Click Here
ad info

Video of the Day
Publicly held fashion designers are doing poorly on Wall Street despite the bull market.

Watch more CNN VIDEO
CNN.com
spacecorner
myCNN|Video|Audio|Headline News Brief|Free E-mail|Feedback


Search




SPACE
TOP STORIES

Endeavour deploys 197-foot long antenna mast

Aging shuttle fleet worries NASA panel

Russians say key space station component to launch in July

New X-ray orbiter finds universe hotter than thought

Endeavour ready to launch for monster mapping mission

SOHO orbiting observatory dubbed 'most successful comet-hunter'

(MORE)

TOP STORIES

FAA inspections find more jackscrew problems on MD-80 series planes

Consulting firm says its server was used to attack AOL

Britain suspends Northern Ireland government, reimposes direct rule

Endeavour deploys 197-foot long antenna mast

(MORE)
SPORTS

WEATHER

Enter your U.S. Zip:

Click here for U.S. States or world cities
WORLD

U.S.

POLITICS

TECHNOLOGY

ENTERTAINMENT

HEALTH

TRAVEL

FOOD

ARTS & STYLE

BOOKS



(MORE HEADLINES)
* SPACE
MULTIMEDIA:
DISCUSSION:
CNN WEB SITES:
CNN Websites
FASTER ACCESS:
TIME INC. SITES:
CNN NETWORKS:
Networks image
SITE INFO:
WEB SERVICES:






'Little Bang' experiment boosts Big Bang theory

February 10, 2000
Web posted at: 1:09 PM EST (1809 GMT)

GENEVA (AP) -- A series of atom-smashing experiments has for the first time produced "compelling" evidence that the smallest particles floated freely a split second after the creation of the universe, scientists announced Thursday. In the experiments, scientists recreated a state of matter that hasn't existed since the first few microseconds -- or millionths of a second -- after the explosion.

The discovery is a breakthrough in the attempt to study the exact moment of the Big Bang, the explosion in which scientists believe the universe was born, and it is a first step in studying states of matter as yet unobserved.

The discovery verifies an essential part of the Big Bang theory, that the quarks and gluons existed in a free state before the intense heat cooled slightly and they joined to form the larger particles that have long been known to make up the atom. The scientists jokingly called the achievement the "Little Bang."

MESSAGE BOARD

It also follows Einstein's theory, E equals MC squared, where energy equals mass times the square of the speed of light. Unlike nuclear explosions, where energy is created from matter forced together, the energy that fired the nuclei together was converted into matter.

Quarks are the smallest known particle. Before the CERN experiments, science had seen quarks and gluons only in the "trapped" state they have existed in since three minutes after the Big Bang.

"We have recreated matter in a state we have never seen before, at energy densities 20 times higher than that inside the atomic nucleus," said a statement by CERN, also known as the European Laboratory for Particle Physics. "The same conditions have only existed in the first few microseconds after the Big Bang."

By colliding two lead nuclei at nearly the speed of light, they were able to create -- in a very small area -- heat that's 100,000 times greater than the center of the sun. In the process, they effectively created new matter from the energy, adding more than 4,000 quarks to the 1,248 quarks released from inside the nuclei.

The scientists then indirectly observed the "primordial soup" of quarks and gluons which spewed out, then rapidly cooled down and turned back into protons and neutrons.

CERN spokesman Neil Calder said the "important scientific breakthrough" came in a series of experiments by 350 scientists from around the world, beginning in 1994.

"We now have evidence of a new state of matter where quarks and gluons are not confined," said professor Luciano Maiani, CERN's director-general.

Calder said: "If the Big Bang theory is correct, if the universe started the way which we believe it did, then at some stage these quarks must have been floating around in a kind of soup before they got caged inside other particles."

The CERN statement said that the evidence was "compelling enough to say that we have formed a new state of matter."

The evidence, however, is indirect because it stems from the measurement of particles that have already returned to their confined state, it said.

Even though CERN hasn't been able to study the free quarks and gluons, they know they created them because the particles "retain enough memory" of that state -- "like the grin of the Cheshire cat in Alice in Wonderland which remains even after the cat has disappeared."

It will be up to the new Relativistic Heavy Ion Collider, or RHIC, at Brookhaven National Laboratory on New York's Long Island to enable scientists to examine the so-called "quark-gluon plasma," Maiani said.

Edward Suryak, a professor at Stoneybrook State University, Long Island, said the CERN work was a first step but that the Brookhaven lab will create significantly larger energy that will let scientists study the quark phenomenon much more closely.

The plasma created at CERN "appears for a short time" only, he said in a telephone interview.

Scientists have long expected to find this super hot "primordial soup" according to the theory that the universe was created in a gigantic explosion.

But their accelerators that smash subatomic particles into each other have been too weak to create the extremely hot state where the quarks and gluons floated freely.

"All around the world physicists have been trying to recreate this soup, and this we have now cooked up at CERN," Calder said.

James Gillies, a CERN physicist, told The Associated Press that CERN's accelerators "had just enough energy to be able to create the stuff, but 'just enough' isn't enough to be able to study its properties in great detail."

"It's very good news for RHIC, because they will be able to make it very easily and study it in great detail," Gillies said.

Copyright 2000 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.



RELATED STORIES:
Astronomers calculate age of the universe - May 25, 1999
Hubble views fading gamma ray burst - March 17, 1999
Scientists in Japan may have discovered secret to the universe's 'missing mass' - June 5, 1998
Astronomers astounded by enormous explosion in deep space - May 6, 1998

RELATED SITES:
Welcome to CERN
Brookhaven National Laboratory
State University of New York at Stony Brook

Note: Pages will open in a new browser window
External sites are not endorsed by CNN Interactive.
Search

Back to the top 2000 Cable News Network. All Rights Reserved.
Terms under which this service is provided to you.
Read our privacy guidelines.