl-Em

T 0+ AL.. A BT, (1.2.1)
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It is a tensorial (m — ) form on L({ M), transforming according to the rth exterior
power of the contragredient representation of GL{m, R). If » = 0 then this is just
Ti=(1/ml)e,, . 0°A.. A8, while for r = m this is the function ¢, , . One
can easily verify that
gb A zal...a,. = (___)r-{-l raf)utzag...a,]‘ (1'2'2)
Let w*, be a connection 1-form on L{AM) compatibie with the metric g. The
structure equations for the torsion =¢ and curvature 2-form 2°; are

=% = de® + wy A0 (1.2.3)

0% = dw?, + W’ Aw®,. (1.2.4)
If index lowering and raising are defined by g,, and 9%%, e.g. w,, = g, w%,, then
the condition of metric compatibility is

dgab = Was + Wha - (1.25)
This implies de,, , =€, , «°, and, in general,

dza.-,a, = E% A Ea,-.c,-a. + ("’)r+1ﬂ"’a[a| A Eaz...a,.]a' (1.2.6)

Because of the metric compatibility, Q,, == g, 0%, = —Q; .
The first and the second Bianchi identities are

=0 AG*—wWw? AE* (12.7)
dQ%, = %, Aw®y —w?, AQC%,. (1.2.8)
In this formalism Einstein’s tensor, G*; := Rf, — LRé}, is given by
—1Qt AL, = G, (1.2.9)
The curvature tensor can be expressed by horizontal m-forms:
Q% AS ;= R% T (1.2.10)
and hence so can both the Ricci tensor and the curvature scalar

Q% AL, = R,Z

o~
[
[
-
—
St

and
RE =0 AL, =d(w?AZ,) —w AP AD,, + WP AE AT, @@212)

respectively. Since the horizontal subspaces are m-dimensional and Q°%, Z°¢ and
Z.sc are all horizontal,

d(QA,,) = QP AZ°AL,, =0; (1.2.13)
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ie. 220 AT, is closed.

On L(M) {w®,,6%} and {D,_ ", B(é,)} form a dual basis, where D" is
the fundamental vector field associated with the element e, ™ of the Weyl basis
of gl{m, R) and B(§,) is the kth standard horizontal vector field. Thus any vector
field X on L({M) has a unique decomposition X = (hX)®B(8,) + (vX)*, D,%.
Using (1.2.5) and (1.2.8), the Lie derivative of Q2% along X takes the form

ExQ% = d(1x Q%) — 1402 Awb, + 1408 AW®, - (vX)2, 0% + (vX)?, 00

(1.2.14)
and, using (1.2.6), the Lie derivative of ¥, is
ExZa; = (0(hX)* + 0 (AX) ) AB 0y + ((0X)%3 54, — (9X)°, 54, )
F+iex(EPAZ, ) F(AX)E AL, e (1.2.15)

Here D(hX)® := d(hAX)® +w® (A X )/ is the so-called covariant exterior derivative
of (kX )*. Finally, using (1.2.13), one has

Ex(Q°AZ,,) = D(hX)EAQ®AT, ;3 +d(x QAT )+ (R X ) QP AZCAZ, 45
(1.2.16)

For torsion-free connections the last term vanishes and, by virtue of (1.2.13), the first
term on the right becomes an exact form.

A local section s : U — L{M) is a field of basis vectors {E,} on U. (More
precisely, the vector E, at p € U7 is the element s(p)(5,) of the vector bundle T( M),
associated with s(p) € L(M) and §, € R™.) The pull back s"(8°) is a field of
basis 1-forms on U/, dual to the vector basis. The structure coefficients of the section
is the collection {c?,} of functions defined on U by [E,, E,] = c2, E,. s s called
the coordinate or holonomic section if there is a coordinate system (z!,...,z™)
on U such that E, = 8/8z% e = 1,...,m, and then 5*(#%) = dz%. s is a
coordinate section iff ¢, = 0. s is called rigid or anholonomic with respect to
the metric g if for the pull backs 9% = s*(0°%) and for some constant matrix
N.5 We have g = ¥° @ 9bn, ;. The pull back s*(w?,) is_a gi(m, R)-valued 1-
form on U, thus it can be expressed in the naturally defined basis of 1-forms
{s7(8*)}: s"(w®) =: whs*(67). If s is a coordinate section then for torsion-
free connections I'?,, defined by s”(w®;) =: I'%,d2", are the usual Christoffel
symbols; while if s is a rigid section then ~%, defined by s*(w?®,) =: v% 97, are
the Ricci rotation coefficients and 2, = —~2 fm,wf ¢, For torsion-free connections
vh = 1(ed + n%cl ngy + n20cyny,) and ¢, = 4% — ~§.. Twice the pull back of
the curvature form is just the curvature tensor: 2s*{2%,} = R%,,., s*(8") A s*(8?),
and the pull back s*(X) is 1/m! times the volume form ¢ on M.

For torsion-free connections and « > 0 let us define the following m-forms on
L{(MY:

1

5 QU AT, : (1.2.17)

AH =

Ag = zih (29 A Zqy ~ d(w™ AZ)) = -;—Nw“e AW AT, (1.2.18)
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Because of (1.2.13) both Ay and Ag are closed. If s : U — L{AM) is any local
section then s*(Ay) is (1/m!)e times the Hilbert Lagrangian. It is given in the
holonomic/anholonomic description if s 18 a holonomic/anholonomic section. Since
the pull backs of d(w?® AT ;) give the total divergences left from Hilbert’s Lagrangian
to obtain the familiar first-order ones, the pull back of Ag along a holonomic
section gives Einstein’s Lagrangian [4, 5] L0 s*(Ag) = (1//1gDLss*(2);
while for anholonomic s it is the first order Mglier-Nester Lagrangian [6, 7] L,g:

s*(Ag) = (1/ V19l g5 (T).

2. Sparling’s form and the energy-momentum pseudotensors

Let us define the Nester—Witten form [14, 15] as

R WO 1- R o o

Uy = =5 A Dy (&1}

This form is an ™" -valued pseudotensorial (m—2)-form on L({ M ) which transforms

according to the contragredient representation of GL(m,R). (Thus for the

dimension of M we necessarily have m > 3.) The terms in its exterior derivative can
naturally be grouped as

d’!.f-,' = “%Qab A za‘ab + %Ec Awab A Eiabc + ti (2'2)

where
t;‘ = '_% (wes' Awab A Eeub + wae Aweb A Biab) (2'3)

s Sparling’s (m — 1)-form [12, 13]. 'What is interesting here is the structure of
the right-hand side of equation (2.2), the Sparling equation: the curvature appears
through the Einstein tensor, which is the only horizontal term on the right, the
second term is linear and the third is quadratic in the connection form. Thus {; s
only pseudotensorial, transforming according to the contragredient representation of
GL(m, R). It might be interesting to note that the covariant exterior derivative Du;
of u; is just the first term on the right of (2.2), thus for torsion-free connections the
Sparling form is the ‘correction’ to du; to become the tensorial Du,. The importance
of u; and t; in general relativity is shown by the following theorem, due to Sparling
[12] for the vacuum case and Dubois-Violette and Madore [13] for the general case:

Theorem 2.1. For any R™*-valued horizontal {m ~ 1) form T; satisfying DT; :=
dT; —w®; AT, = 0and x € R the following statements are equivalent:

(1) w?, is torsion free, 2¢ =0, and 1Q** AT, + T, = 0;

(2) T, +t; = du;; and

(3 d(rT; +t;)=0

This theorem gives an alternative formulation of Einstein’s theory: a metric
connection on L{M) is torsion free and satisfies Einstein’s equations with matter
energy-momentum tensor 77, defined by T; =: T¢,X,, iff the Sparling and the
Nester—Witten forms satisfy condition (2); which is equivalent to the Sparling form
satisfying condition (3). In Einstein’s theory (3) looks like as a conservation equation,
while (2) gives us the ‘superpotential’ for the conserved quantity <7} + ¢;: it is just
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the Nester-Witten form. But since these quantities are defined in L(M) instead
of M, and, moreover t; and u; are only pseudotensorial forms, exterior equations
(2) and (3) yield equations in A only if we pull them back along a local section
of L{M). In fact, Frauendiener [16] calculated the pull back of u; and du, along
a coordinate section of L(M) by means of which he could show that s*(¢;) is
essentially Einstein’s canonical energy—momentum pseudotensor; moreover the pull
back of the contravariant form of Sparling’s form was identified as the Landau-

T lpﬂ‘ﬁ oy ﬂ(‘ﬂ‘lf‘l‘\fﬂﬂ(‘f\ LIn“rmrnr At/ “M\ll‘!“ 01("‘\ ‘l‘l "ﬂ FALOT O
[PtV yauuuuuunout IIUWLYLL, WO WUUILY adldu 1AL 1ICLU YL unlu;w—lnuul\uuulu

pseudotensors in the rigid basis or anholonomic formulation of general relativity.
Thus we calculate the pull backs first along a general section and then specialize
s to be a coordinate and then a rigid section. This will be done in the following
paragraph. One can also take the contravariant and dual forms of the Nester—Witten
and Sparling forms, whose pull backs will be considered in sections 2.2 and 2.3.
It turns out that the pull back of the contravariant form of Sparling’s form yields
Bergmann’s pseudotensor, while the pull back of the dual form of Sparling’s form
gives the Landau-Lifshitz pseudotensor.

2.1, The canonical energy-momentum pseudotensors

The pull back of the Nester-Witten form along a general section s: I/ — L{M) is
* — [a ble 5[‘1 b] s 6[“- be, r e 2 1.1
s (ui) - " Wied + i Wrs8 {97 ] S ( ab)' ( el )

If (z#) = (z',...,z™) is a local coordinate system on U and s is the corresponding
coordinate sectlon then Ef = 6F (and hence there is no dﬂerence between the
Greek and Latin indexes), w?, = I‘m,1 and

s™(u;) = “-—"U 5" (Zas)- Z1.2)

T

Here U;*® is the well known von Freud superpotential, which can also be given as
U = (1//1gl95,8,(lg|Go##"), Go#BY 1= gofge? _ gavghe 4, 5] If sis a

u- LT e

ngld section on U then wi = ¥4 and

s*(w;) = FEIV,*PsM(T,0) (2.1.3)
where V,*# is the rial superpotential of Mpller [6] and Goldberg [5]. Thus the
compenems of the l,1.!! uaclm of u; are the dual of certain superpotentials of general
relativity.

Now consider the pull backs of condition (2) of theorem 2.1, ie. Spatling’s
equation in general relativity. Since T is horizontal it has the form 7Y%, and
hence s*(7;) = T7;s*(X;) is independent of the section s. If for brevity u;®® is
defined by s*(u;) =: u;**s*(X,;) then

s*(du;) = du;*P As™(Z,,) + 4% s*(dS ;)

(2.1.4)
= -2 (Ef 0,0 + w0l + u,*wy, ) 87(2,).
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The puil back of Sparling’s form along a general section s is
s*(t) = —3 ('5f (wepwhs — winws, g™ + gt wwr — gffwliws - wiwi, g™
wliws, g™ + wipwh g™ + wh, wh g™
+ (o — Wi ok g™ + (W - wh)wh,g™ ) s(Z;), (21.5)
If s is a coordinate section then
() = nhgij,-s*(E:;) (2.1.6)

where

o . 1 8L,
it p 1= Tl (ﬁhﬁ% Fog 3;#9#:')

is Einstein’s canonical energy-momentum pseudotensor [4, 5}, and s*(du;) =
(1/2/191)8, U* s*(Z;). Thus the pull back of Sparling’s equation along a
coordinate section is equivalent to the von Freud equation x+/|g| (T g+ Et®s) =
18, Ug # [16]. If s is a rigid section then

(1) = (ret*, Y + 3V, 8,E7)s*(E,)
(2.1.7)
= (NAEgquzy + %VPW’VVEF)S*(E“)

where

1 aL
[ o 2E
ag? g = \/rg‘l (‘Caﬁéﬁ EEN 0,_35 P)

is the canonical energy-momentum pseudotensor in the anholonomic description [5,
6, 8] and 4507, is the gravitational energy-momentum tensor defined in [3] by

1
aB0% g = gt = 5TV, (2.1.8)
and satisfying
G5+ kap8% 5 = §V V5%, (21.9)

Thus although s*(t,) for a rigid section i fensorial, it deviates from the naturally
defined gravitational energy-momentum (pseudo) tensors, Therefore the various
energy-momentum expressions are not simply pull backs of a single geometric object,
e.g. t;, along various sections, However, s*(du;) = %Vp(Ef‘V#”P)s*(S,,), thus
the pull back of Sparling’s egquation along a rigid section is equivalent to the
superpotential equation (2.1.9).

Finally, the pull backs of the ‘conservation equation’ (3) of theorem 2.1 are

just the (pseudo) divergence equations: &8, (\/lg[( G""ﬁ + £ ppt® ﬁ)) = 0 and
Vo (G%5 + & ap8%5) = 0, respectively. '
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22 The contravariant form of the canonical pseudotensors

The contravariant form of the Nester-Witten form will be defined by u' = g% u;;
and clearly its pull backs along coordinate and rigid sections give the contravariant
form of the von Freud and the Mpller-Goldberg superpotentials: g U, *# and

gP° v, =¥, respectively.
In Einstein’s theory the exterior derivative of u' is the sum of the horizontal
(m—1) form «T* := kg™ T; and terms quadratic in the connection forms:

duf =dg" Au; + ¢¥dy; = T + & (22.1)
where

Of =t — (w¥ + W) Au;. (2.2.2)
The pull back of du’ along a general section is

s*(du') = s*(duy)gf - 2 (wi, g + Wi g% ™07 (2,) (223)
while if for brevity 77, is defined by s*(f;) =: 7¥,;s*(Z;) then

57(0%) = (7°40% = 2w}, + wl,g* ;™) 5" (S,). @24)
If s is a coordinate section then

s* (0%) = kpb''s* (L)) (2.2.5)
where

1

28+/lg

is the contravariant form of Einstein’s energy-momentum (i.e. Bergmann’s)
pseudotensor; and the pull back of (2.2.1) gives the superpotential equation for

nnnnnnn

hEgaﬂ = h.Eta'B + angﬁp U, ¥

$(0%) = s*(t, )0 = (mma“ﬂﬂg + %vp““vﬂﬁgn“)s*(za). (2.2.6)

Thus s"(©%), which is tensorial again, deviates from ,58°#9%s*(Z,), while the
pull back of (2.2.1) gives the contravariant form of (2.1.9). (One can introduce the
contravariant form ,g0%° of ,zt%; t00, which is only pseudotensorial and not to be

confused with the tensorial ,z6*7 defined in the previous paragraph.)
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23. The dual form of the canonical pseudotensors
Let us define the dual form of the Nester-Witten form by

Ugpem = Uiy o (2.3.1)
and let 7, . = T*%,, . . Then

duez_‘em = K‘Tez...em + ch...c,,. (2.3.2)
where

O e = (1 + (g9 —w —wf)Auf)e (2.3.3)

eer.Cm "

Now we are interested only in coordinate sections, when the pull back of Uy, oo IS

1
s*(uczmem) = 4\/]3 U,f abgfesec;..‘cms,h(zab)
. . (2.3.4)
= Zar (lglaaber) €eegem Weabh...j‘m dzls A... Adzfm
and hence
. 1 1
8 (duezmem) = 58,_85 (]gleres) mEeczmcmeffszdeh Ao A dﬂf‘f"‘
0 | (2.3.5)
= imaraa (!g|Gf"e") (_n;?l-j—leeez...emeffz...fmd'rh AL A dxfm .

Since the puil back of du,, ., is the double dual of the symmetric object defining
the Landau-Lifshitz pseudotensor [17],

1
2|gl

one may expect that the pull back of ©,, . s just the double dual of the Landau-
Lifshitz pseudotensor. In fact, the pull back of (2.3.3) along a coordinate section
is

Kt + GO = —— 0,8, (|g|Go#F")

8% (0 en ) =6 t!%e,, . s*(Z - (2.3.6)

One can take various forms of the Nester-Witten form and hence the Sparling
equation, and one can then pull them back along various local sections of L(M),
yielding different superpotentials and pseudotensors. However, the mathematical
content of all these quantities and equations is the same: the sum of the ‘Einstein
(m —1) form’ —10%° A £, , and the Sparling form ¢, is exact, it is the exterior
derivative of the Nester-Witten form. From a physical point of view, however, these
may differ in significance: for example if X, is any vector field satisfying kg =0
then for the Landau-Lifshitz pseudotensor we have

8, (161(G*® + 11 1°9) K ) = £8,8,(101G9")8, K 5y = 0.
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What is (globally) conserved here is therefore the integral

1 i )
(mwl)!/\’[g] (G + k1 1%°) K5/ [gl€qr, yn 427 AL Ade ™™

for an (m — 1)-dimensional submanifold. However this is not the energy-momentum
of the matter + gravity system even if 8,K, = 0, since we have an extra \/[g]
coefficient not only in front of the gravitationa] part, but in front of the matter part
also. If the extra /[g| factor were in front of the pravitational term only but the
matter term had the right coefficient then the matter part could be interpreted, for
example, as energy-momentum or angular momentum and, in contrast to the strange
feature of the gravitational part, would suggest the interpretation of the gravitational
part also. The result would be surprising but acceptable [18]. The extra \/Jg[ in
front of the matter part, however, plays the role of a coordinate-dependent weight
function and destroys the clear interpretation of its integral. Thus it is hard to
interpret these conserved quantities, in contrast e.g. to the integral of the Noether
currents built up from ,z0°# and ,po#*# below [8]. Moreover if K i a Killing
vector of the geometry then, in general, the pseudocurrent |gf (G*P + 128} K,
is not the sum of separately conserved (pseudo) currents, which could be expected
on physical grounds, while the Noether currents just mentioned are. Perhaps the
Landau-Lifshitz pseudocurrents above should be completed by spin parts, but, since
the Landau-Lifshitz pseudotensor is not a canonical pseudotensor, it IS not a priori
clear how these spin parts should be defined. In the next two sections we return
to this question and construct the missing spin part and discuss the Landau-Lifshitz
pseudotensor further.

3. The canonical Neoether current

Since only the energy-momentum pseudotensors of the holonomic description are
seen to be recoverable from (various forms of) Sparling’s form and the (pseudo)
tensors of the anholonomic description systematically deviate from the pull backs of
Sparling’s form, one might be slightly frustrated and dissatisfied. Recall, however, that
in the classical Lagrangian theory of matter fields, instead of the canonical energy-
momentum tensor, it is the canonical Noether current, associated with a vector field
on the spacetime, that has direct physical meaning. This Lagrangian scenario can
also be applied for general relativity and one can construct the so-called canonical
Noether (pseudo) cutrents as well [8).

Here we first show that there is a real valued (m—1) form on L( M), the Noether
form, whose pull backs are the corresponding canonical Noether (pseudo) currents
of gravity even if the local section is rigid. Then the dual form of the Noether form
will be introduced, whose pull back tells us how to define the ‘canonical Noether
pseudocurrent’ for the non-canonical Landau-Lifshitz pseudotensor. Finally, an even
less pragmatic section foliows, where we show that the Noether form is just the
canonical Noether current in the sense of the scenario of the Lagrangian field theory
on L(M).

3.1. The Noether form on L(M)

Let K be any vector field on M and {K*} be the collection of functions on L{M)
defined by K: if w = (p,{E,}) € L(M) then let K*(w) be the ath component of
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K in the basis {E,} at T, M. (In the language of Kobayashi and Nomizu [11] { K*}
is a zero form on L(M) of type (R™,GL(m,R))) Thus Lp_.K, = 62K,
K is a conformal Killing vector on M iff Lp, K, + Lps,) Ka = ¢9,, for some
GL{m, R)-invariant function ¢ on L(AM); and K is a Killing vector iff ¢ = 0.

The gravitational Noether form, associated with K, is defined by

CIK):=1,K* +dK* Au, = O°K, +dK, Aus

—
W
y—
.
—

s

= (0% +w?, Aut)K, + DK, Au®.
Then trivially
CIK) + kT* K, = d( K, u®) (3.1.2)
implying ¢(C[K] + «T* K,) = 0. Because of
dC[K] = ~k(dK, AT? 4 K,dT?) = -« T**DK, A Z,
) -—KLB((SA)I{bTabE
and the symmetry T = T(%) implied by the symmetry of Einstein’s tensor
in absence of torsion, C[K] and T° K, are separately closed for Killing vectors.
For traceless matter enerpy-momentum tensor, T*_ = Q, they are closed even for

conformal Killing vectors too.
The pull back of C[K7] along a general local section of L(M) is

MOV EIY — QYL L F AT Y A o)
(=3 \\JLJ.L])-—O \V }JlaTO \Ulla}J’\O \u- 'f (313)
=s"(0) K, + EfD, K,s"(6° Aub)
If s is a coordinate section then
s*(CIK]) = w(Wgb*" K, + ,,anﬁaa I{a)s*(z#) (3.1.9)

which is just the canonicai Noether pseudocurrent in the holonomic description:
ECHIK] = g 0" K, + (Eaﬂ[«ﬂ] + ool 4 bEaﬁEaul)aaKﬂ
= 0" K, + 5ot P8, K,

where goP*? = —(1/2k/1g))g?” U, *# is the contravariant form of the canonical
spin pseudotensor, satisfying the

Vighe 6?1 = -8, (Mhﬂ“‘uhﬁ])
algebraic Belinfante-Rosenfeld-type equation. If s is a rigid section then

5" (CIK]) = n{as6"" K, + i**# Vo K5 )s™(2,) (3.1.5)
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which gives the canonical Noether current of the anholonomic description:
AECPIK] i = sg0*" K, + (AEO-#[G:’-*] + AEo-ﬂ{ﬂF] + AEO-&[G#])VOI K,
= ss0* K, + sg0**?V K.
Here ppo#®® = —(1/2k)gP? v, *# is the contravariant form of the canonical spin

tensor and satisfies the pair of tensorial Belinfante-Rosenfeld-type equations [8]:
AEg[aﬂ] =-v, AEO-#[C!B]

vu AEgy'u = —Ruuaﬂ AEo-ya'B'

Thus although the pull backs of ¢, and ©f along rigid sections are not exactly
A0 9L EY and ,p0°F0° 0%, respectively, the pull backs of the Noether form
are always the Noether (pseudo) curtents. The Noether form therefore seems to
be the geometric object on L( M) which, with appropriately chosen vector fields K,
describes the momentum—angular momentum distribution of gravity.

Integrating a pull back of (3.1.2) for an (m — 1)-dimensional submanifold with
boundary one obtains the so-called ‘global conservation equations’.

3.2. The dual form of the Noether form

Let us define the following A™R™-valued (m — 1) form on L{A) for any vector
field K on M:
Cel...emIK] P= I([m eez...em] + dI{[e, A uez...em]
1 . i (3.2.1)
= —€epem (C[K] + Wk Auf Ixf) .
A simpie consequence of the definitions and (3.1.2) is
e; e,,,[K] + 'K:I\[e, Teg‘..em] = d(I([ﬂueg..,em]) . (3'2'2)

One can think of equation (3.2.2) as the dual form of (3.1.2), and it is, in fact,
equivalent to (3.1.2). We saw in the previous section that the Landau-Lifshitz
pseudotensor can be recovered as a pull back of the dual form of Sparling’s form

alana a cnnrdinata cactinn Thueo if micht alen ho wnrth rancidaring tha msll hacle AF
ululls a COULUMIais UL, aaills il g 10 &ISC De worth consigerns ig the Py vauva Ui
31 e [K]. Itis
* —_ g ef ead - ¥
ms*(Coyen KD = 8., (1t K +150°20, K, ) (5., (3.2.3)

Since the Landau-Lifshitz pseudotensor is not a canonical one we cannot a priori use
the Lagrangian scenario to construct the conserved pseudocurrent. Equation (3.2.3),
however, suggests a way of defining the gravitational pseudocurrent in the Landau-
Lifshitz approach: although ,; t*7 is not canonical, the pseudocurrent is similar to
that of the canonical pseudotensors:

L CHIK] = " K, + (hEau[aﬁ] + ol 4 hEgﬂ[aﬂl) B, J g
=K, +507P8, K g, (3.2.4)

One can see that ,zo#*7 also plays the role of the spin pseudotensor in the Landau-
Lifshitz case.
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3.3. The Noether form as the canonical Noether current

The introduction of the Sparling and Noether forms in the previous section is
somewhat heuristic as it i based on the fortunate fact that the curvature only appears
in the exterior derivative of u; through the Einstein tensor. Furthermore the fact
that they are closely related to the gravitational energy-momentum and the canonical
Noether (pseudo) current is justified a posteriori, calculating their pull backs. Thus
this way of justification is shown by the following diagram:

I |
pull back s" pull back s*
! _ !
Lg — o, — ECYIK]

Paih 7o - ot al oo L % L e S PrguES

the pull back of C[K] is just the canonical Noether (pseudo) current derived,
according to the Lagrangian scenario, from the Lagranglan Lg, which is the pull
back of Ag. One might therefore claim to have a Lagrangian scenario in L(M) to
clarify the role of the various differential forms on L{M) and to give a gauge (i.e.
local section) independent verification that C[K] is, in fact, the canonical Nocther

current.
Although the derivation of Einstein’s equation on L(A 1
follows, for the sake of completeness and the bea auty of the czlcu]anon we first
consider it.
Let g(t) be a smooth one-parameter family of metrics of signature p — g,
t € (—r,7) for some r > O, such that g(0) = ¢ and g,,(t) be the corresponding
functions on L(M). (g,(f) s a ‘one-parameter deformation of g,,”) If the dot
denotes the differentiation with respect to ¢ at t =0, e.g. g,; = ((d/d1)g,4(t})ymppr
‘the first variation of g,, determined by the deformation g,;(t)’, then

T =109, 20
and
0%, =d W) + &, Awy F W, AL,
Thus, using (1.2.6) and (1.2.11)~(1.2.12), one has
26hy = (20 A Tgy) = G, T +d(w? 0P AT, ) (3.3.1)
and
2xAg = =G4, S + 4((w g AT, - 49w AT, )das)- (33.2)

Therefore the variation of both Ay and Ag yields the ‘Einstein m-form’ G**Z and
some exact form. If one wants to recover the field equations on M then a local
section s : U — L(AM) and, in general, a one-parameter family of its deformations
s(t) should be considered. For each fixed p € U s(p,1) is a (not necessariliy non-
degenerate) curve in L{M) and hence in a neighbourhood of s(U) in L(M) it
defines a vertical vector field V' pointwise as the tangents of these curves. Thus
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if A is either Ay or Ag then, using dA = 0, (s*(A)) = s*(A) + s*(kyA) =
s*(A) +ds* by A) = —(1/2)G2® g, s*(E)+ exact m-form on U; consequently
the functional derivative of the action functional f[s,s*g] ;= [, s*(A), DC U, is
—(1/2x) times the Einstein tensor. For coordinate sections one can choose V' =0,
but for rigid sections V' is determined by g_, up to a combination of the fundamental
vector fields associated with the elements of se(p, q} C gli(m, R).

Recall that the canonical Noether current on the spacetime, associated with a
vector field K on M, is introduced through the so-called Noether identity, Thus
it would be natural to look for the Noether-like identity on L(M) only for the
horizontal lift of K. However, the calculations can easily be carried out even for
a general vector field X on L(M), furthermore a special choice for the vertical
component ».X of X we will obtain an interesting relation to Komar’s superpotential,
we work with a general X and specify ~X and vX at the final stage of the
calculations.

Because of (1.2.16) and dAg = O one has (‘Noether identity on L(M) for the
Lagrangian Ag and vector field X7)

ID(AX) AR AL, ,; = rExAg — 3d(0x Q% A By ~ Ex (@ A Ty))
(33.3)
= d{(wex Ag = $ix 0% AT + Hx (W A S,)).

The canonical Noether current, which is, by definition, the (m — 1)-form in the large
brace on the right, is

f‘ibeE - %Lxﬂab A Zab + %LX (ﬂdb A Zab + wae Aweb A Eab)
+ %d((vX)“za,, — (A X)*w* AT, )
= HhX)"Q® AS, 5 + 4((RX)"w, ) + 3d((2X)**E,,). (33.4)

If therefore X is chosen to be the horizontal lift of K: (AX)® = K* and (vX) =0,
then by the Einstein equations and (3.1.2) this is just the Noether form C[K]. If,
however, (vX)®%, is chosen to be V, /(¢ then the last term on the right of (3.3.4)
does not vanish and is just Komar’s identically conserved horizontal (i.e. tensorial)
expression 1V, (Ve K*—V*I(*}L . The canonical Noether current for Ag associated
with X = K*B(6, )+ V,K°D,? is therefore the sum of the non-horizontal Noether
form, being connected to the horizontal part of X (i.e. to displacements on A{), and
Komar’s horizontal, identically conserved current, being connected to the vertical
part of X (ie. to the element ¥, K'* of the Lie algebra g{(m, R), defined by the
displacement).
A similar analysis for Ay yields

%D(’IX)E /\Qab A Eeab = -"\'.L}(AH — %d(beab A Eab)
= a({(rX)* Q" A Z,,;)

which is nothing but the identity —V, K, G = —V_(G?°K,) in the language of
bundle connections.
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4. The Belinfante—Rosenfeld equations on L(M)

The results of the previous two sections suggest to consider Sparling’s form and the
Nester—Witten form as the energy-momentum {m — 1) form and the corresponding
superpotential, being an (m — 2) form, on L{M). The canonical Noether current
of the classical Lagrangian theory of matter fieids is built up not only from the
canonical energy-momentum tensor, but the spin tensor tco. Similarly, to build
up the gravitationaj canonicai Noether (pseudo) current both the canonical energy-
momentum and spin (pseudo) tensors are needed. Thus, recalling the structure of
the Noether form C[K], the Nester-Witten form plays the role of the spin form too.

However, the most important characteristic feature of the contravariant form
of these canonical (pseudo) tensors is the pair of Belinfante-Rosenfeld equations
for them, and that their Belinfante-Rosenfeld combination is gauge invariant and

indensndent of tntal fr'nr\rrhnntp\ diversances addad to the Tasrangian, Thus we mav
Cpeneey A R wAagrangiai, ay

expect to have an extenor d:ﬁ'erennal equation on L( M) whose pull backs are just
the Belinfante-Rosenfeld equations on the spacetime.

Such an exterior differential equation can be derived only if the energy—
momentum is represented by an m form and the spin by an (m — 1) form on
L({AM). It turns out that the energy-momentum and spin can, in fact, be represented
by rot only (m — 1) and (m — 2) forms, respectively, but m and (mn — 1) forms,
respectively, as well. These forms will be studied in the next two sections. Finally we
return to the discussion of the Landau-~Lifshitz pseudotensors and it will be indicated
that the differential geometric formalism implies additional strange properties of the
Landau-Lifshitz pseudotensors.

4.1. The energy-momentum m and spin (m — 1) forms on L{(M)

The quantities in the Belinfante~-Rosenfeld equations on the spacetime have two free
indexes, thus the spin form would have two free indexes too. Since the spin (pseudo)
tensors are three index quantities and we would like to recover them as the duals of
the components of the pull backs (as in the case of Sparling’s form), the spin form
must be an (m—1) form. Similarly, the energy—-momentum form must be an m-form.
Clearly, the spin form must bc a linear, while the energy-momentum m-form be a
quadratic expression of the connection form.
First consider the spin form, which we define as

.93'1-:.“:%(6§‘w“bAZab+w°1A2,—e+weiAEje) aLn

=6 Au; + LdET, - 12 AT

1 .
2 ic’

This s a gl(m,R)-valucd pseudotensonal (m — 1) form on L(M) of type
adGL(m,R). (Although s7; is well defined for m > 2, the second equality holds
only if u, is defined; ie. if m > 3.) It is interesting that apart from numerical factors,
its trace s' is just the (m - 1)-form (1/2n)w“b A X, whose exterior derivative has
been drOpped from &H to obtain Ag. If Z° = 0 then the pull back of s¢; and (4.1.1)

alame n Anredinnda camtine

dlUHg 4a COorainaie seclion lb

s'(s')) = kgt 87(5,) = W(_ U; 7+ 0,(VIIG e ,) ) s7(S0) - (4.12)
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where

1 Ly

,uaz _fa
RES ‘/_"aa#gpy ( P guﬁ 611 gpﬁ)

is the canonical spin pseudotensor for Einstein’s Lagrangian L. If s is a rigid
section then

s'(59)) = kst g0 EP 5% (2,) = —Lv, i Efs7(2,)  (413)

where
1 9Ly
85" = /l9198,97 19"

is the canonical spin fensor in the anholonomic description [8). Since ,ps#% 4 is not
antisymmetric in x and « these canonical spin (pseudo) tensors cannot be recovered
from a single R™*-valued (m — 2) form on L(Af) as the duals of the pull backs.
For a moment let us consider general, not necessarily torsion-free metric
connections. Then using the definitions and the formulae of section 1.2 we have

—6793)

— a5 = MG+ G + 120 A A (6] Base + S0 + 00T, ) + ¥,
= ~d6/ Au; + 09 Adu; + 2d(2CATY,) (4.1.4)

where

= =Lt AW AT+ A (W — WP AZ G+ w® A (W + W) AT,

=0 At + W, A Ay, (4.1.5)

The following theorem shows that the Einstein theory, up to an unspecified
cosmological constant, can also be characterized by ¢/, and &',.

Theorem 4.1.1. Let T; = TY,X; be any horizontal R™-valued (m — 1)-form on
LM}, satisfying DT, := 4T, —w*, AT, =0 and x € f&. T m # 2 then the foliowing
statements are equwalent

(1) w?, is torsion free, =¢ = 0, and 3\ € R such that G7; + A&} = TV ;

@) (kT = ADT 4+ ¥, = —ds’;

@) d(xT? .S +1,) =0.

FProof. _

(1) — (2): If Z¢ = 0 then &Y, = G,/ and because of (4.1.4) statement (2)
follows.

(2) — (3): Since dX¥ = 0, (3) is a direct consequence of (2).

(3) — (1): First calculate the exterior derivative of #/,. After a simple but long
calculation we arrive at

/ ah &

T com fa B L = . re f bt ¢ .
1w =™ AS,, + 205 A S + 68 (W — WP} AL,

-...
&

LWLl i3a ' {
-2t = 8" L
+ (we_; -+ wje) A E.;Q) +Ee/\ (G{wac AwaA Eq,be

+ wai A (wbj - wjb) A Eabe + wab A ( 5 + wa) A Emc)
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Furthermore, because of the condition imposed on T;, d(77,%) = d(6/ A T;) =
BIAT —w! AOAT, -0 AAT; = ZF AT, = T%,i AT + TV ,w®; A S, thus the
condition (3) of the theorem takes the form

0= -2d(xT/ ;T +1,) = -2-Z AT, + 26(T%;0f, - T7 w8, )AL —2d¥7 .
(4.1.6)

Recall that {D, ", B(8,)} and {w?*,,8°} are dual, w®,(D, ") = 6§26} and
6¢(D,,™) = 0. Thus taking the interior product of (4.1.6) first with D_ ™ and with
D,* and then contracting in j and r and in m and s we obtain: 0 = (2-m)Z°AL,,,.
For m # 2 this implies the vanishing of the torsion. Substituting =¢ = 0 back to
(4.1.6) we have

0=2((R/, - wT%,)w®; - (R*; - KT ) A,
Taking its interior product with D, ™ and contracting in n and
J 1 psi = 3 1 Tk §d
R m—-zRém =r{T m= Y I
This equation can be rewritten in the following form:
G kT, =6 (S(m =R+ 7%, ) = 61 .
' : PA\2m m- F '

But then, because of the contracted (second) Bianchi identity and the differential
condition imposed on T;, A must be constant. 0

Although, as one can show by the same technique, conditions (1) and (2) ate
equivalent for any fixed, e.g. zero, cosmological constant, and they imply condition
(3), but the Einstein equation can be recovered from the ‘conservation equation’ (3)
only up to some, unspecified cosmological constant. Thus this theorem is a little bit
weaker than the theorem of Sparling and Dubois-Violette and Madore. In the rest
of this paper X = 0 and E° = 0 will be assumed.

One can also calculate the pull backs of condition (2) of theorem 4.1.1, but the
technique is the same as that used in section 2, thus only the results will be given.
If s is a coordinate section then s*(t/,) = x gtf,s*(T), while for a rigid section
s* (1) = (kae0505 Ef + 1 vgor V(93 EFY)s*(S). Thus ¢/; seems to be
the energy-momentum m-form on L(M), and the pull backs of condition (2) give
the relation between the canonical energy-momentum and spin (pseudo) tensors:
VIg T g + 151%5) = —8,(V/Iglgs"*) for holonomic and T%4 4 g% =
—V ,aE8%% g for anholonomic sections,

4.2. The Belinfante-Rosenfeld equations
First define
G'j" = Sj" - %dzji = %w“b A (6£Eab + 5iEb; — 6£Eat)

‘ @d2.1)
= g’ A Uri
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and recall that in (4.1.2) and (4.1.3) the pull backs s*(s7; — 1dT7,) were just the von
Freud and Mpller-Goldberg superpotentials, respectively. But, as we noted in section
3.1, they are the contravariant forms of the canonical spin (pseudo) tensors, thus
$*(07}) = rypo® ;s°(a,) for holonomic and s*(07,) = k ,p0# 293 E?5(T)) for
anholonomic sections. Moreover, in the pull back (3.1.3) of the Noether form C[K]
along a general section 9% A u® appeared as the spin term. Thus it is ¢ that should
be considered as the contravariant form of the spin form. lts exterior derivative is

—do?t = kTV'T 4 ©F (4.2.2)
where

Q¥ == ¢ ¢ (Wi + W) A7, (4.2.3)
The pull back of ©f along a coordinate section i s*(©7/%) = x 8/'s*(T),

ie. it gives the contravariant form of Einstein’s canonical energy-momentum (ie.
Bergmann’s) pseudotensor, while for a rigid section it deviates from ,p0°P.
However, the pull backs of the full equation (4.2.2) are just the relations between
the contravariant form of the canonical (pseudo) tensors: —38,(+/]glpo#*?) =
\/E(T“ﬂ +,:08%%) if s is a cootdinate section, and —V AEaWﬁ‘ = Tof 4 6%

H3 a mmiAd cantinm Thic tha antiovrmmareis naet nF 427N coome tn ha tha
u l) m G ll&lu O LIVPLIL, 411D LMW 4all uﬂ: ISR FLAYN LY qu L UL \-r or-n l-) D LY AP U LA

differential geometric form of the algebraic Belinfante—Rosenfeld equation. Since
4oliil(pmnY = 3(gilimmnl _ gili E’“"]) o4 and @U? vanish in o dimensions.
If m > 3 then, however, ©U7 is never zero, since ®UY1 = 0 would imply the
contradiction (m 2)Z,, = 0, and hence oli? js not a closed form.

The Belinfante-Rosenfeld combination of the contravariant form of the canonical
(pseudo) tensors is Einstein’s tensor [8]:

1
Viglw8*? + 3»(\(’ gl ot + gl 4+ hE"ﬁ[W]))= -;\/I—QIGW
1
28 F +V, ( P CT R L AEaﬁ[wl) = -—G=*

hmng Qpﬁr‘anF gauge invariant and indppgpdenr of total (rnnrdmate} di ivergences

added to the Lagrangian. Thus rewriting (4.2.2) in the form ©7¢ 4 do/? = —C‘-“Z
and recalling the antisymmetry ,zo**? = hEcrI““W and ,po#of = . olvelf (4.2.2)
can also be considered as the differential geometric form of the Belinfante-Rosenfeld
combination of the canonical pseudotensors g 8*# and ,ger**# and of the canonical
tensors ,g6%° and ,poreP.

To obtain a ‘global conservation equation’” now a two-index tensor field with the
corresponding function K, on L{M) and an m-dimensional submanifold D with
boundary should be involved instead of a vector field A", and an (vn—1)-dimensional
submanifold. Now

—d(0® Ky ) = ~aK,y A0 + K, (0% 4 kT E)

which is especially interesting for an antisymmetric X ,, generating a coordinate
rotation. It describes how the (non-conserved) total spin of gravity varies as one
passes from an (vn — 1)-dimensional submanifold to another being homologous to
the previous one via D,
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4.3. More on the Landau-Lifshitz pseudotensors
For the sake of completeness, finally, let us consider the dual form of the spin form:

9 eprem = O Ceey e (4.3.1)
Then
- daj 3o = ETJ e-l...e,,‘z + GJ €328 m (4.3-2.)
Where TJ B2..€m = Tjeeeeg_.em and
. o . .
eJez-..em b @Jceeezmcm —W A aJegcezmcm- (4.3.3)

The pull back of ¢7,, . along a coordinate section is

wr i 1 1 ‘ . .
507 o) = *"fmaf(iglG’”’)6681,.%.6”2...%(193 TA.. Ade™
(43.49)
and hence
- : 11 :
-4 (da’ e;...s,n) = Emaras (iglGJrBs)eeeg_.emeh...lmdxh Ao A dmrm ' (435)

Therefore the pull back s*(©/

} must yield the Landau-Lifshitz pseudotensor
apain. In fact, it is

€Znm

(@, L V=rpgte,, . (%) (4.3.6)
and therefore the pull back of (4.3.2) along a coordinate section is equivalent to

- £, (Igli0**8) = 1g1(G*F + n t°7). (43.7)
Thus |; o#*P 1= \po#*P also plays the tole of the spin pseudoiensor in the Landau-
Lifshitz approach too, in accordance with the results of section 3.2. The symmetry of
G*f and ; t*F implies 3,(}g|;; o*1*P)) = 0, and hence the Belinfante-Rosenfeld
combination of ;; *# and ;; o#*# is also tensorial:
gl t*® + 8, (|g|(uau[am +oolnl ¢ LLC,H[M]))

1
= lgh1 1% + 8,(lglu.o ¥ ) = ~—|g|G*7.

The Landau-Lifshitz pseudocurrent (3.2.4) can be derived from a superpotential:

1 i
u — oY Y o By
“C [K]—-—-—G I‘Ly'l'"——"“ laa(aﬁ“glc )K’y)

Thus [gl(xk C*[K] + G#YK,) is always pseudoconserved, in contrast to
lgl{k t*” + G*) K, considered in section 2.3. However, if K is a Killing vector
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of the geometry then, in general, it is not the sum of separately (pseudo) conserved
gravitational and matter pseudocurrents either, which could be expected on physical
grounds (see the introduction). We have only

0=, (lgl(x CHK] + G* K,))
= 911 G**Lyeg,, + 58, (lgl CHIK]) + lg|G** K, T2

viopp

and hence the Landau-Lifshitz pseudocurrent is rot pseudoconserved even for a
Killing vector K. For vector fields satisfying 8, K3y = 0 the pseudocurrent
lgl(k C#*[K] + G**K,) is the sum of two separately pseudoconserved parts:
the first, as we saw in section 2.3, is |g|(x 1#* + G¥**)K,; and the second is
lglyo#*#8, K, However, if K, generates coordinate rotation then the second
part is not zero. But accepting of; to be the geometric object describing the
spin distribution of gravity, which interpretation is suggested by the results of the
previous sections and that the relation between ;; o#®? and [; t*# is the same that
between e.g. o **? and 502, the second term should be interpreted as the spin
angular momentum. The spin and orbital angular momenta of gravity in the Landau-
Lifshitz approach are therefore separately conserved. This strange behaviour, together
with others mentioned above and at the end of section 2.3 may suggest to consider
the Landau-Lifshitz pseudotensors aphysical, in contrast to the canonical (pseudo)
tensors.
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