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Finite heat reservoir capacity, C, and temperature fluctuation, ∆T/T , lead to modifications of the well known
canonical exponential weight factor. Requiring that the corrections do not depend on the one-particle energy,
ω, we derive a deformed entropy, K(S). The resulting formula contains the Boltzmann – Gibbs, Rényi, and
Tsallis formulas as particular cases. For the extreme large fluctuation, C∆T 2/T 2 → ∞, a new parameter-free
entropy – probability relation is gained. The corresponding canonical energy distribution for low probability
coincides with the cumulative Gompertz distribution, met in several phenomena, like earthquakes, demography,
tumor growth models, extreme value probability, etc.

I. INTRODUCTION

Presenting novel entropy formulas has a long tradition.
The first, classical ’logarithmic’ formula, designed by Lud-
wig Boltzmann at the end of nineteenth century, is the best
known example, but – often just out of mathematical curios-
ity – a multitude of entropy formulas are known to date [1].
Our purpose is not just to add to this respectable list a number,
we are after some principles which would select out entropy
formulas for a possibly most effective incorporation of finite
reservoir effects in the canonical approach (usually assuming
infinitely large reservoirs). Naturally, this endeavour can be
done only approximately when restricting to a finite number
of parameters.

Among the suggestions going beyond the classical Boltz-
mann – Gibbs – Shannon entropy formula,

SB = −
∑
i

pi ln pi, (1)

only a single parameter, q, is contained in the Rényi for-
mula [2],

SR =
1

1− q
ln
∑
i

pqi . (2)

Many thoughts have been addressed to the physical meaning
and origin of the additional parameter, q, in the past and re-
cently.

The idea of a statistical – thermodynamical origin of power-
law tailed distributions of the one-particle energy ω, out of a
huge reservoir with total energy, E was expressed by using a
power-law form for the canonical statistical weight,

w = expq(ω/T ) :=
(

1 + (q − 1)
ω

T

)− 1
q−1

, (3)

instead of the classical exponential exp(−ω/T )[32]. Such
weights can be derived from a canonical maximization of the
Tsallis-entropy [3, 4],

ST =
1

1− q
∑
i

(pqi − pi) , (4)

or the Rényi-entropy eq. (2), too. It is evident to justify that
these two entropy formulas are unique and strict monotonic
functions of each other: using the notation C = 1/(1 − q),
one easily obtains

ST = C
(

eSR/C − 1
)
. (5)

The use of these entropy formulas is exact in case of an ideal,
energy-independent heat capacity reservoir [5]. The corre-
spondence eq. (5) emerges naturally from investigating a sub-
system – reservoir couple of ideal gases [6].

Particle number or volume fluctuations in a reservoir lead
to further interpretation possibilities of the parameter q [7–
12]. In a recent paper [13] we demonstrated that both effects
contribute to the best chosen q if we consider the power-law
statistical weight (3) as a second order term in the expansion
in ω � E of the classical complement phase-space formula,
w ∝ eS , due to Einstein. A review of an ideal reservoir
with fixed energy, E, but fluctuating particle number, n, ac-
cording to the negative binomial distribution (NBD) reveals
that the statistical power-law parameters can be interpreted as
T = E/〈n〉 and q = 〈n(n − 1)〉/〈n〉2. The derivation re-
lies on the evaluation of the microcanonical statistical factor,
(1 − ω/E)n, obtained as exp(S(E − ω) − S(E)), for ideal
gases. Since each exponential factor grows like xn, their ratio
delivers the (1 − ω/E)n factor. This factor is averaged over
the assumed distribution of n. The parameter q, obtained in
this way is also named as second factorial moment, F2, dis-
cussed with respect to canonical suppression in Refs. [14, 15].
For the binomial distribution of n one gets q = 1 − 1/k, for
the negative binomial q = 1 + 1/(k + 1).

The theoretical results on q and T depending on the mean
multiplicity, 〈n〉 , and its variance in the reservoir is just an
approximation. For non-ideal reservoirs described by a gen-
eral equation of state, S(E), the parameter q is given by

q = 1− 1/C + ∆T 2/T 2, (6)

as it was derived in [13]. It is important to realize that the
scaled temperature variance is meant as a variance of the fluc-
tuating quantity 1/S′(E), while the thermodynamical temper-
ature is set by 1/T = 〈S′(E)〉. This effect and the finite
heat capacity, C, act against each other. Therefore even in
the presence of these finite reservoir effects, q = 1 might be
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the subleading result, leading back to the use of the canon-
ical Boltzmann – Gibbs exponential. In particular this is the
case for the variance calculated in the Gaussian approxima-
tion, when it is exactly ∆T/T = 1/

√
|C| and one arrives at

q = 1. It is interesting to note that both parts of this formula,
namely q = 1− 1/C and q = 1 + ∆T 2/T 2, has been derived
and promoted in earlier publications [6, 17–19]

In this paper we generalize the canonical procedure by us-
ing a deformed entropy K(S) [6]. Postulating a statistical
weight, wK , based on K(S) instead of S, corresponding pa-
rameters, TK and qK occur. We construct a specific K(S) de-
formation function by demanding qK = 1. This demand can
be derived from the requirement that the temperature set by
the reservoir, TK , is independent of the one-particle energy, ω.
We call this the Universal Thermostat Independence Princi-
ple (UTI) [20]. The final entropy formula contains the Tsallis,
Rényi and Boltzmann – Gibbs expressions as particular cases.
Surprisingly there is another limit, that of huge reservoir fluc-
tuations, C∆T 2/T 2 → ∞, when the low-probability tails,
canonical to this entropy formula, approach the cumulative
Gompertz distribution, exp(1− e x) [21–23].

II. FLUCTUATIONS AND MUTUAL ENTROPY

Traditionally the description of thermodynamical fluctua-
tions is done in the Gaussian approximation. Reflecting the
fundamental thermodynamic variance relation, ∆E · ∆β =
1 with β = S′(E), the characteristic scaled fluctuation
of the temperature is derived [24–26]. The variance of a
well-peaked function of a random variable is related to the
variance of the original variable via the Jacobi determinant,
∆f = |f ′(a)|∆x. Applying this to the functions E(T ) and
β = 1/T , one obtains ∆E = |C|∆T with the C := dE/dT
definition of heat capacity, and ∆β = ∆T/T 2. Combining
these one obtains the classical formula ∆T/T = 1/

√
|C|.

In the traditional interpretation of statistical physics, the
phase space is filled homogeneously – not counting a few con-
straints on the totals of conserved quantities. But exactly such
constraints make expectation values and fluctuations in the
subsystem and in the reservoir statistically dependent. There-
fore not a product, but a convolution of probabilities describe
such a couple of thermodynamical systems:

ρ(E) =

E∫
0

ρ(E − ω) ρ(ω) dω (7)

together with the form ρ(E) = eS(E), leads to the normalized
ratio

1 =

E∫
0

eS(E−ω)+S(ω)−S(E) dω. (8)

Viewing the integrand as a statistical weight factor, also used
for obtaining expectation values of ω- or E-dependent quanti-
ties of physical interest, one arrives at the interpretation of the

joint probability with the mutual entropy: P = e I(ω;E) with

I(ω;E) = S(ω) + S(E − ω)− S(E) = ln
ρ(ω)ρ(E − ω)

ρ(E)
.

(9)
In the canonical situation the total energy E is fixed and ω
fluctuates; so does the reservoir energy,E−ω. In the Gaussian
approximation the mutual information factor, I(ω;E) is eval-
uated in the saddle point approximation leading to the follow-
ing general property of the maximal probability state: From
I ′(ω∗) = 0 one obtains

S′(ω∗) = S′(E − ω∗). (10)

Assuming small variance near this probability peak, the re-
spective expectation values of the derivatives, defined as the
common thermodynamical temperature in equilibrium, are
also equal:

1

T
:= 〈S′(ω)〉 ≈ S′(ω∗). (11)

The second derivatives, however, add, leading to an effective
heat capacity as the harmonic mean of the subsystem and
reservoir heat capacities, which governs the size of typical
fluctuations in the Gaussian apprioximation:

1

C∗
:= −T 2I ′′(ω∗) =

1

C(ω∗)
+

1

C(E − ω∗)
. (12)

This result is, however, dominated by the smaller heat capac-
ity, so there is no use of expanding the one-particle phase
space factor ρ(ω) = eS(ω). Only the rest can be safely ex-
panded with the canonical assumption, ω � E:

e I ≈ eS(ω)

[
1− ωS′(E) +

ω2

2

[
S′(E)2 + S′′(E)

]]
(13)

One possibility for going beyond the Gaussian approximation
is to investigate finite reservoir effects in the microcanonical
treatment [27–30]. This is, however, usually quite entangled
with a complex microdynamical description of the interaction.
It is therefore of interest to find a beyond-Gaussian but canon-
ical approximation.

Our idea is to construct such a K(S) deformed entropy ex-
pression, which compensates q 6= 1 effects in the ω � E
expansion. In this way the probability weight factor of parti-
tioning the total energy E to a sub-part ω and a rest of E −ω,

P ∝ eS(ω)+S(E−ω)−S(E), (14)

is replaced by the more general form

PK ∝ eK(S(ω))+K(S(E−ω))−K(S(E)). (15)

The one-particle phase-space factor, ρ(ω) ∝ eS(ω) is gener-
alized to ρK(ω) ∝ eK(S(ω)) in this formula. The statistical
weight factor is consisting of the rest: wK = PK/ρK . De-
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manding now

d2

dω2
lnwK = 0, (16)

we appeal to the Universal Thermostat Independence princi-
ple: we wish to have the statistical weight for the one selected
particle with energy ω to be least dependent on the energy of
that particle, itself. By annulating the second derivative as in
eq. (16) we reach this beyond the Gaussian level.

Let us compare the traditional assumption, using K(S) =
S, and the UTI principle, obtaining the optimal K(S) to sec-
ond order in the canonical expansion. We consider a general
system with general reservoir fluctuations. For small ω � E

w =
〈

eS(E−ω)−S(E)
〉
ω�E

=
〈

e−ωS
′(E)+ω2S′′(E)/2−...

〉
= 1− ω 〈S′(E)〉 +

ω2

2

〈
S′(E)2 + S′′(E)

〉
+ . . . (17)

Compare this with the power-law statistical weight also ex-
panded to second order,

w =
(

1 + (q − 1)
ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2
− . . . (18)

Equating term by term, we interpret the statistical power-law
parameters as

1

T
= 〈S′(E)〉 and q =

〈
S′(E)2 + S′′(E)

〉
〈S′(E)〉 2 . (19)

The relation 〈S′′(E)〉 = −1/CT 2 follows from the defini-
tion of the heat capacity of the reservoir,

1

C
=

dT
dE

= −T 2 d
dE
〈S′(E)〉 = −T 2 〈S′′(E)〉 . (20)

The demand eq. (16), when applied to the full form in eq. (18),
leads to q = 1.

Summarizing, we acknowledge that the parameter q has
opposite sign contributions from

〈
S′ 2
〉
− 〈S′〉 2 and from

〈S′′〉 . In general q is given by eq. (6) up to second order.
With this formula q > 1 and q < 1 are both possible.

III. DEFORMED ENTROPY FORMULAS

Techniques to handle the q = 1 case are known since long.
For dealing with q 6= 1 systems the calculations as a rule are
involved, but the introduction of a deformed entropy, K(S),
instead of S provides more flexibility for handling the sub-
leading term in ω [20, 31]. The deformed statistical weight
has an average over the reservoir fluctuations, as follows

wK =
〈

eK(S(E−ω))−K(S(E))
〉

= 1− ω d
dE

K(S(E))

+
ω2

2

[
d2

dE2
K(S(E)) +

[
d

dE
K(S(E))

]2
]
. (21)

Note that d
dEK(S(E)) = K ′S′ and d2

dE2K(S(E)) =

K ′′S′ 2 + K ′S′′. Comparing this expansion with the Tsal-
lis distribution we obtain the parameters for the deformed en-
tropy. Using previous notations for averages over reservoir
fluctuations but assuming that K(S) is independent of these
we obtain

1

TK
= K ′

1

T
,

qK
T 2
K

=
(
K ′′ +K ′ 2

) 1

T 2

(
1 +

∆T 2

T 2

)
−K ′ 1

CT 2
. (22)

By choosing a particular K(S) one manipulates qK . After a
simple division we obtain

qK =

(
1 +

∆T 2

T 2

)(
1 +

K ′′

K ′ 2

)
− 1

C

1

K ′
(23)

Not considering superstatistical, event-by-event fluctuations
in the reservoir one assumes ∆T/T = 0. With such assump-
tions from qK = 1 we arrive at the original UTI equation [20]:

K ′′

K ′
=

1

C
. (24)

The solution of eq. (24) delivers K(S) = C
(
eS/C − 1

)
and

one obtains upon using K(S) =
∑
i piK(− ln pi) the statis-

tical entropy formulas of Tsallis and Rényi:

K(S) =
1

1− q
∑
i

(pqi − pi) and S =
1

1− q
ln
∑
i

pqi .

(25)
Finally we obtain a novel, general deformed entropy formula
including the effect of reservoir fluctuations. Demanding
qK = 1, which is a simple consequence of eq. (16), one ob-
tains the differential equation

C
∆T 2

T 2
K ′ 2 −K ′ + C

(
1 +

∆T 2

T 2

)
K ′′ = 0. (26)

The solution of eq. (26) with S-independent C and ∆T/T is
given by

K(S) =
C∆

λ
ln
(

1− λ+ λeS/C∆

)
. (27)

with λ := C∆T 2/T 2 and C∆ = C + λ. The composi-
tion rule for this quantity can be decomposed to two simple
steps: defining L(S) = C∆

(
eS/C∆ − 1

)
, the formal additiv-

ity, K(S12) = K(S1) +K(S2), leads to

L(S12) = L(S1) + L(S2) +
λ

C∆
L(S1) · L(S2). (28)

We point out that the non-additivity parameter in this formula
is given by λ/C∆ = ∆T 2/(T 2 + ∆T 2), for Gaussian scaling
of the temperature fluctuations it is simply 1/(C + 1).

Once having a K(S) deformation function for the entropy,
one argues as follows. The K(S) is constructed to lead



4

to qK = 1 to the best possible approximation. Therefore
K(S(E)) is additive for additive energy, E, to the same ap-
proximation. Being additive, the addition can be repeated
arbitrary times, with a number Ni of energies Ei – viewed
as a statistical ensemble. The occurence frequencies of a
given energy Ei are then well estimated by pi = Ni/N with
N =

∑
iNi being the total number of occurences in the en-

semble. This quantity, pi is the usual approximation to the
probability of a state with energy Ei, hence one arrives at the
construction formula [6]

K(S) =
∑
i

piK(− ln pi). (29)

Based on this, the following generalized entropy formula
arises for an ideal finite heat bath with fluctuations:

K(S) =
C∆

λ

∑
i

pi ln
(

1− λ+ λp
−1/C∆

i

)
. (30)

For λ = 1 the deformed entropy expression (30) leads
exactly to the Boltzmann entropy, irrespective of the value
of C∆. The same limit is achieved for infinite reservoirs,
C → ∞ while keeping λ finite; the entropy formula is tra-
ditional. For λ = 0 (no fluctuations in the reservoir) it be-
comes the Tsallis entropy with q = 1 − 1/C. Finally for
λ→∞ (huge fluctuations) it transforms to the parameter free
formula,

K(S) =
∑
i

pi ln (1− ln pi) . (31)

The canonical pi distribution to this is obtained by maximiz-
ing K(S) with the constraints

∑
i pi = 1 and

∑
i piωi = U .

The usual procedure leads to

d
dpi

K(S) = ln(1− ln pi)−
1

1− ln pi
= α+ βωi, (32)

having the Lambert-W function, defined as the W (x) satisfy-
ing W eW = x, as part of the solution:

pi = exp

(
1− 1

W
(
e−(α+βωi)

)) (33)

Near to probability peaks, pi ≈ 1, the quantity − ln pi
is small. In this approximation the deformed entropy for-
mula, eq. (31), gives back the traditional Boltzmann – Gibbs –
Shannon entropy, and the canonical distribution becomes the
familiar exponential. For the opposite extreme, i.e. dealing
with very low probability high-energy tails, W is small, and
one obtains

pi ≈ e−eα+βωi
. (34)

This result is the complementary cumulative Gompertz dis-
tribution, originally discovered in demographic models [21],
and later used as a tumor growth model [22]. This distribution
also occurs in studies of extreme value distributions, showing
deviations from scaling in the occurence frequencies of big
earthquakes [23] .
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