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Naturalness: where are you?

The "naturalness" problem:

Why is the cosmological constant so small?

in natural units: L2 . A ~ 107122
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Q Nonrelativistic Bohmian Quantum Mechanics
e Special Relativistic Bohmian Quantum Mechanics
9 General Relativistic Bohmian Quantum Mechanics

0 Naturalness: restored!
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Outline

0 Nonrelativistic Bohmian Quantum Mechanics
@ Wave function as a radius-angle complex
@ Schrddinger eq. from action principle
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Schrddinger eq. in magnitude-phase representation

R _,
V(x 1

—omV et V(X)p=ihsp (1)
General radial form for the complex wave function:
Classical action and momentum
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Logarithmic Derivatives
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Laplacian
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Real and Imaginary Part
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SS Vo VR+<R> T R2
ih OR K2 i 2

ROt 2mh [VP+RP'VR]

BVJ Gravi-Onium



Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Interpretation
Re Energy = +
P2 r? V2R
E=lmtV - am
Im: Mass density current continuity

m%’jz+v(R2P):o
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Action Principle

Variational Principle behind the Schrédinger equation

_ 2S |VSP? 2 .
6-/(8t+ o= +V>|gp!dxdt 9)

"Boltzmannian” eikonal ansatz: S = ? Ing  Using this ansatz:

2
6:/[% gf+,fw Ve + Vi Lp] dBxdt  (10)

Variation against ¢* delivers

06 ho h2
5 = 0 Em" P Ve=0 il
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Nonrelativistic Bohmian Quantum Mechanics

Wave function as a radius-angle complex
Schrédinger eq. from action principle

Action with Magnitude - Phase Variables

Split to Quantum + Classical parts

6:/[;;(VR)2+R2 <(Z;“7)2+v+‘3(;“>]d3xdt (12)

Structure of Quantum Principle:
S = h2( quantum kinetic ) + R?( classically zero )

Path integral, tunneling: S=a—-iklnR
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Outline

© Special Relativistic Bohmian Quantum Mechanics
@ Klein-Gordon Lagrangian
@ Action principle with Bohmian variables
@ Two expressions for the conserved energy
@ Relativistic Bohmian EM Tensor
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Quantum Lagrangian

Lagrange density

L P 1 /mec\2 ,
L=zow o'y —5 () v o (13)
Action and other conventions
S = / L d*x (14)

with dx’ = (cdt, dr).
Physical units [£] = energy density / ¢ = [mc/L3].
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Madelung ansatz

Complex scalar field (related to the wave function)

1/}:\/%%'&/? (15)

Here « is only the (real) classical action. Units of R from
(me/h)? ¢*p = me R? (16)

which is part of £; it follows that R? is a number density.
Compare this with Maupertuis action for a classical mass point:

- / < / mCZdesx) dt — — / mc?dr (17)

It follows a normalization [ R?d®x = 2  in the comoving frame.
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Derivative

First derivative of :

oy = <8’F;q aF éﬁ/&) P (18)

The derivative of the classical action is a classical momentum:

P; = 0ja, uj = P;/(mc). (19)
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Quantum Action

2 R2
s= " [6,/?8’/—? + 22

T (a,aa'a— (me) )] d*x  (20)

Rewritten as a sum of a quantum and a classical part:

6:/[ L ORIR + | o (PP — (mc)?) ]d“x (21)
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Special Relativistic Bohmian Quantum Mechanics K\e!n—Gor"do'n Lagrang\an . .
Action principle with Bohmian variables
Two expressions for the conserved energy
Relativistic Bohmian EM Tensor

U(1) Noether charge

<¢8k¢ ¢*ak¢> RZPk R2uk

is a number den3|ty 4-current R?uk = pu".
Conserved by variation of & wrsp. a:

06 1
— = § [ —RPO*a) =
5o 8;(( c 8a> 0

Facit: e gE
quantum k Kk

06 _ Ooqunum _ _ 5 gk — _ g, (puk) = 0.
oo 0 Sclassical k k(P )
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Off Mass Shell
Variation against R delivers

& K2 R

o= - - i _
= ——-OR+ — (PP (mc) ) 0. (25)
Off-mass shell dispersion relation for the classical 4-momentum
j OR
PP — (mc)? = h?=X (26)
Metric view: )
P h OR
. I P —_— PR
giu't =1+ <mc> = (27)

Note: this is a Compton wavelength scaled, locally
Lorentzian spacetime metric.
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor | (textbook)

Derivation I: using ¥ and v*.

sco 1.,
Ny = 5okg 50k (28)
T,'j = ni8j¢ -+ ﬂ}*@ﬂb* — Gj L. (29)

in terms of R and «:
T; = mcR? w; + L Uj
v " me™"
1 K
Wj = Uitj — 58j (kU™ — 1),

Uj = iRO;R - %g;,- OkRO*R. (30)
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor | (textbook)

Using the off-mass-shell relation (26) leads to:

h? 1
2 k
T,'j = mcR uiuj + mo (6,-H 8/-Fi = Eg,-j <8kH8 R+ RDR)

(31)

Here the h?() part is the quantum contribution, the rest is just dust .
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor |l (Takabayashi)

Take the derivative of the off-mass-shell egation (27):

2

B [ukuk_1 _ " BRI, (32)

Use Compton wavelength Lz = i/ mc and expand:

1 OR
REUR Oy — 5 LER?); <R) =0 (33)
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor |l (Takabayashi)

The Madelung fluid is irrotational:
1
8,'Uk = m—ca,-aka = m—cakﬁ,-a = (9kU,' (34)
Therefore
Rzuka,-uk = Rzukaku,- = 8k(R2UkU,') = U,'ak(RZUk) (35)

and due to continuity the last term vanishes.
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor |l

By these manipulations we obtain

1 OR
Ok (Rzukui> = ELZCR28,- <F1’> (36)
Further use of the Leibniz rule leads to
R?9; (DRR> = ROO;R — 9;ROR
= 0K (ROKO;R — xR O;iR) (37)
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor |l

This reveals a vanishing divergence of the Bohm-Takabayashi
tensor

2

I}
77/- = mchu,-uj — 271770 (R@,@R — O0;R 6,/-?) (38)

It differs from the Klein-Gordon one (31) by

h2
By = Ty=Ty = 5 — (OROA + ROYR — g(0cRO*R + AOR))

2mc
(39)

BVJ Gravi-Onium



Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Difference

We note that

RZ
(948 — 9i6)) = = 9i(ORI*R+ROR) ~;R0;R— RO0;R (40)

One realizes that

hZ
i = 74[7’70 (6,-8/ = g,-jD) RZ (41)

has a vanishing divergence.

Note: A,’j = 8afa,-j with faij = ginﬁ, (Qa:@jﬁ - gijaaR)-
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Special Relativistic Bohmian Quantum Mechanics K\em—Gq‘don Lag.rang\an "
Action principle with Bohmian variables

Two expressions for the conserved energy
Relativistic Bohmian EM Tensor

Full Quantum Energy-Momentum Tensor IlI

It can be derived in two ways: from Klein-Gordon Lagrangian

and from Madelung fluid hydrodynamics.
They differ in a tensor part with vanishing divergence.
The general tensor contains parameter p multiplying the

divergenceless part:
Tj = meRPuju; + S + pl\j (42)
with the general Bohm-Takabayashi term

h2
Wy = 5 (0R9;R — RO;R) . (43)
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Trace of Energy-Momentum Tensor

i = {1 +12 L _43“5} (mcR?) (44)

For 1 = 0 original Bohm potential.
For 1 = 1/3 only classical dust contributes to trace.

For . = 1 the original Klein-Gordon case.
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Klein-Gordon Lagrangian

Action principle with Bohmian variables
Two expressions for the conserved energy

Relativistic Bohmian EM Tensor

Special Relativistic Bohmian Quantum Mechanics

Energy-Momentum Tensor in scaling variables

Use R = e /V/'V, then

. mc o, .
T = 792 u'uj + h? 2] (45)

with

2 — 2n:cveza [2,@"0 O + (1 — 1)9'j0 — s (2akaaka + Da)}

(46)
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Outline

e General Relativistic Bohmian Quantum Mechanics
@ Einstein equation
@ Conseqgences of a conformal transformation
@ Identification of the Bohmian terms
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Einstein equation

Consider the downscaled ;.-Madelung-Bohm-Takabayashi
energy-momentum as a source of gravity:

817G

G — N} = —5e %3], (47)

Use the Schwarzschild length (half-radius) Lgs = % to achieve

; ; 8rlLs ; 47rLSL2C -

Q/’: = 2u8i08j0 + (pn — 1)8'@0 — u5;(28k08k0 + 0Oo).
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Conformal transformation by Q(x)

From (originally flat) spacetime to a curved one:

gk = 6% ik (48)
(induced additive change in) Christoffel symbol
S, = ;s ) + s & — d's (49)

(induced additive change in) Ricci tensor
OBk = 2(0;50ks — 00ks) — (Os +29;59s) mk  (50)
(induced additive change in) Ricci scalar

R =662 (Ds + 8,-38’5) (51)
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Transformed Einstein equation

Regard a conformally transformed Einstein tensor.

81G

_ —20 j
G-Nj =" e (52)

after conformal transformation becomes:
. . ) . 871G )
|G] + (205 + akso*s — A) o] —20/9js + 20's | = =~ 727 .

We want to connect s and o. As a source we insert our
u-Madelung Energy-Momentum-Tensor as obtained above.
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Term by term identification

87nls ;

G = v u'y;
<2Ds + Oys0ks — /\) - —u‘w‘\fl‘% (28k08k0 + Da)
—20/9)s = (u—1)4”LVSLCa Oy
20s0js = 2u4”L‘fLC dodjo
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Einstein equation
General Relativistic Bohmian Quantum Mechanics Consegences of a conformal transformation
Identification of the Bohmian terms

Obviously: s = o !

We have dust

. Lo .
Gjl = SFVSUIU/‘,

we have ;= 1/3, i.e. conformal quantum part, and
_ i
3

is a scaled Planck volume (by Mp/m). Finally we have a
cosmolgical term:

1% LslZ

A =3 (0o + ko o) = 35—;

(54)

(55)



Naturalness: restored!

Outline

e Naturalness: restored!
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Naturalness: restored!

The Constant Part of the Cosmological Term

For a mass m particle - bound in —a/r potential

2
W =-3(" =2 57)

with a= Lg/a = h/amc being the  Bohr radius .

An "onium" of two equal masses of m has double Bohr radius
(reduced mass is half).

It is nice to use units with c = 1. Then

h=Lp-Mp; —
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Naturalness: restored!

Grav-Onium Scenario: formulas

Gravitational « from thanks to Antal Jakovac for (re-)forcing this view!
a _ GmP _ m?
r — "hr - a= M2 *

3
Gravi-Bohr radius: ag = - = Lp (%)

Grav-Onium radius: a=2ag, reduced mass: Mmyq = m/2.

Cosmo constant: L%.A =3L%/a? = 0.75(m/Mp)®.

BVJ Gravi-Onium



Naturalness: restored!

Grav-Onium Scenario: numbers

Planck scale: Lp~1.6-10720 fm Mp ~1.2-10"° GeV.

Cosmo constant: A~10"8 fm—2

in natural units: [2-N=256-107122
The reduced mass ratio: m/Mp ~ 5.7 - 10721,
The grav-onium mass: 2m =~ 137 MeV.
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The Madelung fluid

Summary

Summary

QM is off-mass-shell (#2C0R/R) for free particles.

Via conformal trf a cosmological term (A = 30R/R)
appears.

Natural reference volume: V = 4 Lgl2.

p=1/3: ]classical trace \ and quantum dilaton .

Grav-Onium mass is around the 7%-mass from
cosmological constant
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The Madelung fluid

Summary

BACKUP SLIDES




The Madelung fluid

Summary

Outlook

@ Outlook
e Delphenic: Madelung ansatz for Pauli and Dirac.

e Delphenic: Madelung as a conformal transformation
e Jackiw: nonabelian external fields.

e Brans-Dicke etc.: Dilaton type actions.
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The Madelung fluid

Summary

Madelung fluid density

Canonical momenta from & = [ £ d®xdl:

oL K2 o  R?
Me=avE - m "7 Mo =5va = m V@
0L 0L
PR:W:Q Pa:W:RZ (58)
O%¢ 95t
Continuity eq:
oP,
—_ @ n, =
5t +V 0

fluid density | p = P, = R? .
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The Madelung fluid

Summary

Madelung current

The “classical” momentum defines a velocity as P = mv

The continuity equation reads as

op =, o
T V(pv) =0. (59)
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The Madelung fluid

Summary

Bohm potential

The quantum correction to the energy can be expressed as

WA VER WP <v2 (Vp)2>

2m R~ 2m\ 2p 42 (60)
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The Madelung fluid

Summary

Fisher entropy

The action expressed by p (up to surface terms) becomes
2 2 (Vp)2
o= [ [G+v-5)+[(E%)

The last term, the quantum part, looks like Fisher entropy.

d®x at (61)

| S

Fisher entropy may also have to do with uncertainity (in phase
space, however).
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The Madelung fluid

Summary

Interlude: Dilaton

The improved Energy-Momentum-Tensor (arxiv:0307199)

@ Canonical EMT: infinitesimal shift in x* generates it
@ Neither symmetric nor gauge invariant
@ Not traceless even for scale-invariant L.

Cure by adding a term with vanishing divergence
TH = @M + O, f™

anti-symmetric in k, v.
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The Madelung fluid

Summary

Inf Sym Trf

Canonical Momentum: ne .= 5§f{p,.
Transformation: X' =Qx, ¢(x')=Up(Q'x)
Infinitesimal: SxH = eaG¥, S’ =€a (F¥ — GHO,¢")
Conserved Current: €a- J¥# =MHsp — ©,0x"

Antisymetric correction to the Noether current is possible.
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The Madelung fluid

Summary

Dilatation

bp' =d-ey; 0X

Conserved dilatation Noether current:
JH = x"OH —d - M.

The zero divergence criterion (using that of ©,,,):

But =&t —d -9, (¢'N) =0.
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The Madelung fluid

Summary

Our Case

For the complex KG Lagrangian:

. 1 h?
PN = 5 (WO + o) = 0" AP = LG 0(meRF).

Correction to trace of EMT:

TH = (GuJ") + d- L2 0(mcR?).

non—scaling part

Conclusion: ‘ d=(1-3un)/4 = 0‘.
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