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J.Uffink, J.van Lith: Thermodynamic Uncertainty Relations;

Found.Phys.29(1999)655

”Bohr and Heisenberg suggested that the thermodynamical

fluctuation of temperature and energy are complementary in the

same way as position and momenta in quantum mechanics.”

Biró, Barnaföldi, Ván Temperature, Entropy
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B.H.Lavenda: Comments on "Thermodynamic Uncertainty Relations"

by J.Uffink and J.van Lith; Found.Phys.Lett.13(2000)487

”Finally, the question about whether or not the temperature

really fluctuates should be addressed. ... If the energy

fluctuates so too will any function of the energy, and that

includes any estimate of the temperature.”

Biró, Barnaföldi, Ván Temperature, Entropy
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J.Uffink, J.van Lith: Thermodynamic Uncertainty Relations Again:

A Reply to Lavenda; Found.Phys.Lett.14(2001)187

”In this interpretation, the uncertainty ∆β merely reflects one’s

lack of knowledge about the fixed temperature parameter β.

Thus β does not fluctuate.”

”Lavenda’s book uses these ingredients to derive the

uncertainty relation ∆β ·∆U ≥ 1. Our paper observes that, on

the same basis, one actually obtains a result even stronger

than this, namely ∆β ·∆U = 1.”

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Variances of functions of distributed quantities

Let x be distributed with small variance. Consider a Taylor
expandable function

f (x) = f (a) + (x − a)f ′(a) +
1
2

(x − a)2f ′′(a) + . . .

Up to second order the square of it is given by

f 2(x) = f 2 + 2(x − a)ff ′ + (x − a)2 [f ′f ′ + ff ′′
]

+ . . .

denoting f (a) shortly by f . Expectation values as integrals deliver

〈f 〉 = f +
1
2

∆x2f ′′ 〈f 〉2 = f 2+∆x2ff ′′ 〈f 2〉 = f 2+∆x2(f ′f ′+ff ′′)

Finally we obtain ∆f = |f ′|∆x

Biró, Barnaföldi, Ván Temperature, Entropy



Temperature and Energy Fluctuations
Finite Heat Bath Effects

Entropy formulas from zero mutual Information
Summary

Backup Slides

Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

One Variable EoS: S(E)

Product of variances
∆E ·∆β = 1 (1)

Connection to the (absolute) temperature:

|C|∆T · ∆T
T 2 = 1 (2)

Relative variance scales like 1/SQRT of heat capacity!

∆T
T

=
∆β

β
=

1√
|C|

(3)

C is proportional to the heat bath size (volume, number of degrees of
freedom) in the thermodynamical limit.

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Gauss distributed β values

w(β) =
1√
2πσ

e−
(β−1/T0)2

2σ2 (4)

Expectation value

〈β〉 =
1
T0

Variance
∆β = σ =

1
T0
√
|C|

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Plot Gaussian Fluctuations
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Superstatistics: one particle energy distribution

Canonical probability for additive thermodynamics:

pi = p(Ei) = eβ(µ−Ei ). (5)

Characteristic function of the Gauss distribution

〈e−βω〉 = e−ω/T0 e σ2ω2/2. (6)

Turning point: maximal energy until when it makes sense

Emax
i − µ = ωmax =

1
σ2T0

= |C|T0. (7)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Plot Gaussian Spectra
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J.Uffink, J.van Lith: Thermodynamic Uncertainty Relations;

Found.Phys.29(1999)655

”But unlike previous authors, Lindhard considers both the

canonical and the microcanonical ensembles as well as

intermediate cases, describing a small system in thermal

contact with a heat bath of varying size.”

”...Lindhard simply assumes that the temperature fluctuations

of the total system equal those of its subsystems. This is in

marked contrast with all other authors on the subject.”

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Subsystem - Reservoir System

The "res + sub = tot" splitting interpolates between the

canonical statistics for "sub" � "res" ≈ "tot"

and the

microcanonical one for "res" � "sub" ≈ "tot".

In the simple S(E) analysis, it is Etot = Esub + Eres

Biró, Barnaföldi, Ván Temperature, Entropy
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Deficiences of the Gaussian
Euler-Gamma superstatistics

Mutual Info from phase space convolution

Ω(E) =

∫
dE1 Ω(E1) · Ω(E − E1). (8)

Einstein’s postulate: Ω(E) = eS(E)

eS(E) =

∫
dE1 eS1(E1)+S2(E−E1). (9)

Normalized version:

1 =

∫
dE1 eS1(E1)+S2(E−E1)−S(E) =

∫
dE1 eI(E ,E1). (10)

Consider this as a probability distribution for E1!

Biró, Barnaföldi, Ván Temperature, Entropy
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Deficiences of the Gaussian
Euler-Gamma superstatistics

Mutual Info in "sub-res" splitting

Mutual information:

I(Esub) = Ssub(Esub) + Sres(Etot − Esub)− Stot(Etot) (11)

Let us denote Esub by E in the followings.

I ′(E) = S′sub(E)− S′res(Etot − E) = βsub − βres; (12)

Saddle point (zeroth law):

I ′(E∗) = 0 ⇔ βsub = βres =
1
T∗

(13)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Taylor-expansion of E − E∗-fluctuations

for saddle point integrals with factor eI(E) :

I(E) = I(E∗) + (E − E∗) I ′(E∗) +
1
2

(E − E∗)2 I ′′(E∗) (14)

Gaussian probability: P(E) = eI(E)

Second derivative near equilibrium:

I ′′(E∗) = − 1
T 2
∗

(
1

Csub
+

1
Cres

)
< 0 (15)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Small variance approximation

Sub energy fluctuations: ξ = E − E∗.
Temperature estimates as T = 1/β:

〈1/βsub〉 = 〈1/βres〉 ≈ T∗. (16)

Energy and heat capacity are related

〈E〉(T ) =

T∫
0

C(T)dT = T · C(T ) ≤ T · C(T ). (17)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Gaussian E-variance in equilibrium

Energy expectation value: 〈E〉 = CsubT∗ ≤ CsubT∗.

Common temperature: T∗ = 〈1/βsub〉 = 〈1/βres〉.

Energy variance: ∆E2
sub = ∆E2

res = C∗ T 2
∗

with
C∗ :=

Csub · Cres

Csub + Cres
(18)

Beta variance: ∆βsub = ∆Esub/
(
CsubT 2

∗
)
.

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Products of Gaussian Variances in Equilibrium

∆βsub ·∆Esub =
∆E2

sub
CsubT 2

∗
=

C∗
Csub

=
Cres

Csub + Cres
≤ 1. (19)

Using the "sub" – "res" symmetry we finally obtain:

∆βsub ·∆Esub + ∆βres ·∆Eres = 1. (20)

This generalizes Landau (and many others).

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Formulas with Scaled Variances

SUB:

ω2
E sub :=

∆E2
sub

〈E2
sub〉

≥
∆E2

sub

T 2
∗C2

sub
=

C∗
C2

sub
(21)

RES:

ω2
β res :=

∆β2
res

〈β2
res〉

=
∆E2

res

T 2
∗C2

res
=

C∗
C2

res
(22)

For SUB + RES we finally obtain:

Csub ω
2
E sub + Cres ω

2
β res ≥ 1. (23)

This resembles Lindhard’s (Wilk’s,....) formula.

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Deficiences of the Gauss picture

1 w(β) > 0 for β < 0 (finite probability for negative
temperature)

2 〈e−βω〉 is not integrable in ω (it cannot be a canonical
one-particle spectrum)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Beyond Gauss: Euler

Euler-Gamma distribution

w(β) =
av

Γ(v)
βv−1 e−aβ. (24)

Mean: 〈β〉 = v
a , variance: ∆β

〈β〉 = 1√
v

Characteristic function

〈e−βω〉 =
(

1 +
ω

a

)−v
. (25)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Euler adjusted to Gauss

Mean: 〈β〉 = v
a = 1

T , variance: ∆β
〈β〉 = 1√

v = ∆T
T = 1√

|C|

Adjusted Euler-Gamma distribution

w(β) =
(|C|T )|C|

Γ(|C|)
β|C|−1 e−|C|Tβ. (26)

Characteristic function

〈e−βω〉 =

(
1 +

ω

|C|T

)−|C|
−→
|C|→∞

e−ω/T . (27)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Plot Eulerian Fluctuations
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Plot Eulerian Spectra

-6

-5

-4

-3

-2

-1

 0

 0  2  4  6  8  10

lo
g

 <
 e

x
p

(-
β

ω
) 

>

ω / T

Eulerian log generator C=24:1:-2, inf

Biró, Barnaföldi, Ván Temperature, Entropy



Temperature and Energy Fluctuations
Finite Heat Bath Effects

Entropy formulas from zero mutual Information
Summary

Backup Slides

Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Euler for ideal gas

Distribution of the kinetic energy sum (non-relativistic):

P(E) =
3N∏
j=1

dpj w(pj) δ

(
E −

3N∑
i=1

p2
i

2m

)
. (28)

with Gaussian (Maxwell-Boltzmann) distribution of the
individual pi components:

w(p) =

√
β√

2πm
e−β

p2

2m (29)

Biró, Barnaföldi, Ván Temperature, Entropy
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Gaussian Approximation
Deficiences of the Gaussian
Euler-Gamma superstatistics

Euler for E and β

Fourier expanding the Dirac-delta we carry out the same integral 3N
times:

P(E) dE =
1

Γ(3
2N)

(βE)
3
2 N−1 e−βE d(βE). (30)

This is an Euler-Gamma distribution of β for fix E .

... and a Poissonian for N for fix βE

With C = 3N/2 heat capacity, we have 〈E〉 = CT and

∆E
〈E〉

=
∆β

〈β〉
=

∆T
〈T 〉

=
1√
C
.

Biró, Barnaföldi, Ván Temperature, Entropy
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Deficiences of the Gaussian
Euler-Gamma superstatistics

Product of Variances for Euler

Since
∆E
〈E〉

=
∆β

〈β〉
=

1√
C

and
〈E〉 · 〈β〉 = C,

We derive

∆E
〈E〉
· ∆β

〈β〉
=

1√
C
· 1√

C
=

1
C
,

∆E ·∆β
C

=
1
C
, (31)

∆E ·∆β = 1

Biró, Barnaföldi, Ván Temperature, Entropy
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Deficiences of the Gaussian
Euler-Gamma superstatistics

Product of Variances for Scaling Fluctuations

For scaling fluct-s, i.e. P(E) = βf (βE) and w(β) = Ef (Eβ) with
the same function f (x)

〈E〉 = T
∫

xf (x)dx = CT , 〈β〉 =
1
E

∫
xf (x)dx = C/E .

(32)
It is easy to obtain also that

∆E2 = T 2∆x2, ∆β2 =
1

E2 ∆x2. (33)

Conslusion:
∆E
〈E〉 fixβ

= ∆β
〈β〉 fix E

= ∆T
〈T 〉 fix E

= ∆x
〈x〉

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Thermodynamical Temperature Biro,Van,PRE83:061147,2011

Thermal exchange of energy −→ equality of temperature

S(E) = max , while E = E1 ⊕ E2, S = S1(E1)⊕ S2(E2).

In general:

dS =
∂S
∂S1

S′1(E1)dE1 +
∂S
∂S2

S′2(E2)dE2 = 0,

dE =
∂E
∂E1

dE1 +
∂E
∂E2

dE2 = 0. (34)

Zero determinant solution:

∂S
∂S1

∂E
∂E2

S′1(E1) =
∂S
∂S2

∂E
∂E1

S′2(E2)

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Zeroth Law T.S. Biro, P. Van, Phys.Rev.E 83 (2011) 061147

Zero determinant condition: does it factorize?

Only if:

L(E) = L1(E1) + L2(E2), K (S) = K1(S1) + K2(S2).

In this case the thermodynamic temperature is given by

1
T

=
∂K (S)

∂L(E)
. (35)

Note: such rules are associative and derived as limiting cases for
subdividing an arbitrary rule in T.S.Biro EPL 84 (2008) 56003

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Example: additive composition

This is the leading term for big systems...

S = S1 + S2, K (S) = S
E = E1 + E2, L(E) = E (36)

T-temperature:
1
T

= S′(E)

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Example: slightly non-additive composition

This includes subleading terms...

S = S1 + S2 + aS1S2, K (S) =
1
a

ln (1 + aS)

E = E1 + E2 + bE1E2, L(E) =
1
b

ln (1 + bE) (37)

T-temperature:
1
T

=
1 + bE
1 + aS

S′(E)

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Example: ideal gas T.S. Biro, Physica A 392 (2013) 3132

Equation of state derivation for E-independent C:

S′(E) =
1
T
, S′′(E) = − 1

CT 2 (38)

Integrations

− S′′(E)

S′(E)2 =
1
C
,

1
S′(E)

=
E
C

+ T0,

S(E) = C ln
(

1 +
E

CT0

)
, (39)

with S(0) = 0.

Biró, Barnaföldi, Ván Temperature, Entropy
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Generalized Zeroth Law

Example: ideal gas T.S. Biro, Physica A 392 (2013) 3132

There is mutual information:

I = S(E1) + S(E2)− S(E)

= C1 ln
(

1 +
E1

C1T0

)
+ C2 ln

(
1 +

E2

C2T0

)
− C ln

(
1 +

E
CT0

)
(40)

Superstatistical and Rényi interpretation with

− ln pi = − ln〈e−βEi 〉 = Ci ln
(

1 +
Ei

CiT0

)
= S(Ei)

we obtain
I = ln

p
p1p2

. (41)
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q-entropy for ideal gas
Universal Thermostat Independence principle

Example: ideal gas T.S. Biro, Physica A 392 (2013) 3132

IS 6= 0 for additive energy E = E1 + E2.

What is another entropy, K (S), for IK (S) = 0
(i.e. K(S) additive)?

Answer: K (S) = λE + µ; with K (0) = 0 and K ′(0) = 1 the
unique formula is

K (S) = C
(

eS/C − 1
)

(42)
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q-entropy for ideal gas
Universal Thermostat Independence principle

Example: ideal gas T.S. Biro, Physica A 392 (2013) 3132

Several subsystems: KN(S) =
∑

i Ki(Si)

Several repeated subsystems ∼ ensemble:
K∑

Ni
(S) =

∑
i NiKi(Si).

Probability interpretation: Ni = Npi , N =
∑

i Ni ;
∑

i pi = 1

K (S) =
∑

i

pi Ki(− ln pi) (43)

This generalizes the Boltzmann-Gibbs-Planck-Shannon
formula.
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q-entropy for ideal gas
Universal Thermostat Independence principle

Entropy formulas q = 1− 1/C; C = 1/(1− q)

Entropy formula for S additive: Gibbs

S =
∑

pi (− ln pi), (44)

Entropy formula for K (S) additive: Tsallis

K (S) =
∑

pi K (− ln pi) =
1

1− q

∑(
pq

i − pi
)
, (45)

Alternative entropy formula: Rényi

S = K−1 (K (S)) =
1

1− q
ln
∑

pq
i . (46)

Biró, Barnaföldi, Ván Temperature, Entropy



Temperature and Energy Fluctuations
Finite Heat Bath Effects

Entropy formulas from zero mutual Information
Summary

Backup Slides

q-entropy for ideal gas
Universal Thermostat Independence principle

Composition rule T.S. Biro, Physica A 392 (2013) 3132

Formally additive (formal logarithm): K (S) = C
(
eS/C − 1

)
Composition rule

S = C ln
(

eS1/C + eS2/C − 1
)

= S1 + S2 −
1
C

S1S2 + . . . (47)

For K (0) = 0 and K ′(0) = 1 the subleading rule is always
Rényi-Tsallis-like.
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q-entropy for ideal gas
Universal Thermostat Independence principle

Generalization T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

Additive E , K (S) (non-additive S)

Maximal q-entropy of two systems:

K (S(E1)) + K (S(E − E1)) = max . (48)

First derivative wrsp E1 is zero =⇒

K ′(S(E1)) · S′(E1) = K ′(S(E − E1)) · S′(E − E1) = βK (49)

Traditional canonical approach: E1 � E .
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q-entropy for ideal gas
Universal Thermostat Independence principle

Generalization T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

S(E − E1) = S(E)− S′(E) E1 + . . .

Effects to higher order in E1/E are better compensated in the
following expression

βK = K ′(S(E))·S′(E)−
[
S′(E)2 K ′′(S(E)) + S′′(E) K ′(S(E))

]
E1 +. . .

if the square bracket vanishes.

This we call Universal Thermostat Independence - UTI -
principle.
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q-entropy for ideal gas
Universal Thermostat Independence principle

Generalization T.S.Biró, P.Ván, G.G.Barnaföldi, EPJA 49: 110, 2013

This leads to the UTI equation:

K ′′(S)

K ′(S)
= − S′′(E)

S′(E)2 =
1

C(S)
. (50)

for a general eos leading to an arbitrary C(S) relation.

At the same time the thermodynamical temperature no more
coincides with the spectral temperature:

1
T

= K ′(S(E)) · S′(E) =
∂K (S(E))

∂E
=

1
TGibbs

· K ′(S). (51)
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q-entropy for ideal gas
Universal Thermostat Independence principle

Example: ideal radiation

E = σVT 4, pV =
1
3
σVT 4, S =

4
3
σVT 3.

Heat capacities:

CV = 4σVT 3 = 3S, CS = σVT 3 =
3
4

S, Cp =∞ (52)

K (S)-formula for th e.o.s. class C = S/(b − 1):

K (S) =
K ′(S0)

b

[∑
i

pi

(
− ln pi

S0

)b

− 1

]
+ K (S0). (53)
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Summary

There are temperature fluctuations, they cannot be
Gaussian.
Ideal gas suggests Euler-Gamma distribution and
q-entropy formulas.
UTI principle generalizes the entropy formula construction
procedure.

Outlook
Need for realistic modelling of the finite heat bath in heph.
Adiabatically expanding systems differ from constant
volume systems.
Non-extensivity must mean a finite C for infinite V or N.
Is there a Minimal Mutual Information Principle?
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Ideal Photon Gas: Basic Quantities

Thermodynamic quantities from parametric Equation of State

E = σT 4V , pV =
1
3
σT 4V

Gibbs equation

TS = E + pV =
4
3
σT 4V

Entropy and Photon Number

S =
4
3
σT 3V , N = χσT 3V .
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Ideal Photon Gas: Differentials

dE = 4σT 3VdT + σT 4dV

dp =
4
3
σT 3 dT

dS = 4σT 2VdT +
4
3
σT 3dV

dN = 3χσT 2VdT + χσT 3dV
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Ideal Photon Gas: Heat Capacities

BLACK BOX scenario (V=const.)

CV = 4σT 3V = 3S = 4χN,
∆T
T

∣∣∣∣
V

=
1

2
√
χN

ADIABATIC EXPANSION scenario (S=const.)

CS = σT 3V =
1
4

CV ,
∆T
T

∣∣∣∣
S

=
1√
χN

IMPOSSIBLE scenario (p=const.)

Cp =∞, ∆T
T

∣∣∣∣
p

= 0
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Ideal Photon Gas: Relations between Variances

Always: ∆S
S = ∆N

N

BLACK BOX (V=const.): ∆S
S = 3 ∆T

T

ADIABATIC (S=const.): ∆V
V = 3 ∆T

T

ENERGETIC (E=const.): ∆V
V = 4 ∆T

T

Volume or temperature fluctuations or both?
Gorenstein,Begun,Wilk,...
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Several Variables: S(E ,V ,N, . . .) = S(Xi)

Second derivative of S wrsp extensive variables Xi constitutes
a metric tensor g ij .

It describes the variance ∆Y i∆Y j with Y associated intensive
variables.

Its inverse tensor gij comprises the variance squares and mixed
products for the Xi -s.
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How to measure all this ?

Fit Euler-Gamma or cut power-law =⇒ T ,C
Check whether ∆T/T = 1/

√
C

If two different C-s, imply "sub + res" splitting

Check E and ∆E by multiparticle measurements
Vary T by

√
s and C by Npart

Biró, Barnaföldi, Ván Temperature, Entropy


	Temperature and Energy Fluctuations
	Finite Heat Bath Effects
	Entropy formulas from zero mutual Information

