Research Papers in Refereed Journals:
96. L. Fehér, On the maximal superintegrability
of strongly isochronous Hamiltonians, 2409.19349 (2024)
95. L. Fehér, Poisson-Lie analogues of spin Sutherland models revisited, J. Phys A: Math. Theor. 57, 205202 (45pp) (2024).
94. M. Fairon and L. Fehér, Integrable multi-Hamiltonian systems
from reduction of an extended quasi-Poisson double of U(n), Ann. Henri Poincaré 24,
3461-3529 (2023).
93. L. Fehér, Poisson reductions of master integrable systems on doubles of compact Lie groups, Ann. Henri Poincaré 24, 1823–1876 (2023).
92. L. Fehér and B.
Juhász, A
note on quadratic Poisson brackets on gl(n,R) related to Toda lattices, Lett. Math. Phys. 112:45 (2022).
91. L. Fehér, Bi-Hamiltonian
structure of Sutherland models coupled to two
90. L. Fehér, Bi-Hamiltonian structure of spin Sutherland
models: the holomorphic case, Ann. Henri Poincaré 22, 4063-4085 (2021).
89. M. Fairon and L. Fehér, A decoupling property of some Poisson
structures on Mat(n x d,C) x Mat(d x n,C) supporting GL(n,C) x GL(d,C) Poisson--Lie
symmetry, Journ. Math. Phys. 62, 033512 (2021).
88. M. Fairon, L. Fehér and I. Marshall, Trigonometric
real form of the spin RS model of Krichever and Zabrodin, Ann. Henri Poincaré 22,
615-675 (2021).
87. L. Fehér, Reduction of a bi-Hamiltonian hierarchy on T*U(n) to spin Ruijsenaars--Sutherland models, Lett. Math. Phys. 110, 1057-1079 (2020).
86. L. Fehér,
Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, Nonlinearity 32, 4377-4394 (2019).
85. L. Fehér,
Poisson-Lie analogues of spin Sutherland models, Nucl. Phys. B 949,
114807 (2019).
84. L. Fehér and I.
Marshall, Global description of action-angle duality for a Poisson-Lie
deformation of the trigonometric BC(n) Sutherland system, Annales Henri Poincaré 20, 1217–1262
(2019).
83. L. Fehér and I. Marshall, The action-angle
dual of an integrable Hamiltonian system of Ruijsenaars-Schneider-van
Diejen type, J. Phys. A: Math. Theor. 50, 314004 (20pp) (2017).
82. L. Fehér and T.F. Görbe, The full phase space
of a model in the Calogero-Ruijsenaars family, J. Geom. Phys. 115, 139-149
(2017).
81. L. Fehér and T.F. Görbe, Trigonometric and
elliptic Ruijsenaars-Schneider systems on the complex
projective space, Lett. Math. Phys. 106, 1429-1449 (2016).
80. L. Fehér and T.F. Görbe, On a Poisson-Lie
deformation of the BC(n) Sutherland system, Nucl.
Phys. B 901, 85-114 (2015).
79. T.F. Görbe and L. Fehér, Equivalence of two
sets of Hamiltonians associated with the rational BC(n) Ruijsenaars-Schneider-van
Diejen system, Phys. Lett. A 379, 2685-2689 (2015).
78. L. Fehér and B.G. Pusztai, Generalized spin Sutherland systems revisited, Nucl. Phys. B 893, 236-256 (2015).
77. L.
Fehér and T.F. Görbe, Duality between the trigonometric BC(n) Sutherland system
and a completed rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys. 55,
102704 (2014).
76. L.
Fehér and T.J. Kluck, New compact forms of the trigonometric Ruijsenaars-Schneider system, Nucl.
Phys. B 882, 97-127 (2014).
75. L.
Fehér, Action-angle map and duality for the open Toda lattice in the
perspective of Hamiltonian reduction, Phys. Lett. A 377, 2917-2921 (2013).
74. V. Ayadi, L. Fehér and T.F. Görbe, Superintegrability of rational Ruijsenaars-Schneider
systems and their action-angle duals, J. Geom. Symmetry Phys. 27, 27-44 (2012).
73. L. Fehér and C. Klimcik, On
the spectra of the quantized action variables of the compactified Ruijsenaars-Schneider system, Theor. Math. Phys. 171,
704-714 (2012).
72. L. Fehér and C. Klimcik,
Self-duality of the compactified Ruijsenaars-Schneider
system from quasi-Hamiltonian reduction, Nucl. Phys.
B 860, 464-515 (2012).
71. V. Ayadi and L. Fehér, An integrable BC(n) Sutherland
model with two types of particles, Journ. Math. Phys
52, 103506 (2011).
70. L. Fehér, C. Klimcik
and S. Ruijsenaars, A note on the Gauss decomposition
of the elliptic Cauchy matrix, J. Nonlin. Math. Phys.
18, 179-182 (2011).
69. L. Fehér and C. Klimcik,
Poisson-Lie interpretation of trigonometric Ruijsenaars
duality, Commun. Math. Phys. 301, 55–104
(2011).
68. L. Fehér and V. Ayadi, Trigonometric Sutherland systems and
their Ruijsenaars duals from symplectic
reduction, Journ. Math. Phys. 51, 103511 (2010).
67. L. Fehér and B.G. Pusztai, Derivations of the
trigonometric BC(n) Sutherland model by quantum Hamiltonian reduction,
Rev. Math. Phys. 22, 699-732 (2010).
66. V. Ayadi and L. Fehér, On the superintegrability
of the rational Ruijsenaars-Schneider model, Phys.
Lett. A 374, 1913–1916 (2010).
65. L. Fehér and C. Klimcik, On
the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models, J. Phys. A: Math. Theor.
42, 185202 (2009).
64. L. Fehér and C. Klimcik,
Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction, Lett. Math. Phys. 87,
125-138 (2009).
63. L. Fehér and B.G. Pusztai, Twisted spin Sutherland
models from quantum Hamiltonian reduction, J. Phys. A: Math. Theor. 41,
194009 (2008).
62. L. Fehér and B.G. Pusztai, On the self-adjointness of certain reduced Laplace-Beltrami operators,
Rep. Math. Phys. 61, 163-170 (2008).
61. L. Fehér and B.G. Pusztai, Hamiltonian reductions
of free particles under polar actions of compact Lie groups, Theor. Math. Phys.
155, 646-658 (2008).
60. L. Fehér and B.G. Pusztai, A class of Calogero
type reductions of free motion on a simple Lie group, Lett. Math. Phys.
79, 263-277 (2007).
59. L. Fehér and B.G. Pusztai, Spin Calogero models and dynamical r-matrices, Bulg. J. Phys. 33, 261-272 (2006).
58. L. Fehér and B.G. Pusztai, Spin Calogero models
associated with Riemannian symmetric spaces of negative curvature, Nucl. Phys. B 751, 436-458 (2006).
57. L. Fehér and B.G. Pusztai, Spin Calogero models obtained
from dynamical r-matrices and geodesic motion, Nucl.
Phys. B 734, 304-325 (2006).
56. L. Fehér, I. Tsutsui and T. Fülüp, Inequivalent quantizations
of the three-particle Calogero model constructed by separation of variables, Nucl. Phys. B 715, 713-757 (2005).
55. L Fehér, Poisson-Lie dynamical r-matrices
from Dirac reduction, Czech. Journ.
Phys., 54, 1265-1274 (2004).
54. L. Fehér and I. Marshall, The
non-Abelian momentum map for Poisson-Lie symmetries on the chiral WZNW phase
space, Int. Math. Res. Not., vol. 2004, no. 49, 2611-2636
(2004).
53. L. Fehér and B.G. Pusztai, Explicit
description of twisted Wakimoto realizations of
affine Lie algebras, Nucl.
Phys. B 674, 509-532 (2003).
52. L. Fehér and I. Marshall, Stability
analysis of some integrable Euler equations for SO(n), J. Nonlin.
Math. Phys. 10, 304-317 (2003).
51. L. Fehér and I. Marshall,
On a Poisson-Lie analogue of the classical dynamical Yang-Baxter
equation for self-dual Lie algebras, Lett. Math. Phys. 62, 51-62 (2002).
50. L. Fehér and A. Gábor, Adler-Kostant-Symes systems as Lagrangian
gauge theories, Phys. Lett. A 301, 58-64 (2002).
49. L. Fehér and B.G. Pusztai, Generalizations
of Felder's elliptic dynamical r-matrices associated with twisted loop algebras
of self-dual Lie algebras, Nucl. Phys. B 621, 622-642
(2002).
48. L. Fehér, Dynamical r-matrices and the chiral WZNW phase space,
Phys. Atomic Nuclei 65, no. 6, 1023-1027 (2002).
47. B.G. Pusztai and
L. Fehér, A note on a canonical dynamical r-matrix, J. Phys. A: Math. Gen. 34,
10949-10962 (2001).
46. L. Fehér, A. Gábor and B.G. Pusztai, On dynamical r-matrices obtained from Dirac reduction and
their generalizations to affine Lie algebras, J. Phys. A: Math. Gen. 34,
7235-7248 (2001).
45. J. Balog, L. Fehér and L. Palla, The chiral
WZNW phase space as a quasi-Poisson space, Phys. Lett. A 277, 107-114 (2000).
44. L. Fehér and B.G. Pusztai, The non-dynamical
r-matrices of the degenerate Calogero-Moser models, J. Phys. A: Math. Gen. 33,
7739-7759 (2000).
43. L. Fehér and B.G. Pusztai, On the classical r-matrix of the
degenerate Calogero-Moser models, Czech. J. Phys. 50, 59-65 (2000).
42. L. Fehér and A. Gábor, A note on the
appearance of self-dual Yang-Mills fields in integrable hierarchies, J. Nonlin. Math. Phys. 7, 423-432 (2000).
41. J. Balog, L. Fehér and L. Palla, Classical Wakimoto realizations of chiral WZNW Bloch waves, J. Phys.
A: Math. Gen. 33, 945-956 (2000).
40. J. Balog, L. Fehér and L. Palla, Chiral
extensions of the WZNW phase space, Poisson-Lie symmetries and groupoids, Nucl. Phys. B 568, 503-542 (2000).
39. J. Balog, L. Fehér and L. Palla, The chiral WZNW phase space and its Poisson-Lie
groupoid, Phys. Lett. B 463, 83-92 (1999).
38. L. Fehér, Wakimoto realizations of current
and exchange algebras, Czech. J. Phys. 48, 1325-1330 (1998).
37. F. Delduc, L.
Fehér and L. Gallot, Nonstandard Drinfeld-Sokolov
reduction, J. Phys. A: Math. Gen. 31, 5545-5563 (1998).
36. W. Eholzer, L.
Fehér and A. Honecker, Ghost systems: a vertex algebra point of view, Nucl. Phys. B 518, 669-688 (1998).
35. J. Balog, L. Fehér and L. Palla, Coadjoint orbits of the Virasoro algebra and
the global Liouville equation, Int. J. Mod. Phys. A 13, 315-362 (1998).
34. J. de Boer and L. Fehér, Wakimoto realizations of current algebras: an explicit
construction, Commun. Math. Phys. 189, 759-793
(1997).
33. L. Fehér and I. Marshall, Extended matrix
Gelfand-Dickey hierarchies: reduction to classical Lie algebras, J. Phys. A:
Math. Gen. 30, 5815-5824 (1997).
32. L. Fehér and I. Tsutsui, Regularization of
Toda lattices by Hamiltonian reduction, Jour. Geom. Phys. 21, 97-136 (1997).
31. L. Fehér and I. Marshall, Extensions of the
matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov
reduction, Commun.
Math. Phys. 183, 423-461 (1997).
30. J. de Boer and L. Fehér, An explicit
construction of Wakimoto realizations of current
algebras, Mod. Phys. Lett. 11, 1999-2011 (1996).
29. F. Delduc and L.
Fehér, Regular conjugacy classes in the Weyl group and integrable hierarchies, J. Phys. A: Math. Gen. 28, 5843-5882
(1995).
28. J. de Boer, L. Fehér and A. Honecker, A
class of W-algebras with infinitely generated classical limit, Nucl. Phys. B 420, 409-445 (1994).
27. L. Fehér, L. O'Raifeartaigh,
P. Ruelle and I. Tsutsui, On the completeness of the set of classical
W-algebras obtained from DS reduction, Commun. Math.
Phys. 162, 399-431 (1994).
26. L. Fehér, L. O'Raifeartaigh
and I. Tsutsui, The vacuum preserving Lie algebra of a
classical W-algebra, Phys. Lett. B 316, 275-281 (1993).
25. L. Fehér, J. Harnad
and I. Marshall, Generalized Drinfeld-Sokolov
reductions and KdV type hierarchies, Commun. Math. Phys. 154, 181-214 (1993).
24. L. Fehér, L. O'Raifeartaigh,
P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rep. 222, 1-64
(1992).
23. L. Fehér and I. Tsutsui, On the Lagrangian realization of the WZNW reductions, Phys. Lett.
B 294, 209-216 (1992).
22. L. Fehér, L. O'Raifeartaigh,
P. Ruelle and I. Tsutsui, Rational vs polynomial character of $W_n^l$-algebras, Phys. Lett. B 283, 243-251 (1992).
21. L. Fehér, L. O'Raifeartaigh,
P. Ruelle, I. Tsutsui and A. Wipf, Generalized Toda theories and W-algebras
associated with integral gradings, Ann. Phys. (N. Y.) 213, 1-20 (1992).
20. J. Balog, L. Dabrowski and L. Fehér, A new
quantum deformation of SL(3), Phys. Lett. B 257, 74-78
(1991).
19. J. Balog, L. Dabrowski and L. Fehér,
Classical r-matrix and exchange algebra in WZNW and Toda theories, Phys.
Lett. B 244, 227-234 (1990).
18. J. Balog, L. Fehér, L. O'Raifeartaigh,
P. Forgács and A. Wipf, Kac-Moody realization of W-algebras, Phys. Lett. B 244,
435-441 (1990).
17. J. Balog, L. Fehér, L. O'Raifeartaigh,
P. Forgács and A. Wipf, Toda theory and W-algebra from a gauged WZNW point of
view, Ann. Phys. (N. Y.) 203, 76-136 (1990).
16. B. Cordani, L. Fehér and P.A. Horváthy, Kepler-type dynamical symmetries of long-range
monopole interactions, J. Math. Phys. 31, 202-211 (1990).
15. P. Forgács, A. Wipf, J. Balog, L. Fehér and
L. O'Raifeartaigh, Liouville and Toda theories as
conformally reduced WZNW theories, Phys. Lett. B 227, 214-220 (1989).
14. L. Fehér, P.A. Horváthy
and L. O'Raifeartaigh, Applications of chiral
supersymmetry for spin fields in self-dual backgrounds, Int. J. Mod. Phys. A 4,
5277-5285 (1989).
13. M.G. Benedict, L. Fehér and Z. Horváth,
Monopoles and instantons from Berry's phase, J. Math. Phys. 30, 1727-1231
(1989).
12. L. Fehér, P.A. Horváthy
and L. O'Raifeartaigh, Separating the dyon system, Phys. Rev. D 40, 666-669 (1989).
11. M.G. Benedict and L. Fehér, Quantum jumps,
geodesics, and the topological phase, Phys. Rev. D 39, 3194-3196 (1989).
10. L. Fehér and P.A. Horváthy,
Non-relativistic scattering of a spin-1/2 particle off a self-dual monopole,
Mod. Phys. Lett. A 3, 1451-1460 (1988).
9. B. Cordani, L. Fehér and P.A. Horváthy, Monopole scattering spectrum from geometric
quantization, J. Phys. A: Math. Gen. 21, 2835-2837 (1988).
8. B. Cordani, L. Fehér and P.A. Horváthy, O(4,2) dynamical
symmetry of the Kaluza-Klein monopole, Phys. Lett. B 201, 481-486 (1988).
7. L. Fehér, Conformal O(3,2)
symmetry of the 2-dimensional inverse square potential, J. Phys. A: Math. Gen.
21, 375-378 (1988).
6. L. Fehér and P.A.
Horváthy, Dynamical symmetry of monopole scattering,
Phys. Lett. B 183, 182-186 (1987).
5. L. Fehér, The O(3,1)
symmetry problem of the charge-monopole interaction, J. Math. Phys. 28,
234-239 (1987).
4. L. Fehér, Dynamical O(4)
symmetry in the asymptotic field of the Prasad-Sommerfield monopole, J. Phys.
A: Math. Gen. 19, 1259-1270 (1986).
3. L. Fehér, Classical motion of coloured test
particles along geodesics of a Kaluza-Klein spacetime, Acta Phys. Hung. 59,
437-444 (1986).
2. L. Fehér, Quantum mechanical treatment of an
isospinor scalar in Yang-Mills-Higgs monopole
background, Acta Phys. Pol. B 16, 217-223 (1985).
1. L. Fehér, Bounded orbits for classical
motion of test particles in the Prasad-Sommerfield monopole field, Acta Phys.
Pol. B 15, 919-925 (1984).