Research Papers in Conference Proceedings:
20. L. Fehér,
Notes on the degenerate integrability of reduced systems obtained from the master
systems of free motion on cotangent bundles of compact Lie groups, pp.
309-330 in: Geometric Methods in
Physics XL, eds. P. Kielanowski et al (Birkhauser, 2024).
19. L. Fehér and I.
Marshall, On the bi-Hamiltonian structure of the trigonometric spin Ruijsenaars--Sutherland hierarchy, pp. 75-87 in: Geometric Methods in Physics XXXVIII,
eds.
P. Kielanowski et al (Birkhauser,
2020).
18. L.Fehér, An application of the
reduction method to Sutherland type many-body systems, pp. 109-117 in:
Geometric Methods in Physics XXXI, eds. P. Kielanowski
et al (Birkhauser, 2013).
17. L.Fehér and C. Klimcik,
The Ruijsenaars self-duality map as a mapping class symplectomorphism, pp. 423-437 in: Lie Theory and Its
Applications in Physics, IX International Workshop, ed. V. Dobrev (Springer,
2013).
16. L. Fehér, Dynamical
r-matrices and Poisson-Lie symmetries in the chiral WZNW model, JHEP
Proceedings, PoS(unesp2002)012 (2002).
15. L. Fehér and A. Gábor,
Interpretations and constructions of dynamical r-matrices, pp. 331-336,
in: Quantum Theory and Symmetries,
eds. E. Kapuscik et al (World Scientific, 2002).
14. L. Fehér and B.G.
Pusztai, Dynamical r-matrices on the affinizations of arbitrary self-dual Lie
algebras, Czech. J. Phys. 51, 1318-1324 (2001).
13. J. Balog, L. Fehér and
L. Palla, On the chiral WZNW phase space, exchange r-matrices and Poisson-Lie
groupoids, pp. 1-19, in: CRM Proceedings and Lectures Notes, 26, eds. J. Harnad et al (AMS, 2000).
12. F. Delduc,
L. Fehér and L. Gallot, Integrable hierarchies in the Drinfeld-Sokolov
approach, pp. 251-253, in: Proc. of the 5th Wigner Symposium, eds. P. Kasperkovitz et al (World Scientific, 1998).
11. L. Fehér, KdV type systems and W-algebras in the Drinfeld-Sokolov
approach, in: Proc. of the Marseille 1995 Conference on W-Symmetry, hep-th/9510001.
10. L. Fehér and I.
Tsutsui, Global aspects of the WZNW reduction to Toda theories, Prog. Theor.
Phys. Supplement 118, 173-190 (1995).
9. L. Fehér and I. Tsutsui,
Global aspects of the WZNW reduction to Liouville theory, pp. 483-486, in:
Group Theoretical Methods in Physics, eds. A. Arima et al (World Scientific,
1995).
8. L. Fehér, Generalized Drinfeld-Sokolov hierarchies and W-algebras, pp. 71-82, in:
Quantum Groups, Integrable Models and Statistical Systems, eds. J. LeTourneux et al (World Scientific, 1993).
7. L. Fehér, W-Algebras of
generalized Toda theories, pp. 255-272, in: A.D. Sakharov Memorial Lectures in
Physics, eds. L.V. Keldysh et al (Nova Science
Publishers, 1992).
6. J. Balog, L. Dabrowski
and L. Fehér, Nonstandard Quantum group in Toda and WZNW theories, pp. 279-293,
in: Nonperturbative Methods in Low Dimensional Quantum Field Theories, eds. G.
Domokos et al (World Scientific, 1991).
5. L. Fehér and P. A. Horváthy, Particle in a self-dual monopole field, pp.
130-137, in: Differential Geometric Methods in Theoretical Physics, ed. A. I.
Solomon (World Scientific, 1989).
4. L. Fehér, P. A. Horváthy and L. O'Raifeartaigh,
Dynamical (super-) symmetries of a self-dual monopole, pp. 525-529, in:
Symmetries in Science III, eds. B. Gruber et al (Plenum, 1989).
3. L. Fehér and P. A. Horváthy, Dynamical symmetry of the Kaluza-Klein monopole,
pp. 399-417, in: Symmetries in Science III, eds. B. Gruber et al (Plenum,
1989).
2. L. Fehér, Dynamical
symmetries of the Kaluza-Klein monopole, pp. 215-224, in: Relativity Today, ed.
Z. Perjés (World Scientific, 1988).
1. L. Fehér, Dynamical O(4) symmetry in long range monopole-test particle and
monopole-monopole interactions, pp. 15-38, in: Nonperturbative Methods in
Quantum Field Theory, eds. Z. Horváth et al (World Scientific, 1987).