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LHC ALICE data are interpreted in terms of statistical power-law tailed pT spectra. As explanation we derive
such statistical distributions for particular particle number fluctuation patterns in a finite heat bath exactly, and
for general thermodynamical systems in the subleading canonical expansion approximately. Our general result
q = 1 − 1/C + ∆T 2/T 2 demonstrates how the heat capacity and the temperature fluctuation effects compete,
and cancel in the standard Gaussian approximation. A new entropy formula, K(S), is constructed for achieving
qK = 1. For huge fluctuations beyond the Gaussian ones, canonically the Gompertz cumulative distribution
emerges.

I. INTRODUCTION

Power-law tailed distributions occur in Nature numerous.
The idea of a statistical – thermodynamical origin of these
emerged already decades ago [1, 2]. We have, however, long
missed a ”naturalness” argument connecting the basic princi-
ples of classical thermodynamics to the use of non-extensive
entropy formulas by deriving canonical distributions of the
one-particle energy. Although the observation has been made
that the Tsallis and Rényi entropy formulas both lead to the
cut power-law canonical distribution, and their use requires a
constant heat capacity reservoir [3], the q > 1 power-laws –
featuring a negative power of a quantity larger than one – still
seem unnatural.

In our recent studies of ideal gases [4] we investigated en-
ergy fluctuations in a subsystem – reservoir couple. They
lead to Tsallis distribution with q = 1 − 1/C for ideal gas
reservoirs, with C being the heat capacity of the total system.

Moreover, particle number fluctuations in the reservoir, ei-
ther achieved naturally in a huge, inhomogenous heat bath or
artificially by averaging the statistics over repeated events in
high-energy experiments, lead to further effects [5–8]. We re-
view in this paper how ideal fermionic and bosonic reservoirs,
with binomial (BD) and negative binomial (NBD) distribu-
tions of the particle number, lead exactly to Tsallis power-
law behavior with the parameters T = E/〈n〉 and q =
〈n(n − 1)〉/〈n〉2, when the microcanonical ideal gas statisti-
cal factor, (1−ω/E)n in one dimension for massless partons,
[34] is averaged over one of these distributions. The above q,
named as second factorial moment, F2, was determined with
respect to canonical suppression in Refs. [9, 10]. For the bi-
nomial distribution one gets q = 1 − 1/k, for the negative
binomial q = 1 + 1/(k + 1).

We demonstrate by fits to recent ALICE data taken in LHC
experiment [11] that in the pT -distribution of charged hadrons
(dominated by pions) two Tsallis distributions emerge for the
one-particle energy in a moving system, ω = γ(mT − vpT )

(with γ = 1/
√

1− v2 being the Lorentz factor and v a radial
blast wave velocity, mT =

√
m2 + p2

T ≈ |pT | the so called
transverse mass). The softer parts, below pT ≈ 4 GeV/c,
show a dependence on the participant number as expected
from statistical considerations: bigger systems come closer

to the Boltzmann-Gibbs prediction.
Our theoretical results on q and T expressed by the mean

multiplicity and its variance in the reservoir for BD and NBD
distributions also can be viewed as an approximation for arbi-
trary particle number distributions in the reservoir up to sub-
leading (second) order in the canonical expansion ω � E.
For non-ideal systems the general expansion up to second or-
der delivers q = 1− 1/C + ∆T 2/T 2, a combined result with
the heat capacity and the variance of the temperature of finite
heat bath. These quantities seem to act against each other.
Here the variance of the temperature is meant for the estima-
tor 1/S′(E) of the thermodynamical temperature, the latter
defined by 1/T = 〈S′(E)〉. This way in the Gaussian ap-
proximation ∆T/T = 1/

√
C we regain q = 1 and verify

the Boltzmann – Gibbs statistical factor. Part of this result has
been derived and promoted by G. Wilk and Z. Wlodarczyk
(q = 1+∆T 2/T 2) in recent years [12–14]. Instead of temper-
ature fluctuations reservoir volume and particle number fluc-
tuations were considered in recent publications [7, 8, 15, 16].

In order to generalize the canonical procedure we demon-
strate that a deformed entropy K(S) can be constructed and
used for demanding qK = 1 in the same approximation, prac-
tically using a canonical expansion with vanishing second or-
der term. This requirement we call Universal Thermostat In-
dependence Principle (UTI) [17]. The final entropy formula
contains the Tsallis, Rényi and Boltzmann – Gibbs expres-
sions as particular cases. Surprisingly there is another limit,
that of huge reservoir fluctuations, C∆T 2/T 2 → ∞, when
the low-probability tails, canonical to this entropy formula,
approach the cumulative Gompertz distribution, exp(1− ex),
also met in extreme value statistics [18–20].

II. pT SPECTRA AT THE LHC

In high-energy physics the power-law tail in pT spectra is
traditionally fitted by cut power-laws, (1 + apT )−b, conjec-
tured to stem from the behavior of hadronization matrix ele-
ments. As a matter of fact, a statistical model also can be ap-
plied to the fragmentation functions which describe the yield
of hadrons stemming from high-energy particle jets [21, 22].
The real unknown is the soft part, with low pT momenta; here
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Figure 1: (1 + apt)
−b fits to ALICE data on charged hadron pT

spectra in PbPb collisions[11] at LHC show two power-laws. Fit
parameters as function of Npart are shown in Fig. 2.

Figure 2: Powers in the power law, b = 1/(q − 1), follow a statis-
tical trend for the soft spectra (upper symbols), while remain nearly
constant for the hard spectra (lower symbols). The results belong to
the participant numbers, Npart, seen in the legend of Fig. 1.

thermal models are more fashionable.
It is therefore an intriguing question to decide whether there

is a soft power-law, which can be naturally described and un-
derstood only by statistical phase-space considerations. The
idea of a cut power-law as a thermal distribution, a character-
istic consequence also from non-extensive thermodynamics,
has been pursued by us since several years [23–25]. It is now
for the first time that particle spectra over a wide pT range are
presented differentially for centrality classes [11]; such a pre-
sentation may inform about the multiplicity dependence of a
heat reservoir in terms of thermal models.

In Fig. 1 we display our fits to pT spectra of charged
hadrons in centrality classes. A break in the spectra is
pronounced at high centralities (large participant numbers,
Npart), which must be positively correlated with the particle
number in the fireball where the hadrons were born. Our fits
have the lowest χ2 by making the soft – hard change around
pT ≈ 4 GeV/c for all centrality classes, therefore we think it
is justified to talk about soft and hard power-laws separately.

The fit parameter b, connected to the parameter q in Tsal-
lis distribution as b = 1/(q − 1), is plotted against Npart in
Fig. 2. The soft part shows a clear rising of the power b with
Npart, very characteristic to a statistical – thermal origin of a
power-law. Contrary to this is the behavior of the hard spec-
tra: the fitted power stays constant irrespective to the central-
ity, conjectured to vary with the size of the thermal bath. This
is ’naturally’ expected from QCD.

III. TEMPERATURE AND ENERGY FLUCTUATIONS

In this Section we turn to the theory of statistical power-
law tailed distributions as canonical distributions in a thermal
system connected to a heat reservoir with finite heat capacity.
By fluctuation of temperature we mean the fluctuation of the
estimator 1/S′(E) due to fluctuations of the energy E in the
reservoir. We are interested in the observable distribution of
the one-particle energy, ω � E, in the canonical limit.

Traditionally such thermodynamical fluctuations are treated
in the Gaussian approximation. Based on the fundamen-
tal thermodynamic uncertainty relation, ∆E · ∆β = 1 with
β = S′(E), it is easy to derive the characteristic scaled fluc-
tuation of the temperature [26–28]. With any well peaked
distribution of a random variable, x, the expectation value
a = 〈x〉 is near to the value where the peak occurs. As a
consequence the variance of any function, f(x) in this ap-
proximation is related to the original variance by a Jacobi de-
terminant: ∆f = |f ′(a)|∆x. Now we consider both E and β
as functions of the temperature, T . We obtain ∆E = |C|∆T
with C = dE/dT being the definition of heat capacity, and
∆β = ∆T/T 2. Combining these two results one arrives at
the classical formula ∆T/T = 1/

√
|C|. The heat capacity

C is proportional to the heat bath size (volume, number of
degrees of freedom) for large extensive systems.

There are, however, some deficiences in the Gaussian ap-
proximation. A Gauss distribution of β, given as w(β) ∝
exp

(
−C(Tβ − 1)2/2

)
, allows for a finite probability for

negative temperatures, and – even worse – its characteristic
function,

〈
e−βω

〉
= exp

(
−ω/T + ω2/2CT 2

)
is not inte-

grable in ω.
The next theoretical question is how to improve the canon-

ical scheme beyond the Gauss approximation. We start our
discussion with ideal gases. The one-particle energy, ω, out of
total energy, E, is distributed according to a statistical weight
factor (1− ω/E)n [35]. The idea of superstatistics in general
considers a distribution for the reservoir parameters n and E
[29, 30]. In high-energy experiments E is typically controlled
by the accelerator and does not vary much. However, n, the
number of particles in the produced fireball scatters apprecia-
bly, which can be uncovered via the event-by-event detection
of the spectra in ω, as suggested in [31].

In ideal reservoirs n particles are distributed among k
phase-space cells: bosons

(
n+k
n

)
, fermions

(
k
n

)
ways. The

binomial and negative binomial distributions can be derived
by considering a subspace (n, k) out of (N,K) in the limit
K →∞ and N →∞ while f = N/K is fixed.

Fn,k(f) := lim
K→∞

(
k
n

)(
K−k
N−n

)(
K
N

) =

(
k

n

)
fn(1− f)k−n. (1)

Bn,k(f) := lim
K→∞

(
n+k
n

)(
N−n+K−k

N−n
)(

N+K+1
N

)
=

(
n+ k

n

)
fn(1 + f)−n−k−1. (2)
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These distributions are normalized based on the binomial ex-
pansion of (a+ b)k and (b− a)−k−1, respectively.

Assuming a typical fireball in high-energy experiments, E
is fixed and n fluctuates according to NBD. The ideal gas sta-
tistical weight factor, describing the complement phase-space
for reservoir configurations, becomes [36]

∞∑
n=0

(
1− ω

E

)n
Bn,k(f) =

(
1 + f

ω

E

)−k−1

. (3)

Note that 〈n〉 = (k + 1)f for NBD. Then with T = E/ 〈n〉
and q = 1 + 1/(k + 1) we get(

1 + (q − 1)
ω

T

)− 1
q−1

. (4)

This is exactly a q > 1 Tsallis – Pareto distribution. Similarly
in a fermionic reservoir E is fixed, n is distributed according
to BD. We obtain

∞∑
n=0

(
1− ω

E

)n
Fn,k(f) =

(
1− f ω

E

)k
. (5)

Note that 〈n〉 = kf for BD. Then with T = E/ 〈n〉 and
q = 1 − 1/k we again get a Tsallis-Pareto distribution, but
now with q < 1. In the k � n limit (low occupancy in
phase-space) the particle distribution in the reservoir becomes
Poissonian in both cases. The result is exactly the Boltzmann-
Gibbs weight factor with T = E/ 〈n〉 :

∞∑
n=0

(
1− ω

E

)n 〈n〉 n
n!

e−〈n〉 = e−〈n〉 ω/E . (6)

We note that NBD distributions are observed experimentally,
a nice analysis of heavy ion data are given by the PHENIX
group [32]. In all the three above cases

T =
E

〈n〉
and q =

〈n(n− 1)〉
〈n〉 2 . (7)

Now we turn to the ideal statistical weight factor with general
finite reservoir fluctuations. In the canonical approach we ex-
pand for small ω � E and view the Tsallis-Pareto distribution
as an approximation:(

1 + (q − 1)
ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2
− . . . (8)

on the one hand and〈(
1− ω

E

)n〉
= 1− 〈n〉 ω

E
+ 〈n(n− 1)〉 ω

2

2E2
− . . . (9)

on the other hand. To match up to subleading canonical order,
it follows in general:

T =
E

〈n〉
and q =

〈n(n− 1)〉
〈n〉 2 . (10)

Finally we consider a general system with general reservoir
fluctuations. Expanding for small ω � E〈

eS(E−ω)−S(E)
〉
ω�E

=
〈
e−ωS

′(E)+ω2S′′(E)/2−...
〉

= 1− ω 〈S′(E)〉 +
ω2

2

〈
S′(E)2 + S′′(E)

〉
− . . . (11)

Compare this with the expansion eq.(8) of the Tsallis distri-
bution: In the view of the above we interpret the parameters
as

1

T
= 〈S′(E)〉 , q =

〈
S′(E)2 + S′′(E)

〉
〈S′(E)〉 2 . (12)

Here 〈S′′(E)〉 = −1/CT 2 follows from the definition of the
heat capacity of the reservoir, 1/C = dT/dE. Summarizing
these results we understand that the parameter q has opposite
sign contributions from

〈
S′ 2
〉
− 〈S′〉 2 and from 〈S′′〉 . In

general

q = 1 +
∆T 2

T 2
− 1

C
. (13)

to subleading canonical order. With this formula q > 1 and
q < 1 are both possible and for temperature fluctuations with
Gaussian variance, ∆T/T = 1/

√
C, one has q = 1.

IV. DEFORMED ENTROPY FORMULAS

Techniques to handle the q = 1 case are known since long.
For dealing with q 6= 1 systems the calculations as a rule are
involved, but the introduction of a deformed entropy, K(S),
instead of S provides more flexibility for handling the sub-
leading term in ω [17, 33]. The deformed statistical weight
has an average over the reservoir fluctuations, as follows〈

eK(S(E−ω))−K(S(E))
〉

= 1− ω d
dE

K(S(E))

+
ω2

2

(
d2

dE2
K(S(E)) +

(
d

dE
K(S(E))

)2
)
. (14)

Note that d
dEK(S(E)) = K ′S′ and d2

dE2K(S(E)) =

K ′′S′ 2 + K ′S′′. Comparing this expansion with the Tsal-
lis distribution we obtain the parameters for the deformed en-
tropy. Using previous notations for averages over reservoir
fluctuations but assuming that K(S) is independent of these
we obtain

1

TK
= K ′

1

T
,

qK
T 2
K

=
(
K ′′ +K ′ 2

) 1

T 2

(
1 +

∆T 2

T 2

)
−K ′ 1

CT 2
. (15)
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By choosing a particular K(S) one manipulates qk. After a
simple division we obtain

qK =

(
1 +

∆T 2

T 2

)(
1 +

K ′′

K ′ 2

)
− 1

C

1

K ′
(16)

Not considering superstatistical (event by event) reservoir
fluctuations one assumes ∆T/T = 0. With such assumptions
from qK = 1 we arrive at the original UTI equation [17]:

K ′′

K ′
=

1

C
. (17)

The solution of eq. (17) delivers K(S) = C
(
eS/C − 1

)
and

one obtains upon using K(S) =
∑
i piK(− ln pi) the statis-

tical entropy formulas of Tsallis and Rényi:

K(S) =
1

1− q
∑
i

(pqi − pi) and S =
1

1− q
ln
∑
i

pqi .

(18)
Finally we obtain a novel, general deformed entropy for-

mula including superstatistical reservoir fluctuations. De-
manding qK = 1 one obtains the differential equation

C
∆T 2

T 2
K ′ 2 −K ′ + C

(
1 +

∆T 2

T 2

)
K ′′ = 0. (19)

The solution of eq. (19) is given by

K(S) =
C∆

λ
ln
(

1− λ+ λeS/C∆

)
. (20)

with λ := C∆T 2/T 2 and C∆ = C + λ. Based on this the
following generalized entropy formula arises:

K(S) =
C∆

λ

∑
i

pi ln
(

1− λ+ λp
−1/C∆

i

)
. (21)

For λ = 1 (Gaussian temperature fluctuations) this expres-
sion leads exactly to the Boltzmann entropy, irrespective of
the value of C∆. The same limit is achieved for infinite reser-
voirs, C → ∞ while keeping λ finite; the entropy formula
is traditional. For λ = 0 (no fluctuations in the reservoir) it
becomes the Tsallis entropy with q = 1 − 1/C. Finally for
λ→∞ (huge fluctuations) it transforms to the parameter free
formula,

K(S) =
∑
i

pi ln (1− ln pi) . (22)

The canonical pi distribution to this, is a Lambert W-function.
It shows tails according to the cumulative Gompertz distribu-
tion, originally discovered in demographic models [18], and
later used as a tumor growth model [19]. This distribution
also occurs in studies of extreme value distributions, show-
ing deviations from scaling in occurence frequencies of big
earthquakes[20] .
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