Research Papers in Refereed Journals:

 

96. L. Fehér, On the maximal superintegrability of strongly isochronous Hamiltonians,  2409.19349 (2024)

 

95. L. Fehér, Poisson-Lie analogues of spin Sutherland models revisited, J. Phys A: Math. Theor. 57, 205202 (45pp) (2024). 

 

94. M. Fairon and L. Fehér,  Integrable multi-Hamiltonian systems from reduction of an extended quasi-Poisson double of U(n), Ann. Henri Poincaré 24,  3461-3529 (2023).

 

93. L. Fehér, Poisson reductions of master integrable systems on doubles of compact Lie groups,  Ann. Henri Poincaré 24, 1823–1876 (2023).

 

92. L. Fehér and B. Juhász, A note on quadratic Poisson brackets on gl(n,R) related to Toda  lattices, Lett. Math. Phys. 112:45 (2022).

 

91. L. Fehér, Bi-Hamiltonian structure of Sutherland models coupled to two u(n)*-valued spins from Poisson reduction, Nonlinearity 35, 2971–3003 (2022).

 

90.  L. Fehér, Bi-Hamiltonian structure of spin Sutherland models: the holomorphic case, Ann. Henri Poincaré  22, 4063-4085 (2021).

 

89. M. Fairon and L. Fehér, A decoupling property of some  Poisson structures on Mat(n x d,C) x Mat(d x n,C) supporting  GL(n,C) x GL(d,C) Poisson--Lie symmetry, Journ. Math. Phys. 62, 033512 (2021).

 

88. M. Fairon, L. Fehér and I. Marshall, Trigonometric real form of the spin RS model of Krichever and Zabrodin, Ann. Henri Poincaré 22, 615-675 (2021).

 

87. L. Fehér, Reduction of a bi-Hamiltonian hierarchy on T*U(n) to spin Ruijsenaars--Sutherland models, Lett. Math. Phys. 110, 1057-1079 (2020).  

 

86. L. Fehér, Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone,  Nonlinearity 32, 4377-4394 (2019).

 

85. L. Fehér, Poisson-Lie analogues of spin Sutherland models, Nucl. Phys. B 949, 114807 (2019).

 

84. L. Fehér and I. Marshall, Global description of action-angle duality for a Poisson-Lie deformation of the trigonometric BC(n) Sutherland system, Annales Henri Poincaré 20, 1217–1262 (2019).

 

83.  L. Fehér and I. Marshall, The action-angle dual of an integrable Hamiltonian system of Ruijsenaars-Schneider-van Diejen type, J. Phys. A: Math. Theor.  50, 314004 (20pp) (2017).

 

82.  L. Fehér and T.F. Görbe, The full phase space of a model in the Calogero-Ruijsenaars family, J. Geom. Phys. 115, 139-149 (2017).

 

81.  L. Fehér and T.F. Görbe, Trigonometric and elliptic Ruijsenaars-Schneider systems on the complex projective space, Lett. Math. Phys. 106, 1429-1449 (2016).

 

80.  L. Fehér and T.F. Görbe, On a Poisson-Lie deformation of the BC(n) Sutherland system, Nucl. Phys. B 901, 85-114 (2015).

 

79.  T.F. Görbe and L. Fehér, Equivalence of two sets of Hamiltonians associated with the rational BC(n) Ruijsenaars-Schneider-van Diejen system, Phys. Lett. A 379, 2685-2689 (2015).

 

78.  L. Fehér and B.G. Pusztai, Generalized spin Sutherland systems revisited, Nucl. Phys. B 893, 236-256 (2015).

 

77.  L. Fehér and T.F. Görbe, Duality between the trigonometric BC(n) Sutherland system and a completed rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys. 55, 102704 (2014).

 

76.  L. Fehér and T.J. Kluck, New compact forms of the trigonometric Ruijsenaars-Schneider system, Nucl. Phys. B 882, 97-127 (2014).

 

75.  L. Fehér, Action-angle map and duality for the open Toda lattice in the perspective of Hamiltonian reduction, Phys. Lett. A 377, 2917-2921 (2013).

 

74. V. Ayadi, L. Fehér and T.F. Görbe, Superintegrability of rational Ruijsenaars-Schneider systems and their action-angle duals, J. Geom. Symmetry Phys. 27, 27-44 (2012).

73.  L. Fehér and C. Klimcik, On the spectra of the quantized action variables of the compactified Ruijsenaars-Schneider system, Theor. Math. Phys. 171, 704-714 (2012).

72.  L. Fehér and C. Klimcik, Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction, Nucl. Phys. B 860, 464-515 (2012).

71. V. Ayadi and L. Fehér, An integrable BC(n) Sutherland model with two types of particles, Journ. Math. Phys 52, 103506 (2011).

70.  L. Fehér, C. Klimcik and S. Ruijsenaars, A note on the Gauss decomposition of the elliptic Cauchy matrix, J. Nonlin. Math. Phys. 18, 179-182 (2011).

69. L. Fehér and C. Klimcik, Poisson-Lie interpretation of trigonometric Ruijsenaars duality, Commun.  Math. Phys. 301, 55–104 (2011).

68. L. Fehér and V. Ayadi, Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction, Journ. Math. Phys. 51, 103511 (2010).

67. L. Fehér and B.G. Pusztai, Derivations of the trigonometric BC(n) Sutherland model by quantum Hamiltonian reduction, Rev. Math. Phys. 22, 699-732 (2010).

66. V. Ayadi and L. Fehér, On the superintegrability of the rational Ruijsenaars-Schneider model, Phys. Lett. A 374, 1913–1916 (2010).

65. L. Fehér and C. Klimcik, On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models, J. Phys. A: Math. Theor. 42, 185202 (2009).

64. L. Fehér and C. Klimcik, Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction, Lett. Math. Phys. 87, 125-138 (2009).

63.  L. Fehér and B.G. Pusztai, Twisted spin Sutherland models from quantum Hamiltonian reduction, J. Phys. A: Math. Theor. 41, 194009 (2008).

62.  L. Fehér and B.G. Pusztai, On the self-adjointness of certain reduced Laplace-Beltrami operators, Rep. Math. Phys. 61, 163-170 (2008).
 
61.  L. Fehér and B.G. Pusztai, Hamiltonian reductions of free particles under polar actions of compact Lie groups, Theor. Math. Phys. 155, 646-658 (2008).

60.  L. Fehér and B.G. Pusztai, A class of Calogero type reductions of free motion on a simple Lie group, Lett. Math. Phys. 79, 263-277 (2007).

 

59. L. Fehér and B.G. Pusztai, Spin Calogero models and dynamical r-matrices,  Bulg. J. Phys. 33,  261-272 (2006).


58.  L. Fehér and B.G. Pusztai, Spin Calogero models associated with Riemannian symmetric spaces of negative curvature, Nucl. Phys. B 751, 436-458 (2006).

57. L. Fehér and B.G. Pusztai, Spin Calogero models obtained from dynamical r-matrices and geodesic motion, Nucl. Phys. B 734, 304-325 (2006).

56.  L. Fehér, I. Tsutsui and T. Fülüp,  Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables, Nucl. Phys. B 715, 713-757 (2005).

55. L Fehér, Poisson-Lie dynamical r-matrices from Dirac reduction, Czech. Journ. Phys., 54, 1265-1274 (2004).

54.  L. Fehér and I. Marshall, The non-Abelian momentum map for Poisson-Lie symmetries on the chiral WZNW phase space, Int. Math. Res. Not., vol. 2004, no. 49,  2611-2636 (2004).

53. L.  Fehér and B.G. Pusztai, Explicit description of twisted Wakimoto realizations of affine Lie algebras,  Nucl. Phys. B 674, 509-532 (2003).

52. L. Fehér and I. Marshall, Stability analysis of some integrable Euler equations for SO(n), J. Nonlin. Math. Phys.  10, 304-317 (2003).

51.  L. Fehér and I. Marshall,  On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self-dual Lie algebras,  Lett. Math. Phys. 62, 51-62 (2002).

50. L. Fehér and A. Gábor, Adler-Kostant-Symes systems as Lagrangian gauge theories, Phys. Lett. A 301, 58-64 (2002).

49. L. Fehér and B.G. Pusztai, Generalizations of Felder's elliptic dynamical r-matrices associated with twisted loop algebras of self-dual Lie algebras, Nucl. Phys. B 621, 622-642 (2002).

48. L. Fehér, Dynamical r-matrices and the chiral WZNW phase space, Phys. Atomic Nuclei 65, no. 6, 1023-1027 (2002).

47. B.G. Pusztai  and  L. Fehér, A note on a canonical dynamical r-matrix, J. Phys. A: Math. Gen. 34, 10949-10962 (2001).

46. L. Fehér, A. Gábor and B.G. Pusztai, On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras, J. Phys. A: Math. Gen. 34, 7235-7248 (2001).

45. J. Balog, L. Fehér and L. Palla, The chiral WZNW phase space as a quasi-Poisson space, Phys. Lett. A 277, 107-114 (2000).

44. L. Fehér and B.G. Pusztai, The non-dynamical r-matrices of the degenerate Calogero-Moser models, J. Phys. A: Math. Gen. 33, 7739-7759 (2000).

43. L. Fehér and B.G. Pusztai, On the classical r-matrix of the degenerate Calogero-Moser models, Czech. J. Phys. 50, 59-65 (2000).

42. L. Fehér and A. Gábor, A note on the appearance of self-dual Yang-Mills fields in integrable hierarchies, J. Nonlin. Math. Phys. 7, 423-432 (2000).

41. J. Balog, L. Fehér and L. Palla, Classical Wakimoto realizations of chiral WZNW Bloch waves, J. Phys. A: Math. Gen. 33, 945-956 (2000).

40. J. Balog, L. Fehér and L. Palla, Chiral extensions of the WZNW phase space, Poisson-Lie symmetries and groupoids, Nucl. Phys. B 568, 503-542 (2000).

39. J. Balog, L. Fehér and L. Palla,  The chiral WZNW phase space and its Poisson-Lie groupoid, Phys. Lett. B 463, 83-92 (1999).

38. L. Fehér, Wakimoto realizations of current and exchange algebras, Czech. J. Phys. 48, 1325-1330 (1998).

37. F. Delduc, L. Fehér and L. Gallot, Nonstandard Drinfeld-Sokolov reduction, J. Phys. A: Math. Gen. 31, 5545-5563 (1998).

36. W. Eholzer, L. Fehér and A. Honecker, Ghost systems: a vertex algebra point of view, Nucl. Phys. B 518, 669-688 (1998).

35. J. Balog, L. Fehér and L. Palla,  Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A 13, 315-362 (1998).

34. J. de Boer and L. Fehér, Wakimoto realizations of current algebras: an explicit construction, Commun. Math. Phys. 189, 759-793 (1997).

33. L. Fehér and I. Marshall, Extended matrix Gelfand-Dickey hierarchies: reduction to classical Lie algebras, J. Phys. A: Math. Gen. 30, 5815-5824 (1997).

32. L. Fehér and I. Tsutsui, Regularization of Toda lattices by Hamiltonian reduction, Jour. Geom. Phys. 21, 97-136 (1997).

31. L. Fehér and I. Marshall, Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction,  Commun. Math. Phys. 183, 423-461 (1997).

30. J. de Boer and L. Fehér, An explicit construction of Wakimoto realizations of current algebras, Mod. Phys. Lett. 11, 1999-2011 (1996).

29. F. Delduc and L. Fehér, Regular conjugacy classes in the Weyl group and integrable hierarchies,  J. Phys. A: Math. Gen. 28, 5843-5882 (1995).

28. J. de Boer, L. Fehér and A. Honecker, A class of W-algebras with infinitely generated classical limit, Nucl. Phys. B 420, 409-445 (1994).

27. L. Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui, On the completeness of the set of classical W-algebras obtained from DS reduction, Commun. Math. Phys. 162, 399-431 (1994).

26. L. Fehér, L. O'Raifeartaigh and I. Tsutsui, The vacuum preserving Lie algebra of a classical W-algebra, Phys. Lett. B 316, 275-281 (1993).

25. L. Fehér, J. Harnad and I. Marshall, Generalized Drinfeld-Sokolov reductions and KdV type hierarchies, Commun. Math. Phys. 154, 181-214 (1993).

24. L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rep. 222, 1-64 (1992).

23. L. Fehér and I. Tsutsui, On the Lagrangian realization of the WZNW reductions, Phys. Lett. B 294, 209-216 (1992).

22. L. Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui, Rational vs polynomial character of $W_n^l$-algebras, Phys. Lett. B 283, 243-251 (1992).

21. L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, Generalized Toda theories and W-algebras associated with integral gradings, Ann. Phys. (N. Y.) 213, 1-20 (1992).

20. J. Balog, L. Dabrowski and L. Fehér, A new quantum deformation of SL(3), Phys. Lett. B 257, 74-78 (1991).

19. J. Balog, L. Dabrowski and L. Fehér, Classical r-matrix and exchange algebra in WZNW and Toda theories, Phys. Lett.  B 244, 227-234 (1990).

18. J. Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A. Wipf, Kac-Moody realization of W-algebras, Phys. Lett. B 244, 435-441 (1990).

17. J. Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A. Wipf, Toda theory and W-algebra from a gauged WZNW point of view, Ann. Phys. (N. Y.) 203, 76-136 (1990).

16. B. Cordani, L. Fehér and P.A. Horváthy, Kepler-type dynamical symmetries of long-range monopole interactions, J. Math. Phys. 31, 202-211 (1990).

15. P. Forgács, A. Wipf, J. Balog, L. Fehér and L. O'Raifeartaigh, Liouville and Toda theories as conformally reduced WZNW theories, Phys. Lett. B 227, 214-220 (1989).

14. L. Fehér, P.A. Horváthy and L. O'Raifeartaigh, Applications of chiral supersymmetry for spin fields in self-dual backgrounds, Int. J. Mod. Phys. A 4, 5277-5285 (1989).

13. M.G. Benedict, L. Fehér and Z. Horváth, Monopoles and instantons from Berry's phase, J. Math. Phys. 30, 1727-1231 (1989).

12. L. Fehér, P.A. Horváthy and L. O'Raifeartaigh, Separating the dyon system, Phys. Rev. D 40, 666-669 (1989).

11. M.G. Benedict and L. Fehér, Quantum jumps, geodesics, and the topological phase, Phys. Rev. D 39, 3194-3196 (1989).

10. L. Fehér and P.A. Horváthy, Non-relativistic scattering of a spin-1/2 particle off a self-dual monopole, Mod. Phys. Lett. A 3, 1451-1460 (1988).

9. B. Cordani, L. Fehér and P.A. Horváthy, Monopole scattering spectrum from geometric quantization, J. Phys. A: Math. Gen. 21, 2835-2837 (1988).

8. B. Cordani, L. Fehér and P.A. Horváthy, O(4,2) dynamical symmetry of the Kaluza-Klein monopole, Phys. Lett. B 201, 481-486 (1988).

7. L. Fehér, Conformal O(3,2) symmetry of the 2-dimensional inverse square potential, J. Phys. A: Math. Gen. 21, 375-378 (1988).

6. L. Fehér and  P.A. Horváthy, Dynamical symmetry of monopole scattering, Phys. Lett. B 183, 182-186 (1987).

5. L. Fehér, The O(3,1) symmetry problem of the charge-monopole interaction, J. Math. Phys.  28, 234-239 (1987).

4. L. Fehér, Dynamical O(4) symmetry in the asymptotic field of the Prasad-Sommerfield monopole, J. Phys. A: Math. Gen. 19, 1259-1270 (1986).

3. L. Fehér, Classical motion of coloured test particles along geodesics of a Kaluza-Klein spacetime, Acta Phys. Hung. 59, 437-444 (1986).

2. L. Fehér, Quantum mechanical treatment of an isospinor scalar in Yang-Mills-Higgs monopole background, Acta Phys. Pol. B 16, 217-223 (1985).

1. L. Fehér, Bounded orbits for classical motion of test particles in the Prasad-Sommerfield monopole field, Acta Phys. Pol. B 15, 919-925 (1984).