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Abstract

The presented model of the development of civilizations, inspired by

the best strategy game of all PC times by Sid Meier1, is assumed to follow

certain simple differential equations in the long term behavior. Starting

with basic population dynamics we arrive at questions of peace and war,

free trade, culture, science and technology in a deterministic single civ

approach. A case study for parameter resetting reveals how to extract

civilizing strategies from this study.

1 The mathematics of history

It is contemporarily still debated whether ”the” history of civilized humanity
can be modeled in mathematical terms at all, and if yes, whether we can select
out exactly those good models, which allow for sufficiently rational conclusions
overriding the spiritual and intellectual costs paid for constructing and exploring
the very mathematical concepts necessary to make quantitative predictions on
this subject. It seems to be worth to start this endeavor only then, if it is not a
priori hopeless to conclude from simplified models, reduced to the quantitative
description of a few characteristics of folks, communities and their civilizations,
at a useful strategy for guiding our own civilization towards success. And to do
this with a chance somewhat greater than just blind odds. Who has no such
hope, should stop to read here.

Based on the above outlined attitude I list my basic assumptions about the
history of human civilizations as follows.

• The history is one and unique. Its details, however, reveal statistical prop-
erties and there exist explorable rules, similar to other scientific problems
like evolution of life, our planet Earth and cosmology.

1TM CIV
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• The characteristic basic unit of the historical evolution process is the civi-
lization. Civilizations have an autonomous, internal dynamics, established
by natural laws of physics and biology and by available resources from the
environment actually cultivated by that civilization, as well as external
influences on this dynamics stemming form interactions with other civi-
lizations.

• The most important fundamental order parameter for the autonomous
evolution is the increase and decrease of the population. In the last ten
thousand years of mankind this is the most prominent pointer. The basic
equations of civil dynamics are equations of population dynamics2, only
their parameters are not exclusively of biological origin.

• The interactions among civilization units (empires, nations, city-states)
modify the parameters of these basic equations, forming this way the
most remarkable pointer, the population number. Increase of the rate of
growth (acceleration) in general happens on the account of reducing the
expansion rate of others (neighbors, enemies, friends). At the same time
a rationalistic strategy of promoting the own growth has to be centered
around a careful deliberation of possible gains and necessary losses.

• Random events, exceptional odds (wonders, great personalities, chance)
may play an influential role, but already a deterministic model should be
able to formulate predictions. These can be re-checked on past historical
events, which were not part of fitting the model parameters. The uncer-
tainty of this control, however, might be large, since past historians were
not half as much interested in statistical aspects of history as in the en-
tertaining value of their presentation. Our insights in the simple model
presented below will be tested in CIV games with simple strategies.

• The human history up to now and presumably in the future shows a vague
epochal structure. The reason for this feature may be some ”bottle-neck”
effect in a narrow range of optimal ensembles of development parameters.

In the CIV game the basic unit is a city (village, town, metropolis) with some
(cultivated) area of influence and resource gain. The growth of population, in
case of sufficient resources, is almost automatic, in case of insufficiency stag-
nation or famine may occur stopping or even reversing the population growth.
The consumption is proportional to the number of people3. The area integrated
production rate can be improved: either by enclosing new areas and with that
new resources, or by erecting proper communal institutions, or by developing
new technologies, or by increasing the ratio of specialized experts to ordinary
workers and tax payers. Alternatively, in some state forms on the short run
the rate can be increased also by spending state money or sacrificing a part
of the population, but this money has to be earned first from taxes paid by

2Thomas Malthus has formulated this most cleanly.
3It is indicated in the game for each city on a logarithmic scale.
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the sometimes unhappy population or from profit branched off from trade. A
vigorous spiritual life and blooming culture has a beneficial influence on the
common mood and by that on the stability of government and on the devel-
opment projects mentioned above. All this activities are entangled. There is
a room for rivalry as well as for cooperation with other civilizations in terms
of wars, trade or diplomacy. As a thumb rule a flexible, intelligent reign, pre-
emptive to ever changing challenges leads to victory (or at least helps to avoid
extinction).

Even the CIV simulation itself is too complicated for a direct mathematical
analysis (not mentioning real human history). Furthermore the equations of
the simulation are not made public4. Here we aim to discuss something much
simpler, a mean field model of a single civilization faced to an average rival envi-
ronment of other civilizations. We hope that simplicity helps to learn something
about this complex and fascinating subject.

2 The base: population dynamics

The starting point of my model investigates the dynamics of population. A
population may grow or decrease due to a number of elementary biological
reasons. The rate of growth is determined by the actual number of population
and some constants parameterizing the quality of the life niche. The simplest
general formula describing such a reproduction rate is given by

p(t + d) = p(t) + d (s − µ) p(t) (1)

with p(t) being the population at time t, t+d the next instant investigated (e.g.
one generation - . 25 years - later), s the reproduction rate and finally µ the
death rate (exit rate from the fertile population). Investigating time scales on
which d is a small number the basic equation becomes a differential equation:

ṗ = (s − µ) p. (2)

According to the balance between the rates of reproduction and decease (more
precisely the exit form the fertile population) the total number of peoples grows
for s > µ and goes back for s < µ. The reproduction dynamics is exponential,
as it has been formulated by Malthus:

pMalthus(t) = p0 exp ((s − µ)t) . (3)

Assuming a polygamic reproduction process, when every prospective partner
is included in sexual activity, the growth rate of the population is even more

4An exception is freeciv by the Linux community. But it is a highly nontrivial task to

reconstruct mathematical equations from the public source code.
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Figure 1: Population growth dynamics in monogamic and polygamic popula-
tions. The rate of increase ṗ as a function of the number of individuals p reveals
attracting or repelling fixed points. The time evolution curves start normalized,
from p = 1. The parameters are s = 1, µ = 0.5 for the exponential increase,
s = 1, µ = −0.5 for the exponential decrease and finally λ = 1, µ = 0.5 for the
divergent scenario (red line).

dramatic5. The reproduction rate s itself is proportional to the population
s = λp. In this case more and more people helps a wildly increasing number
of heirs to existence with more and more partners. The heirs in a certain but
high enough percentage are also fertile. There is a serious chance to perform a
really uncontrolled growth of such a population. Without a loss rate (µ = 0)
the population number will diverge within a finite time:

ṗ = λp2 (4)

has the solution
p(t) =

p0

1 − p0λt
, (5)

which becomes infinity at the time instant t = 1/p0λ for any starting value
p0. This model must have some shortcomings. The little more sophisticated
equation, taking into account a finite death rate, is

ṗ = λp2 − µp. (6)

This means growth if p > µ/λ, otherwise stagnation or decrease. The population
must have achieved a minimal number in order to avoid extinction. Beyond
this Malthus point starts the unlimited growth. Such cases must have ample
precedence in biological systems.

5Probably it is not accidental, that this scenario was not considered by the Victorian

Malthus.
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Even with finite µ the population diverges after a finite time:

p(t) =
p0pMe−µt

(pM − p0) + p0e−µt
(7)

for p0 > pM = µ/λ formally leads to p(tdiv) = ∞ after passing the time

tdiv =
1

µ
ln

p0

p0 − pM
. (8)

3 Limits of growth: consume

The reproduction behavior of real human populations is neither totally mono-
gamic nor hundred percent polygamic. As it will be shown at the end of this
paper, already a weak degree of polygamy leads to the same qualitative behavior:
below a certain minimal number the population dies out. In this section we
shall, however, experience that taking the limits of growth6 into account there
is no qualitative difference between monogamic and polygamic societies in the
population saturation behavior.

The growth is stopped by the exhausting of resources, which is followed by
a decrease in the reproduction ability. Both the monogamic rate s and the
polygamic rate λ is proportional to the area A from which resources (raw ma-
terial, food, energy) are gained and to their occurrence density r (the latter
including as a factor the level of technology practiced by the civilization). This
is important, this makes the rivalry for controlling areas to a fundamental factor
in civilization dynamics. The reproduction ability is decreased due to consump-
tion, due to use of the resources for purposes other than biological reproduction.
The c proportionality constant in this term is the ’per capita’ luxury waste. The
so far constant parameters become linear functions of the population in this next
level approximation:

ṗ = (rA − cp) p − µp,

ṗ = (rA − cp) p2 − µp. (9)

In both cases a saturation number, pS , occurs signaling the maximal use of
resources. Below this point the population increases above it decreases, so this
is a stable fixed point (cf. Figure 2.). After long enough time the population
number saturates to this S-point if the resource usage rA surpasses a minimal
value, in the opposite case the civilization is unsuccessful and the population
dies out.

The saturation value of the population becomes

pS =
rA − µ

c
, (10)

6Club of Rome
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Figure 2: Population dynamics with reproduction rates depending on the pop-
ulation linearly. The growth rate ṗ as a function of the number p reveals at-
tracting (stable) and repelling (unstable) fixed points. On the red line to the
right X denotes the extinction point, M the Malthus point, beyond that the
population growth sets in, and finally S the saturation point, where an equilib-
rium between reproduction and consumption is established. The condition for
not to become extinct are A > µ/r in the monogamic and A > 2

√
µc/r in the

polygamic demographic scenario, respectively.

in the monogamic case, and

pS =
rA

2c

(

1 +

√

1 − 4µc

r2A2

)

. (11)

in the polygamic case. In the first case saturation is possible if A > µ/r,
i.e. the resources collected from the total controlled area (rA) overcome the
effect of natural death (aging, emigration, etc.). The second case is even more
interesting; now the minimal resource value has to exceed twice the geometrical
mean of the per capita state consumption and mortality rate, rA > 2

√
µc,

otherwise de-population follows7. When the area and the effectivity of gaining
resources from it are large, then the saturation number can be approximated
by pS ≈ rA/c, while the Malthus point shrinks towards a small number, pM ≈
µ/rA. Between these two points a phase of growth occurs, the golden age of
a civilization. It is obvious that for a given mortality rate µ and consumption
c an elementary interest is to increase the product rA. The area, A can be
increased by emigration followed by colonization or by conquest, the factor r
can be boosted by technological development. The area also may be effectively
increased without the physical motion of the own population by vigorous (free)
trade8. These possibilities will be analyzed in later sections.

7E.g. overextended taxation may cause famine, emigration or increased crime.
8Free trade is also an act of aggressivity, but sometimes both parties enjoy it.
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Figure 3: The dynamics of areal growth at fixed population. The attracting
fixed point LS =

√

m/p is in this case at LS = 1.

4 Areal dynamics: colonization

It is a simpler, faster process to increase the area under the control of a civi-
lization than the effectivity of resource usage. It is more so at the beginning,
at the dawn of civilization, when there is a lot of unused area (virgin land) but
the technological evolution is slow. The factor A increases without any partic-
ular conflict with other civilizations simply due to emigration and settlement –
shortly due to colonization.

We shall characterize the dynamical growth of the civilized area by the following
equation:

Ȧ = 2κ
( p

A
− m

)√
A. (12)

In this model the local drive behind the colonization process is the population
density p/A. If this exceeds a certain threshold value, m (stands for migration
threshold), then the settled area grows. A further important feature is that
the size of the frontier area helps the emigration: we assume that the rate
of colonization is proportional to this measure. Since the area occupied by a
civilization, i.e. the land, is two dimensional, the size of the frontier area is
proportional to the square root of the area,

√
A. This is true for any convex

shaped land9.
For the sake of transparency it is worth to introduce the substitution A = L2,

and to regard the equation for the linear size L (limes):

L̇ = κ
( p

L2
− m

)

. (13)

This equation (13) or equivalently the equation (12) couples to the demographic
equation (9) in either the monogamic or the polygamic version.

One can assume with right that the area growth is faster than the change in
the population (although by numerical computation the general case can be

9In general a fractal power of A smaller than 1/2 may also be considered
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Figure 4: Population dynamics in the areal fixed point. The monogamic (left)
and polygamic (right) reproduction strategy both leads to a Malthus point (M).
The actual curves have been drawn for r/mc = ±1.

investigated, too). For the colonization a time shorter than a generation is
sufficient. In this case the equation (13) can be analyzed at constant p.

Substituting the equilibrium area value AS = L2
S = m/p into the demographic

equation (9) describing the slower process we arrive at an interesting result:

ṗ =
( r

m
− c
)

p2 − µp

ṗ =
( r

m
− c
)

p3 − µp. (14)

It is surprising but both the monogamic and polygamic practice leads to qualita-
tively similar demography (see Fig.4) in the rapid colonization scenario. When-
ever a civilization possesses sufficient resources, i.e. r > mc, then a Malthus
point occurs, below which extinction and beyond which an accelerating growth
waits for the civilization. The growth is limited only by the finiteness of the
total area for all civilizations introducing an era of wars among different cul-
tures. If r < mc, so the consumption is too high relative to the resource usage
efficiency, then the decline of the population is ensured. Alone the value of the
Malthus point is different for the different demographics:

pMONO
M =

µ
r
m − c

pPOLI
M =

√

µ
r
m − c

. (15)

4.1 The large area limit: empires

The common dynamics of the population p and the civilized area A can also
be studied analytically in the limit of large area and fast colonization. Let us
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consider the α-polygamic demographic equation

ṗ = (rA − cp)p1+α − µp, (16)

where α = 0 belongs to the monogamic and α = 1 to the fully polygamic
reproduction habit. We consider the fast growth limit; in this case the first
term dominates rA ≫ cp and rA ≫ µ:

ṗ = rAp1+α. (17)

The colonization is also assumed to be fast, the population density being well
over the migration threshold p/A ≫ m. In this case the area dynamics of eq.(12)
can be approximated by

Ȧ = 2κpA−1/2. (18)

These equations allow us to consider the population as a function of the civilized
area directly. We get

dp

dA
=

r

2κ
A3/2pα. (19)

The analytic solution at asymptotically large area is given by

p ∼ 1

1 − α
A

5
2

1
1−α (20)

In particular in the monogamic scenario α = 0 and one predicts a certain power
law, p ∼ A5/2, in the early fast growing period of a civilization. For α = 1 the
solution is exponential, p ∼ exp(A5/2) and for e.g. α = 1/2 one obtains p ∼ A5.

We have tested this power law prediction in some CIV games. In Fig.5 the
population p is plotted against the colonized area A in a double logarithmic
scale. In this presentation the power law is represented by a straight line. The
game data lie on the power-law line with the monogamic power 5/2 for a long
period of evolution. After achieving the industrial age other synergic factors
seem to be switched on, because the power increases to 5.
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Figure 6: The increase of the world population based on UN and US Census
Bureau data (which contain also predictions) and by our various assumptions.
The different presentations range from the linear, logarithmic and inverse pop-
ulation time series to a phase space approach plotting the rate of change dp/dt
against the actual population number p in the bottom roght corner. The thick
red vertical line indicates the world population at the beginning of 2007.

4.2 Case study I: world population

We also tested the demographic equation on world population data, available on
the internet from US Census Bureau and The United Nations Organization. The
phase space presentation plotting ṗ versus p allows for predictions in the most
transparent way (cf. the bottom right plot on Fig.6). Although the spread of
data is quite appreciable, a prediction of saturating Earth’s population between
8 and 12 billion can be made. This prediction is based on the leveling off in
the population growth rate ṗ/p in the 1960-s. The different curves show the
growth rate dp/dt versus the population p, counted the derivatives by several
finite time difference formulas (linear in p, linear in 1/p, etc.).

Another view at world population data is given in Fig.7

Since the mark p0 = 3 billion has been achieved in 1960 a linear decrease trend
is manifested in the annual growth percentage ṗ/p = (rp0/m − µ) − cp. This
behavior belongs to a constant (most probably saturated) area of resource use
by Earth’s civilizations. The predictions by the UN follow this line, predicting a
maximal population of about ten billion around 2100. In the earlier evolution the
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resource area growth seems to be well fitted by the fixed point of our colonization
equation: p = mA. In this case ṗ/p = (r/m − c)p − µ, for r > mc giving a
rising line. The dynamics ṗ ∼ p2 has lead the Club of Rome to the well-known
conclusion that the population growth hyperbolically, diverging around 2050.
Strange that this trend has just been inverted for the 1970-s.

The UN data from 1999 fit well these two lines. From this we obtain the following
parameters for our demographic and area growth equations: The net population
loss rate is about µ ≈ 0.002 yearly (0.2 per cent of the total population). The
consumption factor is c ≈ 0.00344 per year per billion person. The resource
usage relative to the migration threshold becomes r/m ≈ 0.001144 per year per
one billion person. Finally the crossing of the lines occurs at p0 = 3.06 billion.
These numbers are, however, only approximate, as the difference between the red
line and black line prediction indicates in the bottom right plot of Fig.6. These
lines have been drawn by assuming a tangent hyperbolic smooth transition from
the rising to the falling line in the ṗ/p plot.

Estimating the civilization area as that of A0 = p0/m ≈ 108 km2 (i.e. 18% of the
planets surface, about half of the land area), we obtain m ≈ 30.6 person/km2 as
the migration threshold and r ≈ 0.35 · 10−9/(year km2) for the resource usage
efficiency. The saturation of areal dynamics has occurred at p0 ≈ 3 billion, in
the year 1960 according to the UN data of 1999.
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(16) with α = 0 are obtained from fitting the linear range.

4.3 Case study II: CIV games

Since statistical data from history are rare and insecure, it is interesting to an-
alyze simulation data. In the Tomgis game with CIV-4 (settler level, huge map,
marathon speed and no wars) we have monitored the population, its growth and
the area of the selected civilization. Fig.8 presents the population dynamics as
a function of time (left) and in the phase space (right).

In Fig.9 the parameters of the monogamic demographic equations are obtained
for a given game in a minimal (dual) world with no wars and quick evolution
speed. The logarithmic growth rate, the basic demographic variable is inves-
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tigated as a function of the area10. The linear part of the evolution fits well
the monogamic equation (16) with α = 0. In the late phase the area saturates,
because no more virgin land is available. A further growth in A could only be
achieved by war, which was not practiced in this particular game. However the
population growth continues, the evolution is still well ahead of the saturation
point.

5 Areal dynamics: war and peace

Of course it is impossible to grow infinitely in a finite system. As the virgin
lands11 full with resources and free for colonization become sparse and even-
tually diminish, the dynamics of area growth changes. In this process warlike
conflicts take over the place of colonization and cultivation; this probably has
happened first between the neolithic and the classical antique era. The devel-
opment of technology, science and a general civil culture may ease this process
time to time making available an intensification of resource usage; therefore
wars occur in several cycles at essentially unpredictable times. At the same
time the evolution of technology, area and population drives the trend for more
and more devastatingi wars. Beyond a certain level war-devastation may be dis-
advantageous even for the victors; this way a new regulating mechanism emerges
through the rational deliberation of war and peace. In this section we model this
process by simple mathematical means, assuming that the aim of deliberation
is connected to the wish to increase the own resource usage, rA = rL2.

Due to a war the area colonizable by a given civilization may be increased, but
the reduction in the population growth rate is unavoidable due to the very ef-
forts necessary for that war. A balance between these two processes may lead
here to a stationary state, statistically characteristic for a given era and larger
area. For the sake of a simplified analysis we do not consider the interaction
(war) of civilizations pairwise, but rather treat this phenomenon in the frame-
work of a mean field model: a single civilization is regarded against an average
environment of other (hostile, neutral or cooperating) civilizations.

According to our basic assumption the main sacrifice due to conducting a war is
not the direct death of participating (or in the case of civilians just misfortunate)
people, but the decrease of the growth factor: we assume that the factor rL2 is
reduced to rL2 − hv, denoting by h the war weariness per capita and by v the
average victory factor of the contestants against us. The latter is conjectured
to be proportional to the average population of the ”enemies”, v = α〈p〉. The
demography equation (here we consider the full polygamic version, but this
makes no qualitative difference) is modified during wars:

ṗ = −cp3 + (rL2 − hv)p2 − µp (21)

10CIV-4 makes statistics of population and area among others.
11Gardens of Eden
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The saturation point in peace, pS is endangered, unless the risk hv is not neg-
ligible compared to our resources rL2: we are a big empire, an international
superpower or technologically so advanced that our foes even cannot steal our
knowledge. In the case when (rL2 − hv) ≤ 2

√
µc our own civilization may slide

into an extinction path. In such cases it would be a catastrophe to initiate a
war from our side12.

Yet there were (and are) wars. We would like to know whether is it sometimes
rational to initiate a war (at least in the CIV simulation). On the other hand
is the principal pacifism an utopistic dream or it can be a result of rational and
utilitarian deliberation? Is there any difference from this viewpoint between
small and poor (small rL2) and large and rich (large rL2) civilizations? It is
remarkable that the following, hopelessly oversimplified mathematical model
gives some answers to the above questions at all. It is a separate question how
much one likes or dislikes these answers.

The result of a war, besides the aching loss in the reproduction strength, could
also be a gain in the area under control, with a certain probability. Let the
probability of victory, due to which an increase in the linear size occurs, L →
L + a (a stands for annection), be V , the probability of an approximately same
areal loss (L → L− a) on the other hand D (for defeat). If there were no other
option, like a compromise peace treaty, which reestablishes the status quo before
the war and usually triggered by war weariness, internal rebellion or financial
crash, then V + D = 1, otherwise V + D < 1. There is no way to peace, peace
is the way. The probability of this third way is denoted by P . In any case
V + D + P = 1.

Based upon this the condition for avoiding the extinction path due to a war
weights the results with the respective probabilities:

(

r(L + a)2 − hv
)

V +
(

r(L − a)2 − hv
)

D +
(

rL2
)

P > 2
√

µc. (22)

Executing the quadrations and subtracting rL2 from both sides of the inequality
we arrive at the rational condition for initiating a war:

2rLa(V − D) + (ra2 − hv)(V + D) > 2
√

µc − rL2. (23)

The expression on the right hand side of this inequality is negative, since before
the war the initiator civilization was on a population growth track: the pS satu-
ration point existed. In order to reduce the triggering off a war in the model, i.e.
considering the basically peaceful nature of the human psychology, we consider
a stronger condition for a civilization to become interested in unleashing a war
with the others:

2rLa(V − D) + (ra2 − hv)(V + D) > 0 > 2
√

µc − rL2. (24)

12Remember the fortune-telling in Delphi: ”If you start this war a great empire shall be

ruined”.
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Figure 10: The rational, the pacifist and the hawk deliberation lines for a civi-
lization of size L for a war initiated to gain territorial control against an average
strength environment as a function of the expected gain in linear size, a. The
actual curve shown was made with the parameters 2L = 1 and hv = r.

From this condition the following ”rational” deliberation can be derived: it is
promising to risk a conflict in the hope of achieving a growth like L → L + a, if
the odds for victory V and defeat D do satisfy the following inequality:

V − D

V + D
>

1

2L

(

hv

ra
− a

)

. (25)

This formula has some interesting lessons. Let us start with the simplest: if
hv = ra2, i.e. the expected loss is just equal to the expected gain in our growth
factor, then it should be V > D, i.e. the victory shall be more probable than
defeat.

The decision about war is often made then, when the ”good old status quo”
cannot be kept any more. If peace is no alternative, then P = 0, therefore
V + D = 1. But this is only a special case of the following analysis.

Whenever peace is also an alternative, P > 0 and hence V +D < 1, the left hand
side of the inequality (25) is larger, the condition is lighter. If the expected loss
is huge, hv ≫ ra2, then the requirement on V −D is stronger; a greater chance
of victory is demanded for starting a war on a rational basis. In any case the
odds for victory and defeat both are numbers between zero and one, therefore
V − D falls between −1 and 1. Whenever V + D is close to 1, i.e. there is
little chance for keeping the area, it will either be increased or decreased, then
the line V = 1, D = 0 means the sure victory, and the line V = 0, D = 1 the
certain defeat. Beyond these lines, independently of the victory chance, exist
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Figure 11: The regions of rational peace and war on the map of the present and
gainable resources (rL2, ra2). The region for deliberation opens up between the
lines (V − D)/(V + D) = −1 and (V − D)/(V + D) = +1: this rapidly grows
with rL2. This figure is made choosing hv = 1.

the regions of lasting peace and unresting wars. This border in the rational
deliberation is indicated in Fig.10 by the red line.

For the sake of comparison we also show the line of the extreme pacifist con-
sideration, reducing the factor hv/ra − a to hv/ra (i.e. neglecting the lure of
a possible gain in size), and the line of the war hawks, seeing only the possible
area gain and hence counting with −a instead of hv/ra−a in the formula. These
strategies are indicated by blue and green lines, respectively.

Figure 11 circumlines the regions of (rationally) sure peace and war on the
map spanned by the resources risked to gain or loose, ra2, and by the starting
resource strength of the civilization, rL2. Peace rules in the bottom, war in
the top region. It is easy to inspect that around the trivial midline, ra2 = hv,
opens up the region of rational deliberation about war or peace. The lower
border of this region is characterized by (V −D)/(V + D) = −1, the upper one
by (V − D)/(V + D) = +1. The asymptotic lines for large rL2, relevant for
great and rich civilizations, are the lines of pacifists, ra2 = (hv)2/4rL2, and war
hawks, ra2 = 4rL2, respectively.

It is clear that even in those times, when keeping the status quo is not an
alternative, i.e. V +D = 1 and P = 0, the freedom in deliberation for great and
rich civilizations grows rapidly with respect to the meridian of equal gain and
loss, ra2 = hv. It seems that developing in economic and population strength
increases the chances both for world wars and for the world peace.
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6 Resource improvement: technological devel-

opment

War becomes less and less an alternative by the diminishing of gainable re-
sources. In such cases ”smart” civilizations try to increase the factor r instead
(or besides) L. They try to intensify the use of resources on their given area by
developing scientific research and technological applications. In a broad sense
social and cultural practice, which increase the r factor, are also technological;
such are in particular state forms, legal inventions, or expansive religious ideolo-
gies. As a side effect the death rate, µ may be reduced (inventions in medicine,
public health and hygienics), and new areas can be included in resource us-
age, regarded as worthless before the progress (e.g. oil fields, sea plantages,
geothermic heat). Such steps increase L without reducing the area of other
civilizations.

Furthermore if science and technology develop, so does war technology, so the
quantity V −D can also be increased by scientific research. Exactly by promis-
ing this may gain the developer some support from the representatives of the
community (in the rule from sovereigns or other influential and rich people).
On the other hand a runaway technological progress, due to the pollution of
environment by increased waste production and due to the too rapid exhaus-
tion of natural resources, the effective (usable) rL2 factor may even be smashed
down in a sudden crisis13. Of course, it is not an alternative to give up and
stop searching for further possibilities to increase the growth. But ”sustainable
growth” may be just a dream without considering new ways to increase rL2; in
the very end by dropping the restrictions posed by a lonely planet, Earth.

7 Using the resources of Others: trade

What to do when neither area annecting wars nor the scientific-technological
development does offer us a rapid and sustainable growth? The factor L (or A)
can still be increased virtually, if neighboring or farer away civilizations incline
to share with us their resources: this act at the same time leads to the occurrence
of new professions (traders, road architects, traveling agents), which in turn is
synergic for increasing the resource usage factor r. The new channels of luxury,
of course, eventually also lead to an increased consumption and by spreading
out in the population they may slightly increase the factor c, too. The latter
process is, however, slower, its effect evolves on a longer time scale.

The development of the infrastructure, transport and communication, leads to a
better usage of the own resource area as well as to the usage of an enlarged area
(with regions standing under the domination of another civilizations). Last but
not least it leads to a more effective usage of armies, and this way may increase

13Even Greens might be right in some respect.
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V − D against such follies, who do not invest enough in the development of
trade.

8 Spread of strategies: the culture

Among all possible ways of progress the fastest seems to be the takeover of
strategies developed or discovered by others. It depends on the cultural strength
of a given civilization, on its cultural distance from the other one, that from
whom and which new development can be taken over to increase r or effectively
L, perhaps to decrease µ. A very much backdoor culture may fail to naturalize a
developed social or material technology, e.g. due to a lack of properly educated
people. On the other hand the own development, past successes in compromise
finding peace diplomacy, the luxurious consumption including the ”high cul-
ture”, and the public satisfaction with the religious and education system and
in general with social emergence possibilities all increase the cultural strength.
Briefly, it is the best to be the best, but is not very much rewarding to be even
better than that.

9 Cycles: are they real?

One meets quite frequently with the idea of cycles, eras of rise and fall in the life
of civilizations. Toynbee, Russian authors in particular Kondratyev, but also
medieval Arabic scripts deal with this motive. In a mathematical description
cycles rely on a positive and negative coupling between two mean variables:
one increases the other, but the other decreases the first. In this case a limiting
cycle describes the attracting dynamics in place of some fixed points. In my view
these effects do not play a role on the long term in the dynamics of civilizations
in several hundreds of years. However, since this idea plays an important role
in the human culture, we have to list a brief review:

• The Kondratyev cycles describe economical and financial crises on the
time scale of 10 - 30 years.

• Ibn Khadún had discovered cyclic behavior in the mutual dynamics of
settled, state holding agrarian civilizations and their environing barbaristic
tribes in the twelfth century. When the civilized state weakens (due to
the unavoidable growth of corruption and the corresponding expenses on
the state budget, and due to the growing luxurious consumption of the
burocratic ruling class), it will be militarily defeated by the nomads, who
constitute the new ruling class. The characteristic time for a cycle is about
60 years, two-three human generations.

• Turchin points out secular cycles in the development of traditional agrar-
ian societies observing and mathematically modeling financial and polit-
ical power crises in 100-150 years. Due to Turchin the reason being the
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coexistence of a positive and a negative feed back: the growth of the popu-
lation urges the growth of the state organization, but the expanding state
becomes more and more expensive leading unavoidable to a crisis with
decreasing wages and increasing prices and this effect reduces the popu-
lation. This process is escorted by civil wars and other aggressive acts
triggered by the increased population pressure and price inflation.

10 Shocking events: natural and social catastro-

phes

In the course of history sometimes the random fluctuations exceed the limit un-
der which they can be treated as a background noise. Among these such events
may occur which influence the fate of one or the other civilization essentially;
they cause a sudden, hardly tolerable change in the parameters of the basic
dynamical equations. We call such situations ”shocking events”, a concept akin
to Turchin’s resetting event, but it can be good as well as evil, development
boosting as well as destructive.

Such an event can be a major natural catastrophe (volcano eruption, tsunami,
major earthquake) or a sudden change in the climate (droughts or floods).
Changes of human origin also can cause a sudden change in the parameters;
the chronicles rather record the bad ones (but among these rather those which
could have been tolerated by the civilization). The legend of Atlantis or the
biblical story of the Big Flush show that the effect of such events made people
think already in ancient times.

There are several examples of resetting (population degrading) events from the
Middle Ages: The Mongolian Conquest for East-Europe or the Black Death
(pest) for West-Europe. The characteristic problem for the long term develop-
ment is the sudden decrement of available resources (cultivable land, working
power).

In our simple model the effect of a shocking event can be presented transparently
by an example which has been occurred in the modern Hungarian history. The
shocking event is the coincident and essential drop in the population, p and
resource area A: p′ = 2p/3, A′ = A/3. Let us consider that this happens
in the modern times, when the increase of the area A due to emigration and
colonization is almost done, so this is not an option. At the same time the
medicine and the public health is on a high level, so the approximation µ ≈ 0
can be made. This is a simplified scenario.

The civilization (the social system) was functioning before the event in a stable
saturation point with a population of pS = 15 M (million) and an area of
roughly A = 0.3Mkm2 (three hundred million square kilometer). The area is
reduced suddenly to its one third and the population to its two third by the
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shocking event. Using the above mentioned data the ratio of resource usage to
the consumption/corruption loss was r/c = 50 km−2. In the pure monogamic
(α = 0) demographic model

ṗ = −cp(p− pS), (26)

the population saturation point was at pS = (rA−µ)/c = 15 M, while µ = 0. By
these numbers the sudden drop of the population does not cause an immediate
extinction, the system is expected to develop into the new saturation point,
from p′ = 10 M to p′S = 5 M, within a given time, since rA/c has been reduced
to its one third. What damage was not done immediately by the war, that will
be done by the reduced dynamical parameter due to the disclosure of resources.
At least this should be expected by a simplified rational consideration.

But societies react to the shock by unusual efforts. Instead of waiting for the
new, much lower saturation point to occur, the civilization tries to lift the satu-
ration point close to the actual population number. The people are emotionally
driven to double the factor r in order to reach p′S = 10 M. This, i.e. r′ = 2r,
is in principle achievable; best by a multiple synergic strategy: for example a
+26% increment may be achieved in r by a general reform of the political and
juristic system, another +26% improvement due to a more intensified public
education and finally one more +26% growth due to the development of trade
and financial system. This altogether amounts to r′ = 1.263r ≈ 2r.

The parameter µ in a real situation is of course not zero, mortality, aging of
the society, emigration all contribute. Its value, however, in successful modern
civilizations is relatively low, the ratio of µ/c relative to rA/c may be around
0.01−0.1. To be set to a road to extinction in the monogamic demography model
therefore a reduction to 1 − 10% of the original population belongs. Counting
with one and a half emigrants in the above example the required improvement
in the resource usage efficiency is even higher than considered naively above,
r′/r = 11.5/5 = 2.3. Defactorizing it to three different synergic strategies it
means a 32% increment on each subfactors.

The above analysis, however historically unrealistic, leads to different conclu-
sions in the polygamic demography model. The situation before the shocking
event is characterized by the numbers pS = 15 M, pM = 5 M and A = 0.3Mkm2.
The dynamical parameters extracted from this are

rA

c
= pS + pM = 20M,

µ

c
= pS · pM = 75M2 (27)

The minimal resource usage efficiency necessary to avoid extinction in this case
is given by

(

rA

2c

)

min

=
√

75M ≈ 8.66M. (28)
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This value was rA/2c = 10 M before the shock, it has been reduced to 10/3 ≈
3.33 M by restricting the area A to one third. The latter value is below the
extinction threshold. The survival has now two conditions: i) the value of rA/2c
has to be increased at least to about 8.7 M and ii) it has to be arranged that
the Malthus point, p′M , would not exceed the actual population after the shock,
p′ = 10 M. The minimal increase in efficiency must be r′/r = 8.66/3.33 ≈ 2.6
for a new saturation point to exist at all. If one wants this saturation point
at p′S = 10 M, then considering the same µ/c ratio the new Malthus point
becomes p′M = 75/10M = 7.5M . In order to reach such a stage an increase of
r′/r = 3(9/10) = 2.7 is necessary. For a total compensation of the area loss
effect on the other hand an even higher ratio, r′/r = 3 would be necessary. And
after all these considerations one should not forget that meanwhile the r factors
of the concurring civilizations are also have been increased.

A probably more realistic estimate can be gained if we assume pM = 0.02 M
besides pS = 15 M. It means that below a population of twenty thousands the
extinction path would be followed even with the benign parameters before the
shock. In this case rA/c = 15.02 M and µ/c = 0.3M2. The minimal resource
ratio is 0.5477 M from the formula (rAmin/2c) =

√

µ/c, i.e. about half a million
people. This number is three and a half per cent of the original population, in
this case an area loss of as large as 96% might be survived. These data are close
to the case discussed in the µ/c = 0 approximation, so for a new saturation
point of p′S = 10 M after a reduction of the area to its one third the resource
efficiency must be doubled: r′/r = 2.

11 Slightly polygamic demography

In a realistic human society neither the purely monogamic nor the extreme
polygamic reproduction strategy dominates. A more flexible demography equa-
tion introduces an extra power α between zero and one:

ṗ = (rA − cp)p1+α − µp. (29)

Modern societies may realize a small value, say α = 0.1. This shifts the satura-
tion point only slightly with respect to the pure monogamic case:

pS =
rA − µ

c
+ α

µ

c
ln

rA − µ

c
+ O(α2). (30)

The Malthus point approaches zero, its order of magnitude is α lnα. The con-
dition for growth is given by

rA > (1 + α)µ
1

1+α

( c

α

)
α

1+α

. (31)

This formula leads to rA > µ in the monogamic (α = 0) case and to rA > 2
√

cµ
in the extreme polygamic case (α = 1).
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Figure 12: The phase space of the population dynamics for different α polygamy
indices (in scaled units) to the left, an enlargement of the α = 0.1 curve in the
neighborhood of the Malthus point to the right.

Figure 12 plots the minimal threshold value of the resource to consumption
ratio, rA/c, necessary for a sustainable growth as a function of the polygamy
index α, for several µ/c ratios.

12 Diffusion of population

A possible diffusion model which establishes the above mean field dynamics
can be constructed. In this model the population density is a time-dependent,
two-dimensional field, Π(x, y, t) satisfying a linear diffusion equation,

Π̇ = λ(A, p)∆Π + ϕ(A, p)Π (32)

with ∆ = ∂2
x + ∂2

y being the two-dimensional Laplace operator. The diffusion
constant λ(A, p) and the growth factor ϕ(A, p) depending on the area A(t) and
on the population p(t), will be specified as follows.

The population is defined by the integral of the population density over the
whole (in the theory infinite) world:

p(t) =

∫∫

dxdy Π(x, y, t). (33)

The area of influence, A, will be defined on the basis of the solution of the
diffusion equation (32). The solution normalized according to eq.(33) is given
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by

Π(x, y, t) =
p

A
e−π(x2+y2)/A. (34)

Here the area parameter is bound to the width area of the Gaussian solution,
it is the expectation value of the area of a circle weighted by the population
density:

A = 〈π(x2 + y2)〉. (35)

Substituting the solution (34) into the diffusion equation (32) one arrives at

ṗ = ϕ(A, p) p

Ȧ = λ(A, p). (36)

Here the functions ϕ(A, p) and λ(A, p) can be set to those treated in the mean
field approximation. In particular the annual growth factor ṗ/p follows the
population dynamics behavior of the monogamic scenario

ϕ(A, p) = rA − cp − µ, (37)

and the diffusion coefficient is set to

λ(A, p) =
κ

2π

( p

A
− m

)√
A. (38)

For the purpose of the further analysis we express the area of influence
defined as the area where the population density exceeds a forefixed threshold
value, w (i.e. Π(x, y, t) ≥ w for π(x2 + y2) ≤ Aw). For the Gaussian solution
this is given as

Aw = A ln
( p

wA

)

. (39)

The main hypothesis of the diffusive model presented in this section is that the

migration and colonization of the civilization tries to maximize this area, since
this optimizes the growth of the civilization at a given population number. The
position and the value of the maximal area can best be expressed by using the
square width area, A(t), defined in eq.(35). The position of the maximum of
Aw at a fixed p in eq.(39) is given by

Aw,max =
p

we
= Amax (40)

with e ≈ 2.72 being the Euler number. It is intriguing that this maximal area
value is proportional to the population; this phenomenon has been observed in
several CIV games.

It is finally interesting to compare the mean field dynamics of the controlled
area, comprised in eqs.(36, 38) with the area maximizing hypothesis at the
fixed population density threshold. The evolution equation for the Gaussian
area A(t), which follows from these two equations,

Ȧ = 2κ
( p

A
− m

)√
A, (41)
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can be re-written in terms of this maximal area if choosing m = we as the
migration threshold in mean field dynamics:

Ȧ =
2κ√
A

(Aw,max − A) . (42)

The dynamics described by eq.(42) not only stabilizes A at Aw,max(p) for a
given population p, but it does so with a rate diminishing by the linear size
of the empire, λ ∝ 1/

√
A. This reflects the fact that late colonialist must

migrate a longer distance before finding virgin areas to civilize. This effect is
similar to the well-known phenomenon of the ”stretching of the train” from
studies of military expeditions, in particular in the antique (e.g. Alexander the
Great). The factor κ may be increased by better roads and other technological
developments boosting the speed of traffic.

13 Summary: solving or making equations?

The traditional attitude towards mathematical models in sciences like theo-
retical physics is solving equations. The sensitivity to initial conditions and
parameters, mostly assumed to be constants, is a primary goal of the stud-
ies in order to gain some control and insight about phenomena to govern. In
the mathematical models of human relations and large systems including the
conscious human component rather the equations themselves are to be found.

Two characteristic features can be formulated: i) It can never be assumed that a
parameter is less changeable then the so called variable and ii) these parameters
depend on the other variables in a way which may seem to be purposeful: human
societies after a while select strategies to optimize important factors. And, like
in the case of the evolution of competing species in the drama of life, those are
more likely to survive and prosper longer, whose goals include the growth of the
population, or any important variable which is synergic to the growth of the
population.

The simple model presented in this paper has therefore no request to be final.
However, the basic dynamics of integral quantities of a distributed population,
which is handling under the influence of random forces but communicates her
experiences internally, in the way of the past human history contains a ”Malthu-
sian” element, therefore a demographic equation must be part of any mathe-
matical model of the rise and fall of civilizations. Furthermore it arises quite
naturally from a view of human migration and colonization as a locally (in the
population density) linear process that the area of influence of civilizations is the
second main factor describing the dynamics. This has a very simple mathemat-
ical ground: a Gaussian population density has two independent parameters,
its integral norm and its width, and due to the central limit theorem a large
number of random effects are bound to lead to a Gaussian distribution. Excep-
tion from this rule are non-equilibrium, non-stationary and open systems, and
non-locally interacting networks.
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The latter is rather typical for the evolution of the parameters of the basic
dynamical equations, like the resource usage efficiency r, the braking effect of
consumption on the population growth, c, the mortality µ, the probabilities
of victory and defeat in wars for area and resource increase, because these
are the objects of human strategies. This is also the ultimate sense to play
with mathematical models and simulations of the civilizatory evolution and
dynamics: we may – at the end – extract deals for our present and future
strategies to achieve sustained growth for our own civilization.
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