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AhStracL This paper describes a differential geometric unification and reformulation of 
earlier pseudotensorial approaches. I t  is shown that, along WOrdiMte sedions. the pull 
backs of the wntravariant and dual forms of Sparling's form, defined on the bundle 
of linear h m e s  L ( M )  over the mdimensional spacetime M ,  are the Bergman" and 
the Landau-Libhim pseudotensom, respectively. Although the pull backs of Sparling's 
form along rigid sections are not eiacrly the energy-momentum tensors of the rigid basis 
description of gravity, they are always tensorial and the pull backs of the full Sparling 
equation are always the equations apresing the canonical (pseudo) tensom by the 
wrresponding superpotentials. For any vector field OD the spacetime an (nz - 1) form, 
called the Noether form, is defined on L( M )  whose pull back to the spacetime are, 
however, always the corresponding canonical Noether (pseudo) currents. It is shown that 
lhe Noether form is just the canonical Noether current, associated with the horizontal 
lift of a vector field on M ,  in the sense of a Lagrangian scenario on the bundle L ( M ) .  
For certain non-horizontal lifts the canonical Noether current is the sum of the Noether 
form and Komar's tensorial current. A gl(m, R) valued (m - 1) form, called lhe 
spin form, is defined on L ( M ) ,  and it is shown that its pull bacb are the various 
canonical spin (pseudo) tensors. In terms of the spin fom and an energy-momentum 
m form a necessary and sufficienl condition is found for the metric wnnection to be 
torsion free and to satisfy Einstein's equations. An exterior diffeerential equation for the 
wntravariant form of the spin and energy-momentum forms is derived, the pull backs 
of this equation are just lhe Belintante-Rosenfeld equations for the canonical (pseudo) 
tensors. From the retormulation the possibility arises of wmpleting the Landau-Litshim 
pseudotensor bj adding a Spin term. However, in the hndau-Lihhitz approach the 
~ r h i h !  and spin angu!ar momma are sepra!e!y mn.scwvprl, h m  whk!! it fn!!n% !!!a! 
Ihe landau-Lifshilz pseudotensors are probably not physical. 

1. Introduction 

In the classical Lagrangian field theory there are two sharply different classes of fields 
on the base manifold M: the matter fields and the fields specifying the spacetime 
geometty. The latter consists of the metric and the connection, which, for metric 
connections, are equivalent to the metric and the torsion. The action functional 
I" for the matter fields is built up from both the matter fields, their spacetime- 
covariant derivatives and the 'spacetime' fields; while the action I g  for the latter, the 
'gravitational action', is a functional only of the spacetime fields and their cmrdinore- 
derivatives. Tho important consequences of this distinction are the following: 

(1) The Lagraigian scenario for the matter fields yields, through the Noether 
identity, tensorial (but not necessarily internal-gauge independent) canonical Noether 
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currents C*[Kl for any vector field K on M. These currents are built up from 
the canonical energy-momentum and spin tensors; and the very notion of energy- 
momentum and angular momentum is defined by these currents [l-31. However 
for the spacetime fields a similar analysis yields only pseudotensorial or rigid-basis- 
dependent (Le. spacetime-gauge dependent) quantities [U]. 

(2) One can take the variational derivative of Im with respect to both the matter 
and spacetime fields, the former yields the field equations while the latter defines 
the dynamical energy-momentum and spin tensors. The Belinfante-Rosenfeld-like 
combinations of the canonical tensors give these dynamical ones [I-31. The only 
possible variational derivative of I S  yields the field equations but we do not have 
any gravitational counterpart of the dynamical energy-momentum and spin tensors, 
even in principle. The dynamical energy-momentum and spin tensois of the matter 
fields become the ‘source density’ of the dynamical metric and connection. Thus if we 
want to give a complete as possible description of the energy-momentum and angular 
momentum properties of gravity the gravitational counterparts of both the canonical 
energy-momentum and spin tensors should be considered. (In Einstein’s theory 
the Belinfante-Rosenfeld combination of the highly coordinatedependent canonical 
energy-momentum and spin pseudotensors is minus the Einstein tensor [SI.) 

In Einstein’s theory the gravitational canonical (pseudo) currents have two nice 
properties: (i) Cfi [ K] + Tfiy IC,, is always (pseudo) conserved and can be derived 
from a (pseudo) tensorial superpotential, which can be expected since any vector field 
k a symmetry of the total matter + gravity action; and (ii) if K is a Killing vector of 
the geometry then Cfi[K] and Tfiy ICv are separately conserved, in accordance with 
our physical picture that a symmetry of the ‘gravitational interaction’ should imply 
the separate conservation of the corresponding matter and gravitational quantities. 

The usage of these spacetime-gauge dependent canonical Noether (pseudo) 
currents, however, contradicts the principle of general cnvariance. ’Ib rule out this 
conflict several tensorial and gauge independent superpotentials have been proposed 
19, lo]. However, conceptually the very notion of energy-momentum and angular 
momentum is connected to the Noether identity and hence the interpretation of the 
new tensorial conserved quantities is not obvious. Furthermore, neither are they 
quite satisfactory wen from a pragmatic point of view, as they do not always yield 
the expected global energy-momentum and angular momentum of an asymptotically 
flat spacetime [S, lo]. 

1.1. The aim of the paper 
A possible way out of this difficulty is to retain the notion of energy-momentum 
and angular momentum and to resolve the contradiction to the principle of general 
covariance. Since mathematically the theory of gravity is a theory of metric 
connections on the bundle of linear frames L( A t )  over M [ll], it seems natural first 
to try to reformulate the spacetime-gauge dependent quantities and formulae in terms 
of differential forms on L(M). This reformulation may yield a unification of the 
different pseudotensorial and rigid-basis-dependent approaches into a single manifest 
gauge invariant formalism (‘general relativity on the bundle of linear frames’). (If in 
the principle of general covariance the geometric objects by means of which the laws 
of nature should be able to be reformulated were not required to be geometric objects 
on the spacetime manifold hl but only on the manifold of frames of the spacetime, i.e. 
on L( M), then the contradiction to the principle of general covariance would have 
been resolved. Since the reformulability of a pseudotensorial quantity on M as 
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a differential form on L( M) is non-trivial, this revaluated form of the principle 
of general covariance would not be vacuous.) The energy-momentum and angular 
momentum density-like quantities on hl remain gauge dependent as they are pull 
backs of non-horizontal forms along local sections of L ( M ) .  If, however, we have 
a 2-co-dimensional closed submanLfold $ in M then, in contrast to internal gauge 
theories, $ may be used to reduce the gravitational gauge freedom at the points of 
%. Thus if we pull back a non-horizontal 'superpotential' form along preferred local 
sections of i [ X j  we may obtain weii defined quasi iocai energy-momentum ana 
angular momentum expressions. The usage of these quasi local expressions would 
not mnnadict the principle of general covariance. 

Our present paper is devoted to the differential geometric reformulation 
and unification of the previous different pseudotensorial and rigid-basisdependent 
approaches. First, for the sake of completeness and to lix the notation, in section 
1.2 the main differential geometric notions and formulae are reviewed, where, as 
far as is possible, the notation of Kobayashi and Nomizu [ll] is used. We do not 
specify the dimension and the signature since certain properties and the structure of 
a specific theoly can be understood more easily from a more general one (e.g. in four 
dimensions the dual of a 2-form is also a 2-form, thus if an integral should somehow 
be formed for a two-dimensional submanifold it is not a priori clear whether the 
2-form or its dual should be used), moreover the formalism can be applied for lower 
and higher dimensional models, including the Euclidean ones. In subsections 21-2.3 
Sparling's form [U] and its relation to various pseudotensors are discussed. In section 
3 the relation between the Noether form and the gravitational Noether (pseudo) 
currents is discussed and then the Noether form is identified as the gravitational 
canonical Noether current within the framework of a Lagrangian scenario on the 
bundle L ( M ) .  Finally, in section 4, the differential geometric form of the Belinfante 
IWJGIIIGI" yuauu, ,a  dllU LW IlIIpIII*LLIuLI> L U L  LUG LALLuau-LLL>L'ILL p>c"uurclo",J alci 

considered. 

1.2 Conventions, notation and the mathematical background 

Let M be an mdimensional manifold, g a metric on M of signature p - q, 
p + q = m, let V* be the unique torsion-free covariant derivation determined by g 
and E the natural volume m-form associated with g; Le. if ( x i ,  ... ,x") is a local 
coordinate system then E = dx"" ... Adz"" = m ! m d x l A  ... Adxm. 
(%,,..e", is the totally skew Levi-Civita symbol, e,,,,,, = 1, Greek indexes are 
coordinate indexes and for the exterior product the convention compatible with 
2dx' A dzZ = d d  @ dx' - dzz c3 dx' is used. Abstract indexes will not be used 
in this paper.) 

Let L ( M )  be the linear frame bundle over M ;  {hi]: i = 1; ... ;m;  be the 
standard basis for E", i.e. 6; = (0, ... ,0, l i  ,O,. .. ,0) and 6 = 8'6, the canonical 
Rm-valued I-form on L ( M ) .  The metric g and the volume form E of A4 define a 
set of functions on L( M ) .  If, for example, UI = ( p ,  { E , ] )  E L( M); i.e. w is a basis 
{Ea} at TpM, then gab("') := gp(E,,Eb) and Eat , . , am( lu )  := E p ( E a , ,  ... , E , , ) .  

(-)q(m - ~)!62~;;,>,. 

n.."-..C..,A ...:..-- ^"A :.- :...-,:.....:..-- *,.- .L^ r^-A^. .  I :CL:... .."....A .̂̂ ..̂ .̂... ~-~ 

E b l  ... b.e,+ ,... e ~ - - One can define gab and E ' I - ~ ~  too, for which Ea I... *,er+ I... e, 

For any r = 0, 1,. . . , m let [12, 131 
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It is a tensorial (m - r) form on U M ) ,  transforming according to the rth exterior 
pawer of the contragredient representation of GL(m,R).  If r = 0 then this is just 
E := (1 /m!)E, ,,,, ._ee' A ... heC-,  while for r = m this is the function E a,", ~~. One 
can easily verify that 

Ob A %,...a, = ( _ ) F + l  b C a 2 4 .  (1.2.2) 

Let wab be a connection 1-form on L ( M )  compatible with the metric g. The 
structure equations for the torsion E" and curvature 2-form nab are 

E" = dea + wnb heb  

f l a b  = dwnb +U", Aweb.  

(1.2.3) 

(1.2.4) 

%en if index iowerinE and miring are defined by gab and gzb ,  e.g. wab f=  

the condition of metric compatibility is 

dgab = + who. 

This implies ds =,." ( 1 ~  - - e, _wec and, in general, 

dL,- ,* ,  =E" A =%&'a f (-)r+lrwa[a, A xa3-.o,]a. 
Because of the metric compatibility, nab := gaeReb = -nba. 

The first and the second Bianchi identities are 

dZ" = Rae A 9' - wae A S e  

d a u b  = Rae A w e &  - w a e  A R C b .  

In this formalism Einstein's tensor, Ci j  := R i j  - fR6j, is given by 

- $2.' A C i d b  = d i E j .  

The cumture tensor can be expressed by horizontal m-forms: 

Rob AC,, = R",,,C 

and hence so can both the Ricci tensor and the curvature scalar 

Rf; A Z S i  = iz.iz 

and 

(1.2.5) 

(1.26) 

(1.2.7) 

(1.2.8) 

(1.2.9) 

(1.2.10) 

,.I II . .\ 
(1.L.11) 

R E  = nab A Cab = d (w.* A E.,&) - wae Awe* A E,,, + U'' A Se A Cobe (1.212) 

respectively. Since the horizontal subspaces are ?n-dimensional and nab, 2 and 
Cabs  are all horizontal, 

d (nab A Em*) = S l a b  A Zc A Gabc = 0; (1.2.13) 
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ie. nab A E,, is closed. 
On L ( M )  {wab,BC} and {Dm",B(6,)} form a dual basis, where D," is 

the fundamental vector field associated with the element emn of the Weyl basis 
of g l (m,R)  and 5 ( 6 , )  is the kth standard horizontal vector field. Thus any vector 
field X on L ( M )  has a unique decomposition X = ( h X ) e 5 ( 6 , )  + ( v X ) " ~ D * ~ .  
Using (1.25) and (1.28), the Lie derivative of a'." along X takes the form 

LXnab = d(Lxaab) - L ~ S ~ ~ ~  A w b e  + ixClbe A d e  - ( v X ) ~ ~ S ~ ~ *  + ( v X ) ~ ~ ~ ' ~  
(1.214) 

and, using (12.6). the Lie derivative of C a b  is 

Here D ( / z X ) ~  := d(hX)e+we,(hX)f  is the so-called covariant exterior derivative 
of ( I L X ) ~ .  Finally, using (1.213), one has 

Lx(Clab A X a b )  = D( h X ) e  A n a b  A X e e b  +d( iX nab A X a b )  + ( hX)e.Q2'"b AEcAXeabc .  
(1.216) 

For torsion-free connections the last term vanishes and, by virtue of (1.213), the first 
term on the right becomes an exact form. 

A local section s : U + L ( M )  is a field of basis vectors {Ea} on U. (More 
precisely, the vector E, at p E U is the element +)(a,) of the vector bundle T( M), 
associated with s ( p )  E L ( M )  and 6, E Rm.) The pull back s * ( P )  is a field of 
basis 1-forms on U, dual to the vector basis. The structure coefficients of the section 
is the collection { c ; ~ }  of functions defined on U by [E, ,E, ]  = c;,E,. s is called 
the coordinate or holonomic section if there is a coordinate system ( X I ,  ... ,xm) 
on U such that E, = a/8xa, a = 1 ,... ,m,  and then s ' ( tJa )  = dz". s is a 
coordinate section iff c:, = 0. s is called rigid or anholonomic with respect to 
the metric g if for the pull backs 29" := s * ( P )  and for some constant matrix 
vab we have g = 29" @ 29*vab. The pull back s ' (uab)  is-a gl(m,R)-valued 1- 
form on U, thus it can be expressed in the naturally defined basis of 1-forms 
{ s * ( P ) } :  s*(uab) =: w;bs*(Or). If s is a coordinate section then for torsion- 
free connections I';b, defined by s ' ( ~ ~ ~ )  =: r;bdzp, are the usual Christoffel 
symbols; while if s is a rigid section then T;~, defined by s * ( w a b )  =: -&,29?, are 
the Ria5 rotation coefficients and -$& = -y ; ,qebqfa .  For torsion-free connections 
y;b = + q a C c 6 q f b  + qocc!bq,r) and c ; ~  = yrb - y&. mice the pull back of 
the curvature form is just the curvature tensor: 2s'(nab) = RubrssL(BP) A s ' ( P ) ,  
and the pull back s*( E) is l/m! times the wlume form E on M. 

For torsion-free connections and n > 0 let us define the following m-forms on 
L(h5f): 

(1.2.17) 1 AH := -aab A E,, 
2 K  

(1.218) 
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Because of (1.213) both A H  and AE are closed. If s : U L ( M )  is any local 
section then s * ( A H )  is ( l / m ! ) ~  times the Hilbert Lagrangian. It is given in the 
holonomic/anholonomic description if s is a holonomic/anholonomic section. Since 
the pull backs of d(wabACab) give the total divergences left from Hilbert's Lagrangian 
to obtain the familiar first-order ones, the pull back of A E  along a holonomic 
section gives Einstein's Lagrangian [4, 5]  LhE: s*(AE)  = ( l / m ) & s * ( C ) ;  
while for anholonomic s it is the first order Moller-Nester Lagrangian [6, 7j LaE: 
s * ( M  = ( l /Vm4Es*(E) .  

2. Sparling's form and the energy-momentum pseudotensors 

Let us define the Nester-Witten form [14, 151 as 

o - - i w G b ; , x .  
i .- 2 $ab' (2.ij 

This form is an R"'-valued pseudotensorial (m-Z)-form on L( M) which transforms 
according to the contragredient representation of GL(m,R) .  (Thus for the 
dimension of M we necessarily have m >, 3.) The terms in its exterior derivative can 
naturally be grouped as 

du; = -lQab 2 A C i o b  + &Ec Aw" A Ciabc + ti (22)  

where 

t ,  * .  .= 2 ( w e j  Amab A E,,, + de Awe' A Ejab) (23) 

is Sparling's (m - 1)-form [12, 131. What is interesting here is the structure of 
the right-hand side of equation (2.2),~the Sparling equation: the curvature appears 
through the Enstein tensor, which is the only horizontal term on the right, the 
second term is linear and the third is quadratic in the connection form. Thus ti is 
only pseudotensorial, transforming according to the contragedient representation of 
GL(m,R). It might be interesting to note that the covariant exterior derivative Dui 
of ui is just the first term on the right of (22), thus for torsion-free connections the 
Sparling form is the 'correction' to du; to become the tensorial Dui. The importance 
of U; and t i  in general relativity is shown by the following theorem, due to Sparling 
[I21 for the vacuum case and Dubois-Violette and Madore [ I 4  for the general case: 

Theorem 21. For any R"-valued horizontal (m - 1) form Ti satislying DT, := 
dTi - wei A T, = ~ O  and K. E R the following statements are equivalent: 

(1) wab is torsion free, Ea = 0, and $.flab A C i D b  + &Ti = 0; 
(2) K.~G + t i  = dui; and 
(3) d(tcTi +ti) = 0. 

This theorem gives an alternative formulation of Einstein's theory: a metric 
connection on L ( M )  is torsion free and satisfies Einstein's equations with matter 
energy-momentum tensor T j j ,  defined by Ti =: T J , C j ,  iff the Sparling and the 
Nester-Witten forms satisfy condition (2); which is equivalent to the Sparling form 
satisfying condition (3). In Einstein's theory (3) looks like as a conservation equation, 
while (2) gives us the 'superpotential' for the conserved quantity .xTi + t i :  it is just 
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the Nester-Witten form. But since these quantities are defined in L( M) instead 
of M, and, moreover t i  and U; are only pseudotensorial forms, exterior equations 
(2) and (3) yield equations in M only if we pull them back along a local section 
of L ( M ) .  In fact, Frauendiener [16] calculated the pull back of U; and dui along 
a coordinate section of L ( M )  by means of which he could show that s*(ii) is 
essentially Einstein's canonical energy-momentum pseudotensor; moreover the pull 
back of the contravariant form of Sparling's form was identified as the Landau- 
I :<"(.:+.. ..oa.*A,.,a..e,.* U,.... a.-* .,,- ",w...lA "IC" 1:1,- m -*,..,ar anPrml ...nmnnr..". 
-,"U y"'""uLr"uL.  1 1 U W r v r l )  nr W U Y I "  "U "a- w IC-"'. 'L'C'EJ-L.Lu""L1L"L" 

pseudotensors in the rigid basis or anholonomic formulation of general relativity. 
Thus we calculate the pull backs first along a general section and then specialize 
s to be a coordinate and then a rigid section. This will be done in the following 
paragraph. One can also take the contravariant and dual forms of the Nester-Witten 
and Sparling forms, whose pull backs will be considered in sections 2 2  and 2.3. 
It turns out that the pull back of the contravariant form of Sparling's form yields 
Bergmann's pseudotensor, while the pull back of the dual form of Sparling's form 
gives the Landau-Lifshitz pseudotensor. 

21. The canonical energy-niomenfum pseudotensors 

The pull back of the Nester-Witten form along a general section s : U + L( M )  is 

s ' (u j )  = -; (wieg  La ble t 6pw,,gra L 61 - 6; La g ble wve) t s'(Eab). (2.1.1) 

If (z@) = (d, ... ,z") is a local coordinate system on U and s is the corresponding 
coordinate section then E," = 6g (and hence there is no difference between the 
Greek and Latin indexes), = rPrbl and 

(2.1.2) 

Here Uiab is the well known von Freud superpotential, which can also be given as 
upa@ = (I!,/i;;io~.a..(liolGa"PV!, " l-,-Llr ".,", Ga@O" := g a o p  - p ' g p p  14: 51. If s is a 
rigid section on U then = -& and 

s'(ui) = $ E ~ V p a B s * ( C a o )  (21.3) 

where vFpp is the fensorial superpotential of Moller [6] and Goldberg [SI. Thus the 

relativity. 
Now consider the pull backs of condition (2) of theorem 2.1, Le. Sparling's 

equation in general relativity. Since Ti is horizontal it has the form Tj,Cj, and 
hence s * ( q )  = Tjis'(Cj) is independent of the section s. If for brevity uiab is 
defined by s* (u i )  =: ui'*s*(Cab) then 

CoEpme!!E 0.F the p"! bzrcks of ?it?; 1'P the dUI! af ce??2i!! sy?erpotc!?ti2!S of ge!?.n! 
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The pull back of Sparling's form along a general section s is 

S"(t i )  = -;p&&w;* -w:kwfs)grs  +g'k wskw:i * - g j k  W,kWZ,  ! - W:i":sg- 

- w;;w:,g'3 + w:kwfsgra t w j  kr W k .  s t g  7.s 

+(U:; - W$wrsS k v* +(ai", - w;)w:&pJ)s*(Cj) .  (2.1.5) 

If s is a coordinate section then 

s ' ( t ; )  = K E t j i S ' ( C j )  (2.1.6) 

where 

k Emstein's canonical energy-momentum pseudotensor [4, 51, and s*(dui) = 
(1/2fl)aa Uija s*(Zj). Thus the pull back of Sparling's equation along a 
coordinate section is equivalent to the von Freud equation ~ f l ( T " ,  + = 
la ,  U, 1161. If s is a rigid section then 

where 

(21.7) 

is the canonical energy-momentum pseudotensor in the anholonomic description [S, 
6, 81 and AEf3"p is the gravitational energy-momentum femor defined in [S] by 

(2.1.8) 1 A E e ~ p  := sEtaB - -rp v 
2n @* p 

and satisfying 

Gap t = &VI,VBop. (2.1.9) 

Thus although s * ( t i )  for a rigid section is Icnsonal, it deviates from the naturally 
defined gravitational energy-momentum (pseudo) tensors. Therefore the various 
energy-momentum expressions are not simply pull backs of a single geometric object, 
e.g. t i ,  along various sections. However, s ' (dni )  = ~ V p ( E ~ V , Y P ) ~ * ( Z . u ) ,  thus 
the pull back of Sparling's equation along a rigid section is equivalent to the 
superpotential equation (2.1.9). 

Finally, the pull backs of the 'conservation equation' (3) of theorem 2.1 are 
just the (pseudo) divergence equations: 8, (m(Gep + = 0 and 
v, (P, t ' c A E B p P )  = 0, respectively. 
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22 The contravariant form of the canonical pseudotensors 

The contravariant form of the Nester-Witten form will be defined by ui := g'juj; 
and clearly its pull backs along coordinate and rigid sections give the contravariant 
form of the von Freud and the M@ller-Goldberg superpotentials: g@p U, and 
g @ p  V, respectively. 

In Einstein's theory the exterior derivative of ui is the sum of the horizontal 
( m  - 1) form K T ~  := Kg'jT, and terms quadratic in the connection forms: 

dui = dgij A uj + g'jdu, = KT' + 0' (2.2.1) 

where 

.. 
0' := t' - (U'' + w J ' )  A u j .  (2.2.2) 

The pull back of dui along a general section is 

s'(du') = s*(duj)gji  - 2 (wi8gsj + wisgsi) ujres'(Ce) (2.23) 

while iffor brevity T J ;  is defined by s * ( t i )  =: d ; s * ( C , )  then 

$*(e') = (TekSk i  -2(W;,g'J +bJ~,gS')Ujre)S*(C,). (2.2.4) 

If s is a coordinate section then 

(22.5) 

where 

is the contravariant form of Einstein's energy-momentum (i.e. Bergmann's) 
pseudotensor; and the pull back of (221) gives the superpotential equation for 

L' 5 i-;gi(j s e a ~ o ~  ;bel? 

a*(@') = s*( t , )qe '  = (n,Be@t9$ + ~ V , " ' V P E ~ q k i ) s * ( C , ) .  (2.2.6) 

Thus s'(O'), which is fensorial again, deviates from K,B*@O$S*(C ) while the 
pull back of (2.21) gives the contravariant form of (2.1.9). (One a n  lntroduce the 
contravariant form too, which is only pseudotensorial and not to be 
confused with the fensorial ,e*@ defined in the previous paragraph.) 

P '  

of 
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23. The dual form of the canonical pseudotensors 

Let us define the dual form of the Nester-Witten form by 

._ 
%,-e," -- ue%ez..e, 

%-.em - C2"& + @ez...e", 

and let Tez-,e, := TC~ee2,. ,en. Then 

- 
where 

(2.3.1) 

(2.3.2) 

:= (t' + ( g C f w k k  -we' - w l e )  A U , 1 Eee2...e,. (2.3.3) 

Now we are interested only in coordinate sections, when the pull back of u ~ ~ , , , ~ ,  is 

and hence 

Since the puii back of duel-,_ is the double dual of the symmetric object defining 
the Landau-Lifshitz pseudotensor 1171, 

1 
I C ~ ~ " @  + G"@ := -8 B (I IGaJ'fll') 

2191 @ " 
one may expect that the pull back of @e2,,.em is just the double dual of the Landau- 
Lifshitz pseudotensor. In fact, the pull back of (2.3.3) along a coordinate section 
is 

s * ( @ e z . . . e J  = ~CU.t feEee2*.CnS*(E, ) .  (2.3.6) 

One can take various forms of the Nester-Witten form and hence the Sparling 
equation, and one can then pull them back along various local sections of L ( M ) ,  
yielding different superpotentials and pseudotensors. However, the mathematical 
content of all these quantities and equations is the same: the sum of the 'Einstein 
(m - 1) form' -$lab A Cia* and the Sparling form ti is exact, it is the exterior 
derivative of the Nester-Witten form. From a physical point of view, however, these 
may differ in significance: for example if Iffl is any vector field satisfying B,,If@, = 0 
then for the Landau-Lifshitz pseudotensor we have 
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What is (globally) conserved here is therefore the integral 

for an ( m  - 1)dimensional submanifold. However this is not the energy-momentum 
of the matter + gravity system even if a, Ka = 0, since we have an extra fi 
coefficient not only in front of the gravitational part, but in front of the matter part 
also. If the extra factor were in front of the gravitational term only but the 
matter term had the right coefficient then the matter part could be interpreted, for 
example, as energy-momentum or angular momentum and, in contrast to the strange 
feature of the gravitational part, would suggest the interpretation of the gravitational 
part also. The result would be surprising but acceptable [IS]. The extra in 
front of the matter part, however, plays the role of a wordinate-dependent weight 
function and destroys the clear interpretation of its integral. Thus it is hard to 
interpret these conserved quantities, in contrast e.g. to the integral of the Noether 
currents built up from m e p p  and m u p a @  below [SI. Moreover if K is a Killing 
vector of the geometry then, in general, the pseudocurrent lgl ( P a  + ~ ~ t @ )  I<@ 
is not the sum of separately conserved (pseudo) currents, which could be expected 
on physical grounds, while the Noether currents just mentioned are. Perhaps the 
Landau-Lifshitz pseudocurrents above should be completed by spin parts, but, since 
the Landau-Lifshitz pseudotensor is not a canonical pseudotensor, it is not a priori 
clear how these spin parts should be defined. In the next two sections we return 
to this question and construct the missing spin part and discuss the Landau-Lifshitz 
pseudotensor further. 

3. The canonical Noether current 

Since only the energy-momentum pseudotensors of the holonomic description are 
seen to be recoverable from (various forms of) Sparling's form and the (pseudo) 
tensors of the anholonomic description systematically deviate from the pull backs of 
Sparling's form, one might be slightly frustrated and dissatisfied. Recall, however, that 
in the classical Lagrangian theory of matter fields, instead of the canonical energy- 
momentum tensor, it is the canonical Noether current, associated with a vector field 
on the spacetime, that has direct physical meaning. This Lagrangian scenario can 
also be applied for general relativity and one can construct the so-called canonical 
Noether (pseudo) currents as well [SI. 

Here we first show that there is a real valued (m-1) form on L ( M ) ,  the Noether 
form, whose pull backs are the corresponding canonical Noether (pseudo) currents 
of gravity even if the local section is rigid. Then the dual form of the Noether form 
will be introduced, whose pull back tells us how to define the 'canonical Noether 
pseudocurrent' for the non-canonical Landau-Lifshitz pseudotensor. Finally, an even 
less pragmatic section follows, where we show that the Noether form is just the 
canonical Noether current in the sense of the scenario of the Lagrangian field theory 
on L ( M ) .  

3.1. The Noelher form on L( M) 
Let K be any vector field on M and {K"} be the collection of functions on L ( M )  
defined by K: if w = ( p , { E , } )  E L ( M )  then let ICd(w) be the ath component of 
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K in the basis {Ea} at T M. (In the language of Kobayashi and Nomizu [Ill { Ka) 
is a zero form on L ( M 5  of type (Rm,GL(m,R)).) Thus LDm,.Ka = 6,hK,,,. 
K is a anformal Killing vector on M iff LB(6sj15 + LF:B!6.,Ka = @gab for some 
GL(m, @-invariant function @ on L ( A 4 ) ;  and K IS a K~lling vector 8 4 = 0. 

The gravitational Noether form, associated with K ,  is defined by 

C [ K ]  : = t ,  K" + dK" A U, = 0' ICa + dKa A U" 
{XLij 

= (0" + U' E A U') ICa + DK, A U'. 

Then trivially 

C [ K ]  + nT'Ka =d(Kaua)  

implying d( C [ K ]  + nT" K,) = 0. Because of 

(3.1.2) 

dC[K] = -K(dh'* A T" + IiradTa) = - K T ~ ~ D I C ~  A C, 

= - K L ~ ( ~ $ ~ T ~ ~ E  

and the symmetry Tab = T(Qb), implied by the symmetry of Einstein's tensor 
in absence of torsion, C[Kl and Ta K, are separately closed for Killing vectors. 
Fbr traceless matter energy-momentum tensor, T', = 0, they are closed even for 
conformal Killing vectors too. 

The pull back of C [ K ]  along a general local section of L ( M )  is 

If s is a coordinate section then 

s * ( ~ [ ~ ] )  = n(hEepz ' i<,  + E ~ f i o @ a o ~ ~ f l ) ~ * ( ~ p )  (3.1.4) 

which is just the canonical Noether pseudocurrent in the holonomic description: 

,Cp[K] : = hEi?*"KY + ( h E ~ P [ m R I  + E u o ~ f i ]  +hEuR[oP1)i3,Kfl 

= hEe*vI\.y + hEu'a@aoI<R 

where hEufio@ = - ( l / k & i ) g @ P  U, 
spin pseudotensor, satisfying the 

is the antravariant form of the canonical 

algebraic BelinfanteRosenfeld-type equation. If s is a rigid section then 

s * ( ~ [ ~ ~ )  = K(AEe*ulCy + m n * ~ ~ v , ~ ~ R ) s * ( c p )  (3.1.5) 
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which gives the canonical Noether current of the anholonomic description: 

A E ~ ~ ~ ~ ~  : = A E e P ” i c v  + ( m u p [ - ~ ~  + AEu-vp~ + A E u ~ [ - p ~  V ~ K ~  ) 
= A E e P V K ,  + A E m p p f l v u l i @ .  

Here 
tensor and satisfies the pair of tensorial BelinfanteRosenfeld-type equations [8]: 

= - ( 1 / 2 ~ ) g p p  v, “ p  is the contravariant form of the canonical spin 

,@[.PI = -7, AEuPI-@I 

V u A E B w p  = -R’ ”a@ A E ~ ” p p ~  

Thus although the pull backs of ti and 0‘ along rigid sections are not exactly 
,Bnpt9:Ef and AEBapt9:t9$, respectively, the pull backs of the Noether form 
are always the Noether (pseudo) currents. The Noether form therefore seems to 
be the geometric object on L( M) which, with appropriately chosen vector fields K, 
describes the momentum-angular momentum distribution of gravity. 

Integrating a pull back of (3.1.2) for an (m - 1)-dimensional submanifold with 
boundary one obtains the so-called ‘global conservation equations’. 

3.2. The dual foim of h e  Noether form 
1 ~r ~~ ~ define 
field K on M: 

foiiowhg A”E”~vdiued im - i j  form on i(,t,;j for any v e ~ o f  

A simple consequence of the definitions and (3.1.2) is 

One can think of equation (3.2.2) as the dual form of (3.1.2), and it is, in fact, 
equivalent to (3.1.2). We saw in the previous section that the Landau-Lifshitz 
pseudotensor can be recovered as a pull back of the dual form of Sparling’s form 
a!ong 2 c=c:C!ixnte sectias. %as It r igst  a!sa be W m t :  caxside:isg the pu!! b2ck af 
ce,,,,e,”l~l. It is 

ms*(ce,F.em[K1) = KEe,...e,“ (LLte’lef + h E u e o b a , z l , i b ) s * ( E e ) .  (3.2.3) 

Since the Landau-Lifshitz pseudotensor is not a canonical one we cannot a priori use 
the Lagrangian scenario to construct the conserved pseudocurrent. Equation (3.23), 
however, suggests a way of defining the gravitational pseudocurrent in the Landau- 
Lifsbitz approach: although u t p p  is not canonical, the pseudocurrent is similar to 
that of the canonical pseudotensors: 

u ~ e [ ~ ~  := u t f i v ~ c , ,  + ( h E u h + @ I  + Eflp[@pI + , , E u @ [ * ~ I  d,ri ) .  0 

= LLt~”Ic”  + hEu’-flaulIcp. (3.24) 

also plays the role of the spin pseudotensor in the Landau- One can see that 
Lifshitz case. 
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3.3. The Noether form as the canonical Noether currenl 

The introduction of the Sparling and Noether forms in the previous section is 
somewhat heuristic as it is based on the fortunate fact that the cumture only appears 
in the exterior derivative of ui through the Einstein tensor. Furthermore the fact 
that they are closely related to the gravitational energy-momentum and the canonical 
Noether (pseudo) current is justified a posteriori, calculating their pull backs. Thus 
this way of justification is shown by the following diagram: 

AE 
I 

-? --* CWl 
I 

pull back s' 
1 

pull back s' 
1 

E C P  [KI I 2  n 'a. --t - LE * 
the puii 'oa& Of cjKj & ihe canonimi ju'oeiher i-urreni derived, 
according to the Lagrangian scenario, from the Lagrangian LE, which is the pull 
back of AB One might therefore claim to have a Lagrangian scenario in L( M) to 
clarify the role of the various differential forms on L( M )  and to give a gauge (i.e. 
local section) independent verification that C[K]  is, in fact, the canonical Noether 
current. - Althniirrh -_ ..-- ~..  t_h.e derivation of Ensrein's quation on L ( M )  h not needed in what 
follows, for the sake of completeness and the beauty of the calculation we first 
consider it. 

Let g(t) be a smooth one-parameter family of metria of signature p - g, 
t E ( - T , T )  for some T > 0, such that g(0) = g and g n b ( l )  be the corresponding 
functions on L ( M ) .  (gab(t) is a 'one-parameter deformation of gab'.) I€ the dot 
denotes the differentiation with respect to t at t = 0, eg. gab := ((d/dt)g,b(t))t,o, 
'the first variation of gob determined by the deformation gab(l)', then 

c a b  = qgPsbrrCab 

and 

ha, = d(d"a) f hae A Web f W a c  A h e b .  

Thus, using (1.2.6) and (1.2.11)-(1.2.12), one has 

2~11, = (nub A C a b ) ' =  -Gob' gabC + d(dnegeb  A X a b )  (3.3.1) 

and 

2xAE = -GabgabC + d((weaglb A E,, - fgabwcf  A (3.3.2) 

Therefore the variation of both A H  and A E  yields the 'Einstein m-form' CQbC and 
some exact form. If one wants to recover the field equations on M then a local 
section s : U 3 L( M) and, in general, a one-parameter family of its deformations 
~ ( t )  should be considered. For each fixed p E (I s ( p , l )  is a (not necessariliy non- 
degenerate) curve in L ( M )  and hence in a neighbourhood of s ( U )  in L ( M )  it 
defines a vertical vector field V pointwise as the tangents of these curves. Thus 
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if A is either AH or AE then, using dA = 0, (s*(A))'  = s'(A) + s*(LvA)  = 
s*(A) + ds* ( L ~ A )  = -(1/2n)Gnbgabs*(C)+ exact m-form on U; consequently 
the functional derivative of the action functional ID[s,s'g] := sD s*(A), D C U, is 
-( 1/2n) times the Einstein tensor. For coordinate sections one can choose V = 0, 
but for rigid sections V is determined by gab up to a combination of the fundamental 
vector fields associated with the elements of so (p ,  q )  c gi(m,R). 

Recall that the canonical Noether current on the spacetime, associated with a 
vector field K on M, is introduced through the so-called Noether identity. Thus 
it would be natural to look for the Noether-like identity on L ( M )  only for the 
horizontal tiff of K. However, the alculations can easily be carried out even for 
a general vector field X on L ( M ) ,  furthermore a special choice for the vertical 
component u X  of X we will obtain an interesting relation to Komar's superpotential, 
we work with a general X and specify h X  and uX at the final stage of the 
calculations. 

Because of (1.2.16) and dAE = 0 one has ('Noether identity on L ( M )  for the 
Lagrangian AE and vector field X') 

;D(/LX)~ A flab A Ceab = nLxAE - id L ~ R ~ ~  AX,, - Lx(wLb A E,,)) ' (  (3.3.3) 
= d(nLxAE - ~ L ~ ~ R ~ ~  A E,, + i L X ( w a b  A C a b ) ) .  

The canonical Noether current, which is, by definition, the ( m  - 1)-form in the large 
brace on the right, is 

I C L ~ A ~  - f ~ ~ n ~ *  A C a b  + f~~ (flab A E,, f de Awe' A Cab) 

+ id((vX)DbC,b - (hX)ewab A Ceab) 

= i (hX)e f l ab  ACeab + d((hX)'u,) + $d((VX)"bC,b). (3.3.4) 

If therefore X is chosen to be the horizontal lift of K: = ICe and ( u X )  = 0, 
then by the Einstein equations and (3.1.2) this is just the Noether form C [ K ] .  If, 
however, (vX)', is chosen to be V , I P  then the last term on the right of (3.3.4) 
does not vanish and is just Komar's identically conserved horizontal (ie. tensorial) 
expression ;V,(VaKb-VbfP)E, , .  The canonical Noether current for A E  associated 
with X = KcL?(6,)+VbfCa De6 is therefore the sum of the non-horizontal Noether 
form, being connected to the horizontal part of X (i.e. to displacements on M), and 
Komar's horizontal, identically conserved current, being connected to the vertical 
part of X (Le. to the element V b I P  of the Lie algebra g l (m,R) ,  defined by the 
dkplacement). 

A similar analysis for AH yields 

which is nothing but the identity -V,IC,G"* = -V,(Ga*fCb) in the language of 
bundle connections. 
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4. The Belinfante-Rosenfeld equations on Z ( M )  

The results of the previous two sections suggest to consider Sparling's form and the 
Nester-Witten form as the energy-momentum ( m  - 1) form and the corresponding 
superpotential, being an ( m  - 2) form, on L ( h l ) .  The canonical Noether current 
of the classical Lagrangian theory of matter fields is built up not only from the 
canonical energy-momentum tensor, but the spin tensor too. Similarly, to build 
up the gravitationai canonicai Koetner ipseuaoj current both the canonicai energy- 
momentum and spin (pseudo) tensors are needed. Thus, recalling the structure of 
the Noether form C [ K ] ,  the Nester-Witten form plays the role of the spin form too. 

However, the most important characteristic feature of the contravariant form 
of these canonical (pseudo) tensors is the pair of Belinfante-Rosenfeld equations 
for them, and that their Belinfante-Rosenfeld combination is gauge invariant and 

expect to have an exterior differential equation on L( M) whose pull backs are just 
the Belinfante-Rosenfeld equations on the spacetime. 

Such an exterior differential equation can be derived only if the energy- 
momentum is represented by an m form and the spin by an ( m  - 1) form on 
L( M). It turns out that the energy-momentum and spin can, in fact, be represented 
by not only ( m  - 1) and ( m  - 2) forms, respectively, but m and (7n - 1) forms, 
respectively, as well. These forms will be studied in the next two sections. Finally we 
return to the discussion of the Landau-Lifshitz pseudotensors and it will be indicated 
that the differential geometric formalism implies additional strange properties of the 
Landau-Lifshitz pseudotensors. 

4.1. nte energy-momentum m and spin (m - 1) forms M L( M )  

The quantities in the Behfante-Rosenfeld equations on the spacetime have two free 
indexes, thus the spin form would have two free indexes too. Since the spin (pseudo) 
tensors are three index quantities and we would like to recover them as the duals of 
the components of the pull backs (as in the case of Sparling's form), the spin form 
must be an ( m -  1) form. Similarly, the enera-momentum form must be an m-form. 
Clearly, the spin form must be a linear, while the energy-momentum m-form be a 
quadratic expression of the connection form. 

i n A o n n n A ~ n r  m f  tntnl Imnrrl;nstrr\ Ak,.-m+nror ~ r l A o r l  m the I onrnnninn T k i m  wn m i i r  Y.'-Y.,.."-.L. "* .".". \WY."Y.Y'-, .....-.b"..IW ..I"-' - ...- LY6."..b."..' ..,- -" ... ", 

First consider the spin form, which we define as 

This is a gl(m,R)-vdued pseudotensorial ( m  - 1)-form on L ( M )  of type 
adGL(m,R).  (Although s i j  is well defined for m > 2, the second equality holds 
only if ui defined; i.e. if m > 3.) It is interesting that, apart from numerical factors, 
its trace sti  is just the ( m  - 1)-form (1/26)wab A C o b  whose exterior derivative has 
been dropped from A H  to obtain A,. If 2' = 0 then the pull back of s j i  and (4.1.1) 
d c ~ g  2 cimriiiizte seciioii is 

s * ( s J i )  = ' c ~ ~ s ~ J ~ s * ( C , )  = - ( - U i J e  1 + i j r f ( m d k e e l g k i ) ) s * ( C , )  (4.1.2) 
2m 
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where 

is the canonical spin pseudotensor for Einstein’s Lagrangian LE. If s is a rigid 
section then 

S*(Sj; )  = K & S ” p t ? L @ S * ( c  Ir ) = - ~ V p a P d ~ @ S * ( C , )  (4.1.3) 

where 

is the canonical spin fenscv in the anholonomic description [SI. Since hEs’olS is not 
antisymmetric in p and a these canonical spin (pseudo) tensors cannot be recovered 
from a single Rm*-valued ( m  - 2) form on L( M) as the duals of the pull backs. 

For a moment let us consider general, not necessarily torsion-free metric 
connections. Then using the definitions and the formulae of section 1.2 we have 

--us’;= ; i ( ~ ~ + ~ , ~ ’ ) ~ + + t ” - i \ w - -  I , , +  - i \ -  I - *  nh A ( a ; a a b c  f c i n  t ~ ~ ~ ; , , t g ~ ~ a . ’ . ~ ~ )  I =i -  ”i + t j i  

= - df3j A ui 4- 0’ A dui + i d ( 2 ‘ A  Cjic) (4.1.4) 

where 

t i j  := - 4 ( 6 j w a . , A w e b A  E,, + w a j  A (wb’ - wJb)  A E,, +wa,A (we’ A C i a )  

= 9 j  A t i  + w j e  ABe Aui.  (4.1.5) 

The following theorem shows that the Einstein theory, up to an unspecified 
cosmological constant, can also he characterized by tj; and sji. 

Theorem 4.1.1. Let T, = Tj,Cj  be any horizontal Rm*-valued ( m  - 1)-form on 

statements are equivalent: 
q’$;j, jiitki)iiiig ET, := dTi -wei;\Te = 6 n: E xT Em f 2 &e f0;;owing 

(1) wab is torsion free, Ze = 0, and 3X E R such that GJi + A61 = tcTji; 
(2) ( n T j i  - X@)C + t i i  = -dsji; 
(3) d (nTj iC  + t j , )  = 0. 

proof. 
( I )  3 (2): If 

(2) -+ (3): Since d X  = 0, (3) is a direct consequence of (2). 
(3) -+ (1): First calculate the exterior derivative of t j ; .  After a simple but long 

= o then cj; = Gij and because of (4.1.4) statement (2) 
follows. 

calculation we arrive at 

- a t j i  _ .  = a=, A ‘6: - w b C )  A C,, + Z g ; e w b i  i\ E,, + 6: i W 6 j  - AX,, ( i t  

t (we’ +U”)  A C;<) f Se A (6{wa‘, A d b  A CGbe 

+ wai  A (wbj - w j b )  A CobE + wab A (U’’ 4- w j b )  A .Eiac). 
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Furthermore, because of the condition imposed on T;,  d(TJ iE)  = d(Bj  A T ; )  = 
d ATi - w J e A e e  ATi - AdTi = Ej A T ;  -TE;wje A C +  TJewC; A X ,  thus the 
condition (3) of tbe theorem takes the form 
- '  

0 = -2d(~.T'iC -+ t ';)  = -21& A Ti + 2 K ( T e ; W j e  - T i e w e ; )  A -Ut';. 
(4.1.6) 

Recall that {D,",B(6,)} and {wab,Be)  are dual, wab(D,") = 6&6; and 
Be(D,") = 0. Thus taking the interior product of (4.1.6) first with D," and with 
D," and then contracting in j and T and in m and s we obtain: 0 = ( 2 - m ) Z e A C i b e .  
For m f 2 this implies the vanishing of the torsion. Substituting Se = 0 back to 
(4.1.6) we have 

0 = 2(( R J ,  - nTJe) wei  - ( R e ;  - n T e i ) w j e )  A C. 

Taking its interior product with D," and contracting in n and i: 

This equation can be rewritten in the following form: 

m 
Gii - n T i i  = 

But then, because of the contracted (second) Bianchi identity and the differential 
0 

Although, as one can show by the Same technique, conditions (1) and (2) are 
equivalent for any f i e d ,  cg. zero, cosmological constant, and they imply condition 
(3), but the Einstein equation can be recovered from the 'conservation equation' (3) 
only up U, sonre, unspecified cosmological constant. Thus this theorem is a little bit 
weaker than the theorem of Sparling and Dubois-Violette and Madore. In the rest 
of this paper X = 0 and 

One can also calculate the pull backs of condition (2) of theorem 4.1.1, but the 
technique is the same as that used in section 2, thus only the results will be given. 
If s is a coordinate section then s * ( t j i )  = KhhEtjis*(C), while for a rigid section 
s * ( t j i )  = ( n G e a P O i E f  + 4 vPa" V , , ( d ~ E f ) ) s * ( X ) .  Thus iJi  seems to be 
the energy-momentum m-form on L( M), and the pull backs of condition (2) give 
the relation between the canonical energy-momentum and spin (pseudo) tensors: 
m(TaP + = t a p )  = - a , ( ~ , , s " * , )  for holonomic and Tou + * O N P  = 
-VpAEs"* a for anholonomic sections. 

4.2. The Belinfante-Rosenfeld equations 
First define 

condition imposed on Ti,  X must be constant. 

= 0 will be assumed. 

= eJ A 
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and recall that in (4.1.2) and (4.1.3) the pull backs s * ( s j i  - i d C j  i) were just the von 
Freud and M0ller-Goldberg superpotentials, respectively. But, as we noted in section 
3.1, they are the contravariant forms of the canonical spin (pseudo) tensors, thus 
s*(ujj) = K ~ u ~ ~ ~ s ' ( u , )  for holonomic and s*(oji)  = K ~ U P ~ ~ B ~ E ~ S ( Z ~ )  for 
anholonomic sections. Moreover, in the pull back (3.1.3) of the Noether form C [ K ]  
along a general section 0" A ub appeared as the spin term. Thus it is uji that should 
be considered as the contravariant form of the spin form. Its exterior derivative is 

. .  .. 
- ,juv = nTjix + 0'" (4.2.2) 

where 

gji := t j i  + (uk  + &) A oie, (4.23) 

iur. puli U W K  UL CY aiurig a WUIUIII~LG ~ C C U U I I  B s*(@ji) = nbEBjis'(Cj, 
ie. it gives the contravariant form of Einstein's canonical energy-momentum (i.e. 
Bergmann's) pseudotensor, while for a rigid section it deviates from 
However, the pull backs of the full equation (4.2.2) are just the relations between 
the antravariant form of the canonical (pseudo) tensors: -Z3p(flEufie@) = m(P@ + if s is a coordinate section, and -V, A E u p o @  = Tap + atla@ 
a s is a ~ $ 6  secthn. ?l.,us. :he actisyKKetric pa:: of (4.2.2) seem E be the 
differential geometric form of the algebraic Belinfante-Rosenfeld equation. Since 

If m > 3 then, however, Obi] is never zero, since Obi] = 0 would imply the 
contradiction (m - 2)C,, = 0, and hence ubi] is not a closed form. 

The Beliifante-Rosenfeld combination of the contravariant form of the canonical 
(pseudo) tensors is Einstein's tensor [SI: 

-- -...* L--,. -0 hii ^ a ^ _ ^  ^^^__I?_^.^ _^_I :-.. , 

4,,bi](D") = 3(gj[iCmnl - g j t ixmnl ) ,  obi1 and Qbil vanish in two dimensions. 

k b - g  $pc&m~_ g q e  h...vzriant ~ f l f l  ifidenendent ~f tcg! (coyjinate) r l i vernenr~~  

added to the Lagangian. Thus rewriting (4.22) in the form 01' + dvji  = -Gjij"c 
and recalling the antisymmetry bEupo@ = and A E u p a a  = A E u [ p a ] @  (4.22) 
can also be considered as the differential geometric form of the BelinfanteRosenfeld 
combination of the canonical pseudotensors hEBna and hEuJ'a@ and of the canonical 
tensors AEB@ and A E u p " @ .  

'lb obtain a 'global conservation equation' now a two-index tensor field with the 
corresponding function Arab on L( M )  and an ?n-dimensional submanifold D with 
boundary should be involved instead of a vector field ATa and an (m- 1)dimensional 
submanifold. Now 

-d(usnbK1.,) = -dK,,, A u a b  t Kab(Oub  + nTabC) 

-..-.a----- -..--... 

which is especially interesting for an antisymmetric IC,, generating a coordinate 
rotation. It describes how the (non-conserved) total spin of gravity varies as one 
passes from an (m - I)-dimensional submanifold to another being homologous to 
the previous one via D. 
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4.3. More on rhe Landau-Lifsh& pseudotensors 

For the sake of completeness, finally, let us consider the dual form of the spin form: 

UjC1& := uje%ct-.e,. (4.3.1) 

Then 

- dc1e2..,em = KTj.%...,C + @ J c I . . . c m  

Qje%.& ._ .- @ e  E ~ ~ ~ - . ~ m  k k A j e  E ~ ~ 2 , . . e m .  (4.3.3) 

(4.3.2) 

where Tjel.. .e, := T j e ~ e e 2 - , C n  and 

The pull back of uje2..,F- along a coordinate section is 

s * ( o J e , , , e , )  = -- 1 1  8 (IgIG"e')e,,,-,,_dp,,,.,_dXPz A . . .  Ador" 2 ( m - l ) !  f 

(4.3.4) 

and hence 

- s*(du'ez...cn) = - - ~ , ~ , ( ~ ~ ~ O " " ) ~ e , , , , , , ~ l  2 m! ,... lmdz'l A . . .  A d z ' " .  (4.3.5) 

Therefore the pull back ~ * ( @ j ~ ~ . , . ~ , )  must yield the Landau-Lifshitz pseudotensor 
again. In fact, it is 

so (Qj e2-.en) = ILtje EEe2.. .e,  a* (E 1 (4.3.6) 

1 1  

and therefore the pull back of (4.3.2) along a coordinate section is equivalent to 

- Ka,,(1g1hEu'"8) = Igl(G"@ + " u t a B ) .  (4.3.7) 

Thus := hEu"n@ also plays the role of the spin pseudorensor in the Landau- 
Lifshitz approach too, in accordance with the results of section 3.2. The symmetty of 
Gu@ and u t D P  implies aB()gIuulria@l) = 0, and hence the Belinfante-Rosenfeld 
combination of ,fa@ and LLu'"@ is also tensorial: 

IgILL1"@ + a,(Igl(LL."[*@' + LLoaJ@pI + L L L T @ [ q  

1 = IgILL@ + ap(lglLLu'(a@)) = --lglG"O. 
K 

The Landau-Lifshitz pseudocurrent (3.2.4) can be derived from a superpotential: 

U.CP[K] = --G'"K 1 + -a,(a,(lglG""@')~K,). 1 
K " 2 4 4  

Thus (g((IcuCPIKJ + GgL'K,) is always pseudoconserved, in contrast to 
)gl(nLLtPY -b GP")K,, considered in section 2.3. However, if K is a Killing vector 
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of the geometry then, in general, it is no! the sum of separately (pseudo) conserved 
gravitational and matter pseudocurrents either, .which could be expected on physical 
grounds (see the introduction). We have only 

0 = a f i ( I g I ( ~ ~ C p [ K l  + G”’IC,)) 

= lgl~G’”tKgpv + Kafi(lS71uce[KI) + IglG”YKyrf,p 

and hence the Landau-Lifshitz pseudocurrent is not pseudoconserved even for a 
Killing vector K. For vector fields satisfying a(=KP) = 0 the pseudocurrent 
I g I ( ~ ~ c f i [ K ]  + G’”K,,) is the sum of two separately pseudoconserved parts: 
the first, as we saw in section 23, is Igl(nuley + GfiY)K,; and the second is 
lgluufio@anKP. However, if Kv generates coordinate rotation then the second 
part is not zero. But accepting aj; to be the geometric object describing the 
spin distribution of gravity, which interpretation is suggested by the results of the 
previous sections and that the relation between mufie@ and ,Pp is the same that 
between e.g. hEufiu@ and the second term should be interpreted as the spin 
angular momentum. The spin and orbital angular momenta of gravity in the Landau- 
Lifshitz approach are therefore separately conserved. This strange behaviour, together 
with others mentioned above and at the end of section 23  may suggest to consider 
the Landau-Lifshitz pseudotensors aphysical, in contrast to the canonical (pseudo) 
tensors. 
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